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ABSTRACT Recent technological developments in computer systems transfer human life from real to
virtual environments. Covid-19 disease has accelerated this process. Cyber criminals’ interest has shifted
in a real to virtual life as well. This is because it is easier to commit a crime in cyberspace rather than
regular life. Malicious software (malware) is unwanted software which is frequently used by cyber criminals
to launch cyber-attacks. Malware variants are continuing to evolve by using advanced obfuscation and
packing techniques. These concealing techniques make malware detection and classification significantly
challenging. Novel methods which are quite different from traditional methods must be used to effectively
combat with newmalware variants. Traditional artificial intelligence (AI) specificallymachine learning (ML)
algorithms are no longer effective in detecting all new and complex malware variants. Deep learning (DL)
approach which is quite different from traditional ML algorithms can be a promising solution to the problem
of detecting all variants of malware. In this study, a novel deep-learning-based architecture is proposed
which can classify malware variants based on a hybrid model. The main contribution of the study is to
propose a new hybrid architecture which integrates two wide-ranging pre-trained network models in an
optimizedmanner. This architecture consists of four main stages, namely: data acquisition, the design of deep
neural network architecture, training of the proposed deep neural network architecture, and evaluation of the
trained deep neural network. The proposed method tested on Malimg, Microsoft BIG 2015, and Malevis
datasets. The experimental results show that the suggested method can effectively classify malware with
high accuracy which outperforms the state of the art methods in the literature. When proposed method tested
on Malimg dataset, 97.78% accuracy is obtained which is outperformed most of the ML-based malware
detection method.

INDEX TERMS Malware, malware classification, malware detection, malware variants, deep neural
networks, transfer learning, deep learning.

I. INTRODUCTION
Recent technological advances on computer systems and the
Internet make a human life easier and convenient. These days,
it is possible to do everything on the Internet including social
interaction, monetary transactions, measurement of human
body changes, etc. All of these developments lure cyber
criminals into committing crimes in cyberspace rather than in
real life. According to recent scientific and business reports,
cyber-attacks cost trillions of dollars to the world econ-
omy [1]–[3]. Cyber criminals often use malware to launch
cyber-attacks. Malware is any software which performs
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unwanted and suspicious activities on victim machines.
Malware can be categorized into various types such as virus,
worm, Trojan, rootkit, ransomware, etc.Malware variants can
steal confidential data, initialize distributed denial of service
(DDoS) attacks, and perform disruptive damage to the com-
puter systems. New malware variants use concealing tech-
niques such as encryption and packing to remain invisible in
the victim’s system [2]. Those new variants spread by exploit-
ing human trust as an infection vector. For instance, opening
email attachments, downloading fake applications, visiting
and downloading files from phony websites are well-known
methods of malware spreading vectors.

To protect the computer systems, we have to detect mal-
ware as soon as it infects the systems. Malware detection is
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the process of analyzing the suspicious file and identifying
whether it is malware or benign.Malware classification is one
step further. After the file is identified as malware, specifying
the category or family of malware known as malware classi-
fication. Detecting malware requires 3 steps operations:

1. Malware files are analyzed with appropriate tools.
2. Static and dynamic features are extracted from the ana-

lyzed files.
3. Features are grouped in certain ways to separate mali-

cious software from benign.

To increase the detection rate, different sciences and tech-
niques including data science, machine learning, heuris-
tic as well as technologies such as cloud computing, big
data, and block chain are used in these processes. There
are different malware detection approaches using the above
techniques and technologies. These approaches are mainly
signature-, behavior-, model checking, and heuristic-based
detection [2], [4]. The names of these approaches vary
according to the techniques and technologies that are used.
Signature-based approach is effective for known and similar
versions of the same malware. However, it fails to detect pre-
viously unseenmalware. Although behavior-based, heuristic-
based, and model checking-based detection approaches are
effective in detecting some portions of the unknownmalware,
they cannot show the same performance when detecting
complex malware variants which are using obfuscation and
packing techniques.

Deep learning-based approach is starting to be used as
a new paradigm to eliminate the shortcomings of existing
malware detection and classification approaches. Deep learn-
ing has been used extensively in different areas including
image processing, computer vision, human action recogni-
tion [5], driving safety [6], facial emotion recognition [7]
and natural language processing. However, it has not been
used sufficiently in the cyber security field, especially in
malware detection. Deep learning is a subset of artificial
intelligence which works based on artificial neural networks
(ANN). Deep learning uses several hidden layers and learns
from examples. To increase the model performance, there
are several deep learning architectures used recently such as
deep neural networks (DNN), deep belief networks (DBN),
recurrent neural networks (RNN), and convolutional neural
networks (CNN). Deep learning brings many advantages over
traditional learning schema:

1. DLmodel can automatically generate high-level features
from existing features.

2. DL reduces need for feature engineering.
3. DL can handle unstructured data efficiently.
4. DL can process very large datasets.
5. DL reduces feature space.
6. DL can perform unsupervised, semi-supervised and

supervised learning efficiently.
7. DL reduces cost and increases accuracy.

This study proposes a novel hybrid deep-learning based
architecture for malware classification. In the proposed

method, malware data gathered from Microsoft BIG 2015,
Malimg and Malevis datasets. Malware samples are first
converted into grayscale images and given to the DL system.
After the image acquisition section is fulfilled, the proposed
method extracted high-level malware features from malware
images by using the convolution layers of the proposed hybrid
architecture. Finally, the system is trained in a supervised
manner. Overall, several comprehensive deep-learning mod-
els, which are relying on a transfer-learning method, are
combined so as to produce a hybrid model in the suggested
model. During the aforementioned processes, several hidden
layers and Rectified Linear Unit (ReLU) function are applied.
The test results presented that the proposed method can effec-
tively extract distinctive features for each malware type and
family for classification. Experiment results also showed that
proposed DLmethod classifies distinct malware variants with
high accuracy which outperforms the state of the art methods
in the literature. The major contributions of the paper is listed
as follows:

1. A novel hybrid deep learning-based malware classifica-
tion method is proposed.

2. Suggested method uses a new hybrid layer that involves
two pre-trained models instead of one model.

3. Distinctive features are extracted from malware data for
various categories.

4. Proposed method reduces feature spaces significantly.
5. Proposed method is tested on three well-known malware

datasets.
6. Measured accuracy rates are higher than those of known

methods.

The remainder of this paper is organized as follows.
Section II explains the malware analysis, feature extraction,
and detection processes; and reviews the existing mal-
ware detection and classification methods in the litera-
ture. Section III describes a proposed hybrid deep learning
architecture framework. Section IV presents experimental
results and discussion. Section V explains the limitations of
the proposed model and future research directions. Finally,
section VI presents the conclusion.

II. RELATED WORK
Malware detection and classification is a long process.
Various techniques and technologies are used in these phases.
In order to detect malware, first it needs to be analyzed with
the use of relevant tools. Second, tools results are logged
and features are extracted manually or automatically. In this
phase, data mining techniques are used to get meaningful fea-
tures [2]. Then, the extracted features are selected according
to certain criteria. Finally, selected features are trained byML
algorithms or rule-based learning techniques to separate mal-
ware from benign [2], [4]. Malware analysis, detection and
classification processes can be seen in Figure 1. In order to
better learn the content and purpose of the malware, a further
classification can be made by detecting the types and classes
of malware it belongs to [8], [9].
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FIGURE 1. Malware analysis, detection and classification processes.

To understand the malware detection process and the tech-
niques that are applied more clearly, this section is divided
into four subsections: malware detection devices and plat-
forms, malware analysis, malware feature extraction, and
detection and classification.

A. MALWARE DETECTION ON DIFFERENT
DEVICES AND PLATFORMS
Malware detection and classification approaches can be per-
formed on different devices and platforms including:
1. Desktop and laptop computers.
2. Mobile devices.
3. IoT devices.
4. Cloud computing platform.
At first, malware variants were written only for usual

computers because there were no other devices. Timely,
other devices such as smartphones, personal digital assistants

(PDAs), and Internet of things (IoT) have become recognized.
Between 1990 to 2000, computer viruses became very popu-
lar [10]. From 2000 to 2010 first computer worm, then Trojan
became familiar [10]. Since 2010 up to now, ransomware
has become very popular malware [11]. From 1990 to 2010,
most of the malware types were written for usual computers
especially for Windows operating systems (OSs) because
other OSs such as Unix, different suits of Linux and macOS
were not as common as Windows. Thus, malware detection
approaches were proposed for computers. However, after
2010 mobile devices such as smartphones, tablets, and PDAs
became popular devices. Then, cloud computing environ-
ments and IoT devices become so popular.

According to recent studies, the number of smartphones
has exceeded the number of computers and this difference
is increasing every day. People use mobile apps. more than
the web version of the program. The number of IoT devices
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is growing as well. Since the usage of smartphones and
IoT devices has become more popular than usual computers,
cyber criminals’ interests have shifted from usual computers
to smartphones and IoT devices as well. Cybercriminalsmake
changes to existing malware and create different versions of
the same malware which can run on those devices.

According to a McAfee report, there is an enormous
increase in banking Trojans, backdoors, and fake applica-
tions for mobile platforms [12]. In addition, the malicious
attacks associated with cryptocurrency, social media, IoT
devices, and cloud computing environments are on the rise
as well. These reasons shift the malware detection landscape
from computer to mobile-IoT devices, and cloud environ-
ment. Cloud computing brings many advantages to malware
detection including easy access, more computational power
and much bigger databases [13]. Thus, most of the recent
papers on malware detection and classification methods are
written for mobile and IoT devices using deep learning and
implemented in cloud computing environments.

B. MALWARE ANALYSIS METHOD
Malware samples must be analyzed to find out the nature
and behaviors of malware [14]. Malware analysis is an
extremely important process. This is because during the
analysis process, malware detection process takes place as
well as several questions can be answered: the structure
of the malware can be visualized, the infection and spread
methods can be discovered and the given damage to the
victim’s machines can be evaluated [14]. Malware analysis
can be divided into two main categories including static and
dynamic. Malware analysis starts with basic static analysis
and finishes with advanced dynamic analysis [15]. Anal-
ysis can be performed manually or automatically. Manual
analysis requires domain expert knowledge, while automatic
analysis requires advanced data science programming skills.

1) STATIC ANALYSIS
In static analysis, the structure of the malware sample is
identified without running the actual malware codes [16].
It is divided into two parts: basic and advanced static anal-
ysis. In basic static analysis; file strings, header information,
functions are examined by looking at the program without
going into details [14]. To extract that information vari-
ous tools can be used including PEiD, BinText, MD5deep
and PEview [15]. Basic static analysis is the first step of
malware analysis, to get more knowledge about malware,
advanced static analysis should be performed. In advanced
static analysis, the program commands are examined in detail.
To do that disassembler is used to generate assembly codes
from machine codes [8], [17]. For this purpose, IDA Pro
packet splitter and its extension Hex-Rays decompiler are
widely used for advanced static analysis. During the analysis,
assembly instructions are examined deeply to find out char-
acteristics of malware. Certain malware functionalities can
be obtained as a result of reverse compilation and advanced
static analysis. Advanced static analysis provides profound

knowledge about malware purpose and functionality. How-
ever, performing this analysis requires advanced expertise
of domain knowledge about assembly code instructions and
operating system concepts [14], [18].

2) DYNAMIC ANALYSIS
In dynamic analysis, program instructions are executed and
the behaviors of the malware are evaluated. To protect the
machines from the malware, the analysis is performed in
closed environments such as sandbox or virtual machines.
During the analysis; function calls, parameters, information
flows, file-registry changes, and network activities are exam-
ined. Dynamic analysis presents malware real functionality
more accurately than the static analysis. Dynamic analysis is
divided into 2 parts: basic and advanced dynamic analysis.
Basic dynamic analysis investigates the malware behav-
iors using monitoring tools such as Process Monitor, API
Monitor, Process Explorer, Regshot, ApateDNS, Wireshark
and Sandboxes [17]. In advanced dynamic analysis, debug-
ging tools such as OllyDbg, WinDbg are used. Debuggers
allow malware analysts to execute each command individ-
ually for both viewing and changing the contents of vari-
ables, parameters and memory areas [14]. Debuggers work
both at the user and kernel level. Using advanced dynamic
analysis, most of the malware functionality and dynamic
view of the program can be identified. However, the use of
debuggers is difficult because it requires advanced domain
knowledge about assembly level instructions and operating
system concepts.

3) STATIC VERSUS DYNAMIC ANALYSIS
By using static analysis, it is easy and fast to get an overview
of the programs and analyzemalware that has been frequently
seen before. However, it is almost impossible to accu-
rately analyze the malware which uses obfuscation, packed,
polymorphic, etc, techniques. Since the program codes are
executed during dynamic analysis, malicious software which
is using hiding techniques can be detected. However, some
malware variants can be aware of being analyzed under
sandboxes and virtual environments which results in hiding
their real behaviors. Although static analysis performs faster
and better for previously known malware, dynamic analysis
performs more effective for unknown malware.

C. MALWARE FEATURE EXTRACTION TECHNIQUES
After the malware samples are analyzed, the execution traces
are logged. These logs are processed by using data min-
ing techniques to extract malware features. Data mining is
the process of extracting previously unknown information
from large datasets. At this stage, certain patterns in the
data and previously unknown values are determined. Byte
sequences, strings, assembly instructions, opcodes, API calls,
system calls, and list of DLLs can be used when extract-
ing malware features [2]. In recent years, data mining tech-
niques such as n-gram, m-bag, k-tuple, and the diagram
model have been widely used when determining malware
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features [19], [20]. There are also several study-specific
feature extraction techniques that are proposed for malware
detection in the literature [19]–[26].

1) THE N-GRAM, M-BAG AND K-TUPLE TECHNIQUES
The n-gram feature extraction method is widely used in many
fields as well as malware detection and classification pro-
cesses. It can apply static and dynamic analysis attributes
to create features. When extracting features from the mal-
ware actions, n-gram uses consecutive system calls [21]
based on specified n values: 2, 3, 4, 6, etc. For instance,
if sample program system calls are in the following order
P = 〈1, 2, 3, 4, 5〉, 2-gram and 4-gram will be {〈1, 2〉, 〈2, 3〉,
〈3, 4〉, 〈4, 5〉}, and {〈1, 2, 3, 4〉, 〈2, 3, 4, 5〉}, respectively.
Tuble and bag models are similar to n-gram. In the tuble
method n can be at any distance while in the bag method the
frequencies are more important than the order [19]. Although
n-gram is an effective feature generation technique, the rapid
increase in the number of features declines its performance.
There are different models which are modifications of n-gram
proposed in the literature to extract malware features as
well [20]–[22]. Generally, thosemodels generate less features
than the n-gram.

2) GRAPH-BASED TECHNIQUE
Execution traces which are collected from the previous
section used when extracting and representing features.
Collected string values, program instructions or system calls
are converted into graphs [23]–[25]. In the graph G (V, E),
V (nodes) represent system calls and E (edges) represent
relationships among system calls. Since the size of the graph
increases over time, there are sub-graphs to express the graph
approximately [26]. The determination of the sub-graph is
expressed as NP-complete in many studies. After sub-graphs
are extracted, the detection phase can proceed.

3) VISION-BASED TECHNIQUE
In vision-based feature extraction, there are two main tech-
niques to extract the features and visualize themalware. In the
first technique, malware binaries are represented as an image.
In this technique, no other tools are required such as Sandbox,
Disassembly, API Monitor for feature extraction. Malware
binary is converted to an 8 bit vector and then represented
as a 2D array [27]. In the second technique, malware anal-
ysis is performed by using relevant tools such as Sandbox,
API Monitor, Process Monitor, Bintext, and IDA Pro [28].
Then, execution traces are collected such as opcode, byte
strings, API calls, system calls, etc. Finally, execution traces
are used to visualize the images. During the visualization,
different methods such as vectors, treemaps, and graphs are
used. Based on the previous studies, it is found that mal-
ware types, which belong to the same family, have similar
images [8], [27]–[29].

D. MALWARE DETECTION AND
CLASSIFICATION APPROACHES
Extracted malware features are categorized by using ML
algorithms or heuristic techniques to detect and classify the
malware. We can divide malware detection and classifica-
tion approaches to five distinct groups including: signature-,
behavior-, heuristic-, model checking-, and deep learning-
based. This number can be increased according to the
environment and technologies that are used. Each approach
and related literature studies are explained in details as the
following:

1) SIGNATURE-BASED MALWARE DETECTION AND
CLASSIFICATION APPROACH
Signature is a sequence of bits which uniquely identify
the program structure. Since signatures are unique for
each program, they are frequently used in malware detec-
tion [14], [17], [30]. During the signature extraction, initially
the static features are identified from executable files. After-
wards, the signature creation engine generates signatures by
using extracted features. Finally, signatures are stored in the
database.When the suspicious sample file needs to bemarked
as malicious or benign, the signature of the file is extracted
at the same as before and compared with the previously
determined signatures. Based upon the comparison, the sam-
ple file is marked as malicious or benign. This detection
process is called signature-based malware detection. This
detection approach is fairly fast and effective in identifying
knownmalware. However, it fails to detect zero-daymalware.
Furthermore, according to Scott [31] signature based mal-
ware detection is dead because it cannot detect new malware
variants, it is not scalable, and it must depend on human
interaction.

Automatic signature extraction method is presented by
Griffin et al. [32]. The presented method automatically
extracted the string signatures using a range of library iden-
tification techniques and diversity-based heuristics. Accord-
ing to the paper, generated signatures are mostly seen
in malware files. Thus, the rate of false identification
is reduced. Tang et al. [33] explained a simplified regu-
lar expression signature using bioinformatics technique for
detecting polymorphic worms. The proposed technique pro-
duces exploit-based signatures and consists of three phases:
identifying the most prominent sub-sequences using the array
alignment technique, eliminating noisy sub-sequences, and
making the simplified regular expression signature com-
patible with existing IDSs (Intrusion detection systems).
Liu and Sandhu [34] proposed a fingerprint-based signature
generation method that detects malware in hardware. The
program, which runs according to the tamper-evident archi-
tecture, generates different cryptographic hash-based signa-
tures. By using these signatures, Trojans which are embedded
in hardware are detected.
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2) BEHAVIOR-BASED MALWARE DETECTION AND
CLASSIFICATION APPROACH
In the behavior-based detection approach, the behaviors of
the sample program are monitored. Based on the behav-
iors that are gathered, the sample program is decided to
be malware or benign. This approach consists of three
parts: extracting behaviors, creating properties, deciding the
analyzed program as malicious or benign by using ML algo-
rithms [2]. When determining behaviors, system calls, API
calls or changes in file, registry and computer network are
used. In other words, behaviors are determined by examining
the order or frequency of the system calls and file-registry
operations. Behaviors are grouped, sequences are formed
and properties are obtained using these sequences. Although
the program source code changes overtime, the behaviors
of the program will not change completely. Thus, several
malicious software variants can be detected by using this
approach. In addition, new malware, which has been previ-
ously unknown, can also be detected by this approach. The
biggest disadvantage of behavior-based detection is that mal-
ware does not show all of its real behaviors in the protected
environment such as virtual machines and sandboxes.

Malware detection system using the graph model is
explained by Kolbitsch et al. [35]. System calls are trans-
formed into a diagram such that each node represents a
system call and the edge represents a transition among the
system calls. By giving the result of a system call as an
input to the other systems, the connections among system
calls are determined. The program diagram to be marked was
extracted and compared with the existing diagrams. Based
on the comparison, the sample file was marked as malware
or benign. In addition, new behaviors, which are observed
during the analysis, were dynamically added to the diagram.
Lanzi et al. [21] proposed a system-centric behavioral model.
According to the study, the way malicious software interacts
with system resources including directories, files, registries,
etc. is different from the interaction of benign software.
By using the interaction differences, behavior sequences
were created from the system calls. Later, by using these
sequences, malware and benign categories were generated.
In the proposed method, the n-gram technique was used, but
it was difficult to distinguish malicious software from benign
because there were too many sequences of behavior with the
n-gram technique.

Chandramohan et al. [19] proposed the BOFM as a
malware detection method, which decreases the number of
properties immensely. In the proposed method, interrelated
system calls were converted into behaviors in such a way that
created behaviors became meaningful. Then, the properties
were determined using these behaviors. At this stage, the
less repetitive features were eliminated. A feature vector
was created using properties and classification performed by
applying ML algorithms. Singh et al. [36] detected mali-
cious software using behavior-based multiple API system
calls. In this method, multiple API sequences were created

using depth-first search and n-grams. Dice coefficient, Cosine
Coefficient and Tversky index were used to determine sim-
ilarities between software while determining multiple API
sequences. The sequences created were classified using ML
algorithms. Aslan et al. [37] proposed a behavioral-based
SCBM model to detect malware. The paper captured seman-
tically related features from the analyzed program sam-
ples. During the feature extraction, system paths as well as
behaviors were taken into consideration. That way malicious
behavior patterns were differentiated from benign. According
to the paper, the proposed model created fewer features than
the n-gram and other leading methods in the literature. Test
results showed that the proposed model can handle both
known and unknown malware efficiently based upon DR,
FPR, f-score and accuracy respectively.

A novel hybrid approach based on dynamic analysis using
cyber threat intelligence, ML, and data forensics is pro-
posed in [38]. The paper mentioned that using the con-
cept of big data forensics, IP reputation is predicted in its
pre-acceptance stage. Then, associated zero-day attacks are
categorized by using behavioral analysis by applying the
decision tree algorithm. The proposed method is evaluated
based on f-measure, precision and recall scores. Accord-
ing to test results, the obtained f-measure, precision and
recall scores are quite satisfactory when comparing with
other leading methods in the literature. A novel malware
behavioral-based detection method called APTMalInsight is
proposed in [39]. Proposed method identified and cognized
Advanced Persistent Threats (APTs)which rely on the system
call information and ontology knowledge framework. Paper
mentioned that with respect to the obtained feature vectors,
the APT malware could be detected and clustered with a high
percentage.

3) HEURISTIC-BASED MALWARE DETECTION AND
CLASSIFICATION APPROACH
Heuristic-based detection is a complex detection approach
that uses different techniques together. This approach based
on experience uses certain rules and ML techniques [40].
The heuristic approach may utilize both strings and behaviors
related features to generate rules. Based upon those rules,
signatures are created. It is mostly used to determine different
forms of malware as well as previously unseen malware. First
of all, the system is trained by using certain features. Then,
using data for testing, anomalies are detected. Although the
success rate in detecting newmalware is high, the rate of false
positive (FP) and false negative (FN) is high, too because of
optimization issues.

Ye et al. [41] proposed an intelligent malware detection
system. The purpose of the system is to detect polymor-
phic and previously unseen malware variants that cannot be
detected by antivirus scanners. The system took the API
sequences of the given program and then extracted appro-
priate rules using the FP-growth algorithm. Then, it decide
whether the analyzed program files are malicious or benign
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by using the classification algorithms. The proposed system
worked on the Windows executable file format. According
to the results stated in the article, although the proposed
method performed better than some antivirus scanners,
it did not perform as desired when detecting unknown mal-
ware. Canali et al. [42] explained a behavior-based signature
method. The meaningful combination of the system calls
generated behaviors. In this method, signatures were made
up of atoms. Atoms could be any of the following system
calls, system calls with its arguments, behaviors, and behav-
ior groups with its arguments. Signatures were created by
grouping the atoms with certain models. For this purpose,
n-gram, k-tuble and m-bag models were used. According
to the paper, the proposed method successfully detected
malware.

Islam et al. [43] defined a detection system that combines
static and dynamic properties. This system included three
different types of features: frequencies of method lengths (in
bytes), printable string information, and system calls and their
parameters. The feature vector was created by combining
these features and classified usingML algorithms. A dynamic
heuristic method is proposed [44] to detect packed malware.
First, API call frequencies are calculated. Then, the list of API
calls which are strongly associatedwithmalware is identified.
Finally, Naive Bayes classifier and Levenshtein distance is
used for training and classification. According to the paper,
the proposed method produces satisfactory results for packed
malware variants.

4) MODEL CHECKING BASED MALWARE DETECTION AND
CLASSIFICATION APPROACH
In model checking-based detection approach, malicious and
benign features are extracted and coded by using lin-
ear temporal logic (LTL) formulas to identify the certain
features dependencies which are called specifications [2].
Program features are extracted by utilizing the flow relations
among behaviors which use hiding, spreading, and injecting
activities. In order to mark the sample program file as mal-
ware or benign, the properties that are obtained compared
with the previously determined specifications. Based on the
comparison, the file is identified as malware or benign. This
approach is resistant to stealth and packing techniques and
can detect some portion of the new malware variants.

Holzer et al. [45] suggested a verification system to
detect malicious software. In the suggested system, malicious
behaviors are formulated by using the specification language
CTPL (computation tree predicate logic), and the finite state
model is extracted from the disassembled executable files.
If the model controller correctly determined the specifica-
tion, the analyzed sample is marked as malicious, otherwise
benign. In this system, malware has been detected in fami-
lies using the same attack types. In addition, new malware
variants which show similar behaviors are also detected.
According to the study, a model checking-based approach
determined malware semantic properties more accurately
than traditional detection approaches, and this increased

the accuracy of the detection. A proactive malware detec-
tion method, which is based on the model checking-based
approach, was proposed by Kinder et al. [46]. The suggested
method can detect different forms of computer worms with-
out signature update. The proposed method extracted control
flow charts from the executable files and automatically vali-
dated them using the previously specified specifications. For
this, they used a new specification language, CTPL. Accord-
ing to the paper experiment results, the suggested method
could detect various forms of worms with low FPR (false
positive rate).

A pushdown model checking-based method is suggested
by Song and Tayssir [47] to detect malware. The suggested
method reduces the model checking problem to the control of
a Büchi pushdown systemwith symbolic variables. First, exe-
cutable software codes are transformed into pushdown sys-
tems (PDS). Then, by using the SCTPL (stack computation
tree predicate logic), the malware behaviors are determined.
Finally, the software is determined by comparing the PDSs
with the SCTPL specifications. According to the study, the
proposed method is resistant to stealth techniques and detects
malware with high accuracy. However, the proposed method
worked effectively only when data in the stack could not be
modified by direct memory access.

5) DEEP LEARNING BASED MALWARE DETECTION AND
CLASSIFICATION APPROACH
Deep learning is a subfield of artificial intelligence which
learns from examples and inherits from artificial neural net-
works (ANNs). Deep learning has been widely used in fields
such as image processing, driverless cars and voice control,
but it has not been used enough for malware detection as well
as classification. The deep learning-based detection approach
works with high performance and greatly reduces the feature
dimension, but is not resistant to evasion attacks [2]. In addi-
tion, creating hidden layers takes a lot of time, and building
extra hidden layers slightly improves the performance. Deep
learning has not been used excessively in malware detection
and classification approach yet, thus more academic works
are needed to accurately evaluate this approach. The deep
learning-based malware detection methods which are used in
the literature are summarized as follows.

Deep neural network-based malware detection system
using two-dimensional software features is proposed by Saxe
and Berlin [48]. The proposed system consists of three main
sections: In the first section, four different complementary
features have been extracted from malicious and benign sam-
ples. In the second section, a deep neural network consisting
of an input layer, two hidden layers and output layer is built.
In the third section, the outputs of the neural network are
identified by using the calibrator score. At this stage, the esti-
mation of whether the file is malware or not is identified.
According to the study, the proposed system works with 95%
DRwith low FPR. Although the performance of the proposed
system is achieved with high accuracy when using the cross
validation method, the performance dropped rapidly when
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FIGURE 2. Proposed malware classification methodology.

split validation was used. This situation can be eliminated by
using de-obfuscation.

Huang and Stokes [49] explained the MtNet architec-
ture, which is multitasking learning for malware classifi-
cation. In the proposed architecture, malicious and benign
samples were trained with data obtained by dynamic anal-
ysis. Multitasking learning enables hidden layers to learn
better even at low levels. Additionally, the MtNet archi-
tecture used the ReLU activation function to halve the
number of epochs and reduce the error rate. The article
claimed that MtNet performed well when it is compared to
a usual neural network architecture. However, in the pro-
posed architecture, the performance of the model could not
be increased by adding an additional hidden layer, and it
could not be resisted against evasion attacks. Ye et al. [50]
proposed a heterogeneous deep learning system to detect
zero-day malware. The proposed system works using multi-
layer constrained Boltzmann machines and associated mem-
ory. It consists of two phases: pre-training and fine-tuning.
In the pre-training phase, pre-learning is done by learn-
ing multi-layered features from labeled and unlabeled files.
At this stage, the characteristics of each file were deter-
mined. Then, in the fine-tuning phase, supervised learning
was performed to separate malware from benign. According
to the study, the proposed method increased performance
when compared with traditional shallow learning methods.

Roseline et al. [8] suggested intelligent vision-based mal-
ware detection and classification method. The proposed
method is based on the layered ensemble which mimics the
characteristics of deep learning. First, program executables
are converted into 2D images. Then, based on the image
patterns that are gathered, malware variants are classified into
their corresponding classes. In this phase, they used a deep
forest approach which includes sliding window scanning and
cascade layering motivated by CNN concept. According to
the paper, the suggested method did not require backpropaga-
tion and hyper-parameter tuning. Test results showed that the
proposed method successfully detected and classified mal-
ware variants on Malimg, BIG 2015, and MaleVis datasets.
Hybrid malware classification method, which is using deep
convolutional neural network features, is proposed in [9].

They used pre-trained AlexNet and Inception-v3 models to
extract features. Then, they used segmentation-based frac-
tal texture analysis of images which represented the mali-
cious code. Malware variants were divided into 25 classes.
Extracted features from malware images were classified
based on support vector machine, decision tree and k-nearest
neighbor. According to the paper, the proposed method
achieved a high accuracy rate on Malimg dataset.

Even though the deep learning detection approach is quite
effective when detecting malware, it can be deceived by
evasion attacks, which leads to misclassification. In adver-
sarial attack, attackers provide deceptive inputs to bypass
the detection system by only shifting a few specific bytes
in malware binaries. In the proposed malware classification
model, necessary contributions are applied in order to reduce
the effect of evasion attacks.

III. PROPOSED MODEL
This section presents our proposed malware classification
framework based on deep learning methodologies. This
framework provides a hybrid deep neural network archi-
tecture for malware classification. The methodology of the
proposed system, illustrated in Figure 2, is comprised of
three main steps. Firstly, the collection of the malware data
is accomplished by utilizing several exhaustive datasets.
Secondly, the extraction of the low and high level malware
features is performed using pre-trained networks. Finally,
the training phase belonging to our deep neural network
architecture is performed according to a supervised learning
method.

This section is divided into two main sub-sections: mal-
ware visualization and model overview. In the malware
visualization sub-section, malware variants in binary file
form are represented as gray scale images. In the model
overview section, the proposed malware classification frame-
work methodologies are explained in great detail.

A. MALWARE VISUALIZATION AS AN IMAGE FRAME
There are generally several ways to convert binary code
into images [51]. In our work, we used the visualization of
executable malware binary files [27]. Our aim is to visualize
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FIGURE 3. Overview of malware visualization process.

FIGURE 4. Malware grayscale images from different malware families.
(These images are obtained from Malimg [27], Microsoft BIG 2015 [52]
and Malevis Datasets [53]).

binary files as a grayscale image. Figure 3 shows the process
of convertingmalware binary files to grayscale images. Based
on Figure 3, first malware binary file is read in a vector of
8-bits unsigned integers. After that, the binary value of each
component A = (a7+a6+a5+a4+a3+a2+a1+a0) is converted
into its equivalent decimal value using equation (1). Finally,
the resulting decimal vector is reshaped to a 2D matrix and
then interpreted as a grayscale image. Choosing width and
height of the 2D matrix basically depends upon the malware
binary file size. Here, the spatial resolution provided by
Nataraj et al. [27] was used to reshape the decimal vectors.
Figure 4 illustrates resulting examples of malware visualiza-
tion image frames from various malware families.

A = (a0∗20 + a1∗21 + a2∗22 + a3∗23

+ a4∗24 + a5∗25 + a6∗26 + a7∗27) (1)

B. PROPOSED MODEL OVERVIEW FOR
MALWARE CLASSIFICATION
Suggested model provides an optimized framework for
malware classification. This framework is designed as a
hybrid deep neural network architecture. The methodology
of the proposed framework, illustrated in Figure 2, com-
prises four phases respectively: collection of malware data,
design of deep neural network architecture, training phase,

and evaluation stage. In addition system flowchart, which is
illustrated in Figure 5, shows a more detailed definition of
those stages. Herein, four stages are defined in three parts.
In Figure 5, the pretrained networks in the pre-training section
function as feature extractors. Additionally, in the training
section, the first three layers demonstrate fully connected
layers for the learning process and the final layer shows a
softmax classifier for the classification process.

Initially, malware data is collected from various datasets
including Malimg [27], Microsoft BIG 2015 [52] and
Malevis [53]. The details of these malware classification
datasets are explained in the next part. Then, the proposed
deep neural network architecture is designed. Here, two
pre-processing stages are performed: Firstly, the process of
predicting a suitable DL architecture in order to employ in
malware classification processes has been carried out. So that,
as it was uncovered in pre-experiments that a hybrid mod-
ule [54] can provide preferable overall precision. A hybrid
module, which contains ResNet-50 and AlexNet architec-
tures, was created utilizing pre-trained architectures.

The ResNet-50 [55] architecture, shown in Figure 6, is a
winning model in the ILSVRC 2015 and COCO 2015 com-
petitions and a convolutional neural network that is 50 layers
deep. In this network model, five convolutional blocks are
used which comprise 1 × 1, 3 × 3, and 1 × 1 convolution
layers.

Besides, the ResNet-50 network contains two pooling
operations, softmax layer and a fully connected layer. The
ResNet-50 architecture consists of 25.6 million parameters.
AlexNet [56] is one of the prominent convolutional neural
networks presented in the ‘‘ImageNet Large Scale Visual
Recognition Challenge’’. AlexNet has a basic architecture,
which employs 8-layers; the first five are convolutional lay-
ers and the last three are fully connected layers. Besides,
the AlexNet network contains two normalizations, three pool-
ing, seven ReLU layers, and a softmax layer with regard to the
learning and classification processes, as shown in Figure 7.

Next, transfer learning approaches have been investi-
gated in order to overcome the different challenging condi-
tions encountered in the classification process such as time
constraint, extreme dataset dimension, etc. In the transfer
learning approach, firstly, the feature extraction process is
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FIGURE 5. Flowchart of proposed deep learning architecture for malware classification.

performed using pre-trained networks. Then, as the last step,
the classification process is carried out with a general classi-
fier such as support vector machine, softmax. This approach
is tailored for the proposed architecture so as to cope with
challenging conditions aforementioned.

Suggested model combines two pre-trained networks with
implementing an equal weighting operation in order to cre-
ate a feature vector. Then, training process was performed
to achieve the high accuracy rate. Each stage is described
as noted below: Initially, the pre-training process is car-
ried out in which Resnet and AlexNet architectures are
trained using ImageNet dataset [57]. Then, in the second
step, the features obtained from Resnet and AlexNet archi-
tectures are combined to generate a feature vector. This
created vector is consist of 4096 dimension. The features
generated by the pre-trained architectures of ResNet-50 and
AlexNet are respectively the extraction of a 2048 dimen-
sional feature from final fully connected layer, illustrated in
Figure 6 and Figure 7. On each grayscale image frame the
pre-training stage of the model is finished after the com-
bined feature vector with 4096 elements is acquired. Thirdly,
the combined feature vector is passed into the softmax layer
and fully connected layers so as to obtain normalization.
At this point, softmax layer has 57 outputs which address

the categories of 57 malware, and the fully connected layers
comprise 4096 nodes. This layer aims to raise the learn-
ing capability of the proposed network (Figure 5). Lastly,
experimental analysis of the proposed model was performed
by using the exhaustive datasets as inputs to the trained
model.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
This section explains the details of the implementation, exper-
imental results, and evaluation of the suggested deep neural
network model. Our experiments were carried out using an
Intel Core i9 processor running at 4.8 GHz with 32 GB
of RAM Memory in Linux the environment. In order to
implement the suggested architecture, Python programming
language was employed. Training, validation, and test data
were selected at random for each dataset used and assessment
processes are performed one by one. For the training, valida-
tion and testing stages, the selection rates of the available data
are set at 70%, 10% and 20%, respectively. The training pro-
cedure of the network architecture was performed for about
30 hours without GPU support and halted at 150 epochs.
In order to show the performance of the proposed methods,
several evaluation metrics were used. These metrics are accu-
racy, sensitivity, specificity, and f-score. This performance
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FIGURE 6. An illustration of ResNet-50 network [55].

FIGURE 7. An illustration of AlexNet network [56].

metrics are calculated as follows (equation 2, 3, 4 and 5):

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(2)

Sensitivity =
TP

TP+ FN
(3)

Specificity =
TN

TN + FP
(4)

F − score =
2∗TP

2∗TP+ FP+ FN
(5)

Here, TP refers to true positive, FP is false positive,
whereas TN is true negative and TP is true positive. The
performance metrics aforementioned are the first step when
interpreting of performance for the suggested model. The
comparison processes is carried out for suggested hybrid
model with two selected deep neural networks. Figure 8,
Figure 9 and Figure 10 show the metric values of the pro-
posed network, AlexNet and Resnet-50 deep neural network
models for the individual dataset. Table 1 shows the start
values of standard configuration parameters for the suggested
hybrid convolutional neural network architecture identified
for Mailimg, Microsoft BIG 2015, and Malevis datasets.

A. EMPLOYED BENCHMARK DATASETS
Experiments were carried out on three comprehensive
datasets. These are Malimg, Microsoft BIG 2015, and Male-
vis datasets. Details of these three datasets are presented
below.

The Malimg dataset [27] contains 9,339 malware sam-
ples. Each malware sample in the dataset belongs to one
of the 25 malware classes. Besides, the number of samples
belonging to a malware class differ across the dataset. The
malware classes contain Adialer.C, Agent.FYI, Allaple.A,
Allaple.L, Alueron.gen!J, Autorun.K, Benign, C2LOP.P,
C2LOP.gen!g, Dialplatform.B, Dontovo.A, Fakerean, Instan-
taccess, Lolyda.AA1, Lolyda.AA2, Lolyda.AA3, Lolyda.AT,
Malex.gen!J, Obfuscator. AD, Rbot!gen, Skintrim.N,
Swizzor.gen!E, VB.AT, Wintrim.BX, and Yuner.A.

TheMicrosoft BIG 2015 dataset [52] contains 21,741 mal-
ware samples belonging to 9 different classes, named Ram-
nit, Lollipop, Kelihos_ver1, Kelihos_ver3, Vundo, Simda,
Tracur, Obfuscator.ACY and Gatak. Like theMalimg dataset,
the number of malware samples over classes is not uniformly
distributed. Each malware sample is represented with two
files as ‘‘.byte’’, ‘‘.asm’’. Here, while ‘‘.bytes’’ file comprises
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TABLE 1. Hyper parameter configurations for Malimg, Microsoft BIG 2015, and Malevis datasets.

FIGURE 8. Quantitative results on malimg dataset.

the raw hexadecimal representation of the file’s binary con-
tent, ‘‘.asm’’ file includes the disassembled code extracted by
the IDA disassembler tool. We only used the bytes files to
form the malware images in our experiments.

The Malevis dataset [53] contains 9,100 malware sam-
ples for training and 5,126 malware samples for test-
ing belonging to 25 malware classes. Each class includes
350 samples for training and varying samples for testing.
Malware classes contain Adposhel, Agent-fyi, Allaple.A,
Amonetize, Androm,AutoRun-PU, BrowseFox, Dinwod!rfn,
Elex, Expiro-H, Fasong, HackKMS.A, Hlux!IK, Injector,
InstallCore.C, MultiPlug, Neoreklami, Neshta, Regrun.A,
Sality, Snarasite.D!tr, Stantinko, VBA/Hilium.A, VBKrypt,
and Vilsel.

B. RESULTS AND DISCUSSION
Evaluation metrics describe the performance of the classi-
fication model. The critical point behind the classification
is an evaluation metric used to understand the performance
and efficiency of an algorithm [58]. Thus, several evaluation

metrics mentioned in the experimental results and discussion
section were utilized so as to show the performance of the
proposed methods. These metrics are accuracy, sensitivity,
specificity, and f-score. Figure 8, Figure 9 and Figure 10
show the metric values of the AlexNet, Resnet-50 deep
neural network models and proposed models for Malimg,
Microsoft BIG 2015 and Malevis datasets respectively. In
accordance with these graphs it can be stated that suggested
method outperforms those deep neural network architec-
tures. Also, the performance of our network shows similar
performance results in the three datasets, while the perfor-
mances of the other two deep neural networks differ sig-
nificantly from the three datasets. The aforesaid situations
indicate that our network is more robust and has superior
performance in comparison with the other two deep neural
networks.

Secondly, malware variants were investigated along with
the confusion matrices. Figure 11, Figure 12 and Figure 13
present the confusion matrices for the Microsoft BIG
2015 dataset for nine malware variants (ramnit, lollipop,
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FIGURE 9. Quantitative results on Microsoft BIG 2015 dataset.

FIGURE 10. Quantitative results on malevis dataset.

TABLE 2. Comparison with existing state-of-the-art algorithms performed
on the Malimg dataset.

kelihos_ver1, kelihos_ver3, vundo, simda, tracur, obfusca-
tor.acy and gatak) of the AlexNet, ResNet-50 and proposed
network models, respectively.

Herein, accuracy rates for each malware variant is demon-
strated together with using the confusion matrices. It can be
observed that the proposed method, illustrates the confusion
matrix in Figure 13, grants better results for whole malware
classifications excluding vundo. Besides, The ResNet-50
model which is illustrated in Figure 12, provides a better
detection of the vundo malware variant than other network
models. In this case, all network models can easily be recog-
nized simda and tracur malware variants.

TABLE 3. Comparison with existing state-of-the-art algorithms performed
on the Microsoft BIG 2015 dataset.

Finally, comparison was realized against state-of-the-art
results. Table 2, Table 3 and Table 4 show the accuracy
values obtained for the Malimg, Microsoft Big 2015 and
Malevis datasets for the proposed network model and other
state-of-the-art studies, respectively. It should be noted that
the performance of the proposed architecture outperformed
the state-of- the-art algorithms since it generated a higher
accuracy value.

V. LIMITATIONS AND FUTURE WORKS
Even though our proposed hybrid deep learning architecture
is effective to detect and classify the various malware variants
and families, there are still some limitations which need
to be addressed. The proposed deep learning architecture
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FIGURE 11. The produced confusion matrix on Microsoft BIG 2015 dataset for nine malware variants of AlexNet network.

FIGURE 12. The produced confusion matrix on Microsoft BIG 2015 dataset for nine malware variants of ResNet-50 network.

FIGURE 13. The produced confusion matrix on Microsoft BIG 2015 dataset for nine malware variants of proposed network.

is somehow resistant to obfuscation because we obtained
satisfactory results on Microsoft BIG 2015 Dataset, which
contains some obfuscated malware samples. The proposed
method did not test the adversary’s attacks with crafted
inputs. We aim to measure our method resiliency to evasion
attacks in the next study. Some malware features are similar
for different malware families, which cause misclassifica-
tion. We will improve our deep learning model to decrease
such features. The proposed model is tested only on three

datasets including Malimg, Microsoft BIG 2015, and Male-
vis. We would like to test our model on more datasets in
the future. Proposed architecture is performed with limited
computer power and resources. In the future, we plan to build
our model in a cloud computing environment which will pro-
vide more computational power and resources. We examined
that using more hidden layers in deep learning increases the
performance up to a certain level. For future study, less hidden
layers will be used to reduce the model complexity.
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TABLE 4. Comparison with existing state-of-the-art algorithms performed
on the Malevis dataset.

VI. CONCLUSION
Even though a lot of research has been conducted on malware
detection and classification, effectively detecting malware
variants still remains a serious threat in the cyber security
domain. Code obfuscation and packing techniques make the
malware detection process a very challenging task. This paper
proposed a novel deep learning architecture to effectively
detect malware variants. The proposed architecture uses a
hybrid approach. This approach includes several exhaustive
pre-trained networks which rely upon the transfer learning
method. Initially, the collection of the malware data was
accomplished by using several comprehensive datasets. Then,
the features are extracted by using pre-trained networks.
Finally, the training phase of deep neural network architecture
is performed regarding a supervised learning method.

The main contribution of the proposed method is to present
a hybrid model by optimally combining two well-known
pre-trained network models. The proposed deep learning
method is evaluated on Malimg, Microsoft BIG 2015, and
Malevis datasets. Here, the suggested hybrid model is first
compared with each individual model separately. The test
results confirmed that the proposed method can effectively
classify malware with high precision, recall, accuracy and
f-score. In addition to this, it is observed that the proposed
method is efficient and reduces feature space on a large
scale domain. Secondly, the proposed model was evaluated
by state-of-the-art methods. The results obtained here also
disclose and approve the advantage and supremacy of the
proposed method over leading methods in the literature.
On the other hand, a minority of malware samples could
not be classified correctly. This is because those malware
variants are using advanced code obfuscation techniques and
show similar features with other malware types. For the next
study, we aim to propose a detection system which specifi-
cally detects and classifies malware which uses obfuscation
techniques.
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