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ABSTRACT This paper investigates a real-time neural speech synthesis system on CPUs that can synthesize
high-fidelity 48 kHz speech waveforms to cover the entire frequency range audible by human beings.
Although most previous studies on 48 kHz speech synthesis have used traditional source-filter vocoders
or a WaveNet vocoder for waveform generation, they have some drawbacks regarding synthesis quality or
inference speed. LPCNet was proposed as a real-time neural vocoder with a mobile CPU but its sampling
frequency is still only 16 kHz. In this paper, we propose a Full-band LPCNet to synthesize high-fidelity
48 kHz speech waveforms with a CPU by introducing some simple but effective modifications to the
conventional LPCNet. We then evaluate the synthesis quality using both normal speech and a singing voice.
The results of these experiments demonstrate that the proposed Full-band LPCNet is the only neural vocoder
that can synthesize high-quality 48 kHz speech waveforms while maintaining real-time capability with
a CPU.

INDEX TERMS Speech synthesis, neural vocoder, LPCNet, text-to-speech, singing voice synthesis.

I. INTRODUCTION
Text-to-speech (TTS) and singing voice synthesis are impor-
tant speech technologies for creating a more accessible soci-
ety, and have therefore long been a subject of research.
In recent years, a succession of TTS techniques using deep
neural networks have been developed, and the quality of
synthetic speech has improved significantly [1], [2]. Most
neural TTS architectures consists of two modules: a neural
acoustic model and a neural vocoder model. A neural acoustic
model receives text and infers the acoustic features, such as
mel-spectrograms, that correspond to the input text. A neu-
ral vocoder model receives acoustic features from acoustic
models to generate raw speech waveforms. Notably, neural
vocoders, such as the WaveNet vocoder [3] can synthesize
more higher-quality speech waveforms than conventional
source-filter vocoders [4]–[6], and they have greatly con-
tributed to the improvement of neural TTS.
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Because of its autoregressive architecture, which uses very
large convolutional layers, theWaveNet vocoder suffers from
the problem of low inference speed. To solve this problem,
many neural vocoder models have been proposed [7]–[25],
and they can synthesize high-quality speech waveforms in
real time. Although most real-time neural vocoders require
a GPU or multiple CPU cores for real-time synthesis,
WaveRNN [8] and LPCNet [11] are neural vocoders that can
perform real-time synthesis even on a CPU.WaveRNN is also
used for singing voice synthesis [26], [27]. Additionally, they
can be simply trainedwith the (dual) softmax loss functions in
the time domain [1], [8] in contrast to other neural vocoders,
which require multiple loss functions, such as short-time
Fourier transform (STFT) loss [7] or adversarial loss [28].
However, the sampling frequency used in these vocoder is
24 kHz at the most. As shown in Fig. 1, human speech wave-
forms include frequency components higher than 12 kHz, and
these high frequencies cannot be represented if the sampling
frequency is less than (or equal to) 24 kHz. In particular,
the harmonic structures are also included above 12 kHz
in the singing voice, as shown in Fig. 1(d). Additionally,

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 94923

https://orcid.org/0000-0002-2935-668X
https://orcid.org/0000-0001-9913-4647
https://orcid.org/0000-0002-9808-0250
https://orcid.org/0000-0001-5005-7679
https://orcid.org/0000-0001-8146-1279
https://orcid.org/0000-0003-2238-6808


K. Matsubara et al.: Full-Band LPCNet: Real-Time Neural Vocoder for 48 kHz Audio With CPU

FIGURE 1. Spectrograms of normal speech and singing voice.

the audible frequency range for humans is considered to be
around 20 kHz. In [29], the perceptual quality of synthesized
speech was improved by increasing the sampling frequency
from 16 kHz to 48 kHz. Although the ability to perform
full-band synthesis has littlemerit in normal speech synthesis,
we believe that it will be effective in tasks where expressive-
ness is more important such as singing voice synthesis and
emotional speech synthesis. Therefore, neural vocoders that
can synthesize audio with a higher sampling frequency are
important for representing human speech more accurately.

Some previous studies have performed 48 kHz neural
speech synthesis [6], [29]–[39], but almost all of them
have used traditional source-filter vocoders [6], [29]–[31],
[35], [38] or a WaveNet vocoder [32], [33], [36] for wave-
form generation. The performance of traditional source-filter
vocoders is clearly inferior to that of neural vocoders,
and the WaveNet vocoder has the problem of low infer-
ence speed as noted above. Some previous studies con-
ducted real-time synthesis of full-band speech using a neural
vocoder [34], [40], but they required complicated training
processes, such as adversarial training [28]. Reference [41]
proposedWG-WaveNet which comprises non-autoregressive
WaveNet andWaveGlow and realizes full-band audio synthe-
sis in real-time using a CPU.

In this paper, we propose a Full-band LPCNet to synthe-
size 48 kHz speech waveforms with a CPU by introducing
somemodifications to the conventional LPCNet. The original
LPCNet was proposed as a neural vocoder to synthesize
16 kHz speech in real time with a mobile CPU. Although
some improvements in the performance of LPCNet have been
studied [42]–[53], they have still used sampling frequencies
of 16 kHz or 24 kHz. Modifications of LPCNet to synthesize
48 kHz speech waveforms cause some problems: a decrease
in the inference speed and an increase in the difficulty of
inference. LPCNet has an autoregressive architecture; there-
fore, its inference speed may decrease in inverse proportion
to the increase in sampling frequency. Moreover, inference
may become more difficult because the time resolution of the
output speech increases while the time resolution of the input
acoustic features remains unchanged. It is possible to increase
the time resolution of the input features, but this is not
desirable because it makes inference difficult in the former
acoustic model. With regard to the specific modifications,

we increased the number ofmodel parameters and the number
of dimensions of the input acoustic features.Whenmodifying
the input features, we designed a novel filter bank based on
the Bark scale [54] for full-band speech synthesis. In singing
voice synthesis, we found it necessary to adjust the batch
length of the input features appropriately. Although we per-
formed only a simple extension for full-band synthesis in
this study, acceleration methods such as subband [20], [33],
[49], [51], sample bunching [50], and tensor decomposi-
tion [47] methods can be directly applied to Full-band
LPCNet to further improve the synthesis speed.

We conducted experiments for both normal speech syn-
thesis and singing voice synthesis conditions to evaluate
Full-band LPCNet in comparison with the WORLD [5],
WaveNet, Parallel WaveGAN [15], WG-WaveNet [41],
and PeriodNet [40] vocoders with a sampling frequency
of 48 kHz. Additionally, we investigated the inference speeds
by increasing the number of model parameters of Full-
band LPCNet. The results of these experiments demon-
strate that full-band LPCNet is the only neural vocoder that
can synthesize higher-quality 48 kHz speech waveforms in
real-time with a CPU, as a result of some simple but effective
modifications.

The rest of this paper is organized as follows. Section II
briefly introduces the conventional LPCNet. Full-band
LPCNet is then proposed in Section III. In Section IV, exper-
iments are described and the results are discussed. Section V
concludes the paper.

II. LPCNet
LPCNet is a WaveRNN-based neural vocoder model with
a recurrent neural network architecture. LPCNet predicts
residual signals between natural speech and predicted
speech calculated by linear predictive coding (LPC) [55].
Whereas WaveRNN infers 16 bit audio samples using dual-
softmax [8], LPCNet synthesizes residual samples that are
compressed using 8-bit µ-law coding [56], which can sup-
press quantization errors. Therefore, LPCNet can synthesize
high quality speech waveforms while reducing the network
model size [11].

Fig. 2 shows an overview of the LPCNet architecture.
LPCNet comprises two neural network blocks the frame rate
network and the sample rate network. The input features
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FIGURE 2. Overview of LPCNet.

consist of 18-dimensional Bark-Frequency Cepstrum Coef-
ficients (BFCCs) [54] and two pitch parameters (period and
correlation) for a sampling frequency of 16 kHz.

Samples predicted by LPC are computed as follows:

pt =
M∑
k=1

akst−k , (1)

where pt and st denote the predicted samples and natural
samples, respectively at time t . ak is the k-th linear prediction
coefficient.

The linear prediction coefficients ak are calculated from
the input BFCCs. Specifically, the BFCCs are first converted
to a linear-frequency power spectral density, which is then
converted to an autocorrelation by applying the inverse FFT.
Finally, the prediction coefficients are computed from the
autocorrelation using the Levinson-Durbin algorithm.

The frame rate network extracts intermediate features from
the input acoustic features. The sample rate network receives
a previous one-step natural sample, a predicted sample using
LPC and the output from the frame rate network to infer a
current residual sample.

The sample rate network is also an autoregressive model
that comprises two gated recurrent unit (GRU [57]) layers
(The first and second layers are referred to as GRUA and
GRUB, respectively). Therefore, it originally requires a long
time for inference as is the case in WaveNet. However, sparse
coding, which forces the lowest value of a weight matrix to
zero is applied to accelerate inference, as with sparse Wav-
eRNN [8]. LPCNet can also synthesize speech waveforms
in real-time, even in the restricted environment of a mobile
CPU [11].

III. FULL-BAND LPCNet
The original LPCNet was proposed as a neural vocoder that
can synthesize speech waveforms for a sampling frequency

of 16 kHz and some subsequent research has produced a
24 kHz LPCNet with higher fidelity synthesis [43], [46],
[52], [53]. As described in Section I, we propose a Full-band
LPCNet by introducing the following simple but effective
modifications to synthesize high-fidelity speech waveforms
with a sampling frequency of 48 kHz, which can cover
the entire speech waveform and human auditory frequency
ranges, using a CPU.

A. PROPOSED INPUT FEATURES
We expand the 18-dimensional BFCCs to 50-dimensional
BFCCs. The original LPCNet uses a voice compression
method called Opus [58] for the integration of frequency
filter banks. With Opus, the frequency bands are divided at
regular intervals at low frequencies and then divided follow-
ing the Bark scale at high frequencies. The frequencies from
0 to 8 kHz are then integrated into 18 filter banks. In this
study, we applied more subdivided Bark scale filter banks
instead of the Opus scale.

The conversion from a linear frequency scale to the Bark
scale is given by

B = 13 arctan(0.00076f )+ 3.5 arctan((f /7500)2), (2)

where f and B are the linear and Bark frequencies,
respectively.

The original Bark scale integrates the frequencies from
0 to 15.5 kHz into 24-dimensional filter banks using Eq. (2).
Although the Bark scale above 15.5 kHz is not defined,
we assume that (2) is still applicable when using 48 kHz
audio, up to 24 kHz. We then integrate the frequencies from
0 to 24 kHz into 50-dimensional filter banks; this scale is
more specific than the original Bark scale as shown in Fig. 3.

FIGURE 3. Band layouts of Bark, Opus, and proposed (Ours).

B. INCREASING NUMBER OF MODEL PARAMETERS
For high-fidelity speech synthesis with a sampling frequency
of 48 kHz, we investigated the effect of the number of model
parameters in LPCNet. Increasing the number of parameters
may cause a decrease in the inference speed, and improve the
quality of the synthesized speech. As the result of preliminary
experiments, we found that the number of GRUA parameters
drastically affects the synthesis quality. As shown in Table 1,
GRUA is an important layer that accounts for most of the
model parameters. Therefore, we increased the number of
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TABLE 1. Number of parameters in Full-band LPCNet.

GRUA parameters from original 384 to 512 and 640, to inves-
tigate the effect on synthesis quality and inference speeds,
leaving the number of GRUB parameters fixed to 16, as in
the original LPCNet.

C. APPROPRIATE BATCH LENGTH IN TRAINING
In singing voice synthesis, training under the same conditions
as normal speech synthesis did not proceed sufficiently. As a
result of investigation, we found that adjusting the input batch
length appropriately had a great effect on quality in singing
voice synthesis. In particular, the input batch length, which is
16 frames (7680 audio samples) in normal speech synthesis,
and it was reduced to 3 frames (1440 voice sample) in singing
voice synthesis.

IV. EXPERIMENTS
A. EXPERIMENTAL CONDITIONS
We conducted two subjective experiments to evalu-
ate Full-band LPCNet in comparison with the conven-
tional WORLD [5], WaveNet (8 bit µ-law) [3], Parallel
WaveGAN [15] and WG-WaveNet [41] vocoders, for a
sampling frequency of 48 kHz, regarding inference speed
and synthesis quality.1 One experiment was conditioned by
normal speech, and another was conditioned by singing
audio. We believe that the experiment conditioned by singing
audio canmore effectively evaluate quality with 48 kHz audio
because singing audio includes high-frequency components
such as harmonic structures than normal speech, as shown
in Fig. 1. In the experiments, we modified the open-source
code of LPCNet,2 WaveNet vocoder,3 Parallel WaveGAN,4

and WG-WaveNet5 for training and synthesis of 48 kHz
audio to ensure reproducibility. We implemented PeriodNet
by modifying the source code of Parallel WaveGAN.

Dataset: For the experiment with normal speech, we used
7697 sentences (about 10 hours of recorded speech) uttered
by a Japanese female speaker, from the JSUT corpus [59] to
ensure reproducibility. JSUT is a free speech corpus with a
sampling frequency of 48 kHz. We removed the silent parts
of the speech samples by applying forced alignment using

1Although Multi-band MelGAN [22] can realize real-time synthesis with
multiple CPU cores, it was not included in the experiments because the
synthesis quality ofMulti-bandMelGANwas significantly worse than that of
Parallel WaveGAN in preliminary experiments with a sampling frequency of
24 kHz. Although LVCNet [25] can realize real-time synthesis with a CPU
for 24 kHz audio, it was also not included in the experiments because its
synthesis quality was almost the same as that of Parallel WaveGAN [25].

2https://github.com/mozilla/LPCNet
3https://github.com/kan-bayashi/PytorchWaveNetVocoder
4https://github.com/kan-bayashi/ParallelWaveGAN
5https://github.com/BogiHsu/WG-WaveNet

the Julius speech recognition toolkit [60]. To train the neural
vocoder models, 7497 utterances (all except Basic5000-0001
to Basic5000-0200) were used. To train acoustic models
in the TTS condition, 4800 sentences (Basic5000-0201 to
Basic5000-5000) were used because HTS-style context
labels based on manual annotation were available.6 One
hundred utterances (Basic5000-0101 to Basic5000-0200)
were used for validation, and the remaining 100 utter-
ances (Basic5000-0001 to Basic5000-0100) were used for
evaluation.

For the experiment with singing audio, we used 50 acapella
songs (about 1 hour) uttered by a Japanese female speaker,
from the Tohoku Kiritan corpus [61] to ensure reproducibil-
ity. Kiritan an open singing voice corpus with a sampling
frequency of 96 kHz. We downsampled the audio to 48 kHz
and clipped it into segments of appropriate length. We sepa-
rated all 50 songs into phrases by using the provided labels
and used two songs (05.wav and 30.wav), each of which
includes 10 phrases, for evaluation; the remaining 48 songs
constructed from 376 phrases, were used for training. There-
fore, 376 phrases were used for training and 20 phrases were
used for evaluation.

LPCNet: The network structure of Full-band LPCNet was
the same as that in [11] except for the number of GRUA units.
The number of GRUA parameters was set to 384, 512, and
640. The input features comprised 50-dimensional BFCCs,
pitch period, and pitch correlation. The number of LPC filter
coefficients was the same as in the original implementation.
To calculate the BFCCs, spectrum analysis was performed
with a window length of 20 ms and a frame shift of 10 ms,
and the Bark-scale filter bank was applied. Pitch calculation
was based on an open-loop cross-correlation search. Addi-
tionally, Full-band LPCNet was compared with LPCNet for
a sampling frequency of 24 kHz with 30-dimensional BFCCs
has investigated in [46], [53]. An Adam optimizer was used
for parameter updating [62].

WORLD: In the WORLD vocoder for a sampling fre-
quency of 48 kHz, 50-dimensional mel-cepstra with warping
coefficient α = 0.55, and five-dimensional parameters for
the smooth vocal tract spectrum and aperiodicity components
were obtained from the original WORLD spectrum with
2,048 dimensions. The vocoded waveforms were synthesized
using the compressed acoustic features [5]. The fundamental
frequency (F0) was analyzed by the Harvest algorithm [63].

WaveNet vocoder: The network structure of the WaveNet
vocoder was the same as that in [3].We applied time-invariant
noise shaping [64] to suppress the perceptual noise compo-
nents caused by the prediction error where 35-dimensional
mel-cepstra were used and a parameter to control noise
energy in the formant regions was set to 0.5. The input fea-
tures were 80-band log-mel spectrogramswith a band-limited
frequency range (80 to 7,600 Hz). The window and shift
lengths were set to 42.7 ms and 10 ms, respectively.

6https://github.com/sarulab-speech/jsut-label
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WG-WaveNet:The network structure of theWG-WaveNet
vocoder was the same as that in [41]. The input features
were also 80-band log-mel spectrograms with a band-limited
frequency range (80 to 7,600 Hz) used in the WaveNet
vocoder.

Parallel WaveGAN: The network structure of Parallel
WaveGAN was the same as that in [15]. In the conditions
of Parallel WaveGAN, we used two types of input fea-
tures: 50-dimensional BFCCs and pitch features, as used in
Full-band LPCNet (lpcn), and 80-dimensional log-mel spec-
trograms, as used for WaveNet and WG-WaveNet (melspc).7

To extendWG-WaveNet and ParallelWaveGAN from 24 kHz
to 48 kHz, we modified the parameters of the STFT loss used
in them by doubling all the FFT sizes, window lengths, and
frame shift lengths.

PeriodNet: The network structure of the PeriodNet
vocoder was the same as that of the Non-AR series model
in [40]. The implementation was based on Parallel Wave-
GAN, and two generators that generate periodic and aperiodic
signals as well as discriminators that operate at multiple sam-
pling frequencies were added. As input features, we used the
same features as those used in theWORLDvocoder described
above. As excitation signals, we used sine waves calculated
from the F0 values.

FIGURE 4. Phoneme alignment and 47-dimensional input feature vectors
of acoustic models for TTS obtained from context labels.

Acoustic models: For the TTS condition, we used a
FastSpeech-based acoustic model [65] with full-context label
input to estimate a proper accent as in [66]–[68]. Although
575-dimensional context vectors were used as input features
with the JSUT corpus [69], simple 47-dimensional vectors
constructed from 38-dimensional phoneme one-hot vectors
and nine-dimensional accentual label vectors, were used for
the acoustic models, as shown in Fig. 4. To train of the
duration predictor, the phoneme durations were obtained
from the context labels, as shown in Fig. 4. The output
features of the acoustic models were 52-dimensional features
for Full-band LPCNet. The output features were normal-
ized to have a zero-mean and unit-variance. The network
structure of the acoustic model was based on the imple-
mentation of ESPnet-TTS [70] and some modifications were
applied to input full-context labels. In contrast to that used for
LPCNet, a RAdamoptimizer was used for the acousticmodel,
WaveNet vocoder, WG-WaveNet, Parallel WaveGAN, and
PeriodNet [71].

7As described in [9], the WaveNet vocoder, WG-WaveNet and Parallel
WaveGAN for 48 kHz audio with full-band mel-spectrograms as used by
WaveGrad [23] were also investigated. However, they could not outperform
those with band-limited mel-spectrograms in preliminary experiments. The
frequency range and number of dimensions for these vocoders should be
further investigated as future work.

B. REAL-TIME FACTOR EVALUATION
We measured the real-time factors (RTFs) of the neural
vocoders and acoustic model to evaluate the synthesis speeds.
Although simple PyTorch-based implementations were used
in the WaveNet vocoder, Parallel WaveGAN, WG-WaveNet,
PeriodNet and acoustic model, a C-based implementation
was used in Full-band LPCNet for inference.

Table 2 shows the RTFs for inference using an NVIDIA
GeForce RTX2060 GPU or Intel Core i9-10900X. We found
that Full-band LPCNet achieved real-time synthesis with only
one CPU core, as in [52], even for 48 kHz audio synthesis.
Comparing to all conditions of neural vocoders that use a
CPU, WG-WaveNet achieved the fastest RTFs. However,
as described below, the perceptual quality of WG-WaveNet
was not sufficient. The RTF of Parallel WaveGAN and Peri-
odNet did not fall below 1.0 in this experiment. To improve
the RTF of Parallel WaveGAN and PeriodNet, a C-based
implementation is required instead of PyTorch, as used in
Full-band LPCNet. These results suggest that a full-band
real-time neural TTS can be realized by Full-band LPCNet
combined with the acoustic models based on FastSpeech.

TABLE 2. Real-time factors for inference using an NVIDIA GeForce
RTX2060 GPU or Intel Core i9-10900X (maximum 20 cores).

C. EVALUATION OF NORMAL SPEECH SYNTHESIS
1) OBJECTIVE EVALUATION
We evaluate the distortion between the original and synthetic
speech. The metrics used for evaluation are signal-to-noise
ratio (SNR), root mean square error (RMSE) of the spec-
trogram (Spec-RMSE), mel-cepstrum distortion (MCD), and
F0 RMSE, as in [3] where F0 was also analized by the
Harvest algorithm [63]. Table 3 shows the result of the objec-
tive evaluation. With the evaluation metrics related to the
frequency domain, such as Spec-RMSE andMCD, the results
of neural vocoders dare inferior to those of WORLD. How-
ever, with the metrics related to the time domain, such as
SNR, these vocoders achieved better scores than WORLD.
These results show that neural vocoders were able to directly
model the audio signal, including phase matching, whereas
the phase of audio synthesized by the WORLD vocoder did
not match that of the original audio [72]. Compared with the
results of neural vocoders, PeriodNet achieved the highest
SNR score. Because PeriodNet receives the excitation signal
explicitly, we believe that fidelity to periodic signals tended to
be prioritized, and as a result, the SNRwas improved. Among
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TABLE 3. Objective evaluation results in normal speech synthesis.

FIGURE 5. Result of MOS test using normal speech with 10 listening subjects. Confidence level of the error bars is 95 %.

the other neural vocoders, Full-band LPCNet achieved the
second highest SNR score; this is because WaveNet and
LPCNet use the loss function in the time domain which can
maximize SNR whereas WG-WaveNet and Parallel Wave-
GAN use multiple STFT losses which do not explicitly con-
sider phase components.

2) SUBJECTIVE EVALUATION
We conducted mean opinion score (MOS) tests with a
five-point scale: 5 for excellent, 4 for good, 3 for fair,
2 for poor, and 1 for bad to evaluate the subjective percep-
tual quality of the synthesized speech waveforms [73]. Ten
native Japanese speakers (undergraduate and graduate stu-
dents) without hearing loss listened to the synthesized speech
samples using headphones (20 utterances × 13 conditions
including the ground-truth condition = 260 utterances).
Fig. 5 shows the results of the MOS test using nor-

mal speech. The WaveNet vocoder achieved the best score,
which was comparable to the score of the original audio.
Although WaveNet slightly outperformed Full-band LPCNet
with 640 GRUA units, WaveNet suffers from a fundamen-
tal inference speed problem. Although Full-band LPCNet
with 384 GRUA units achieved a lower score than with
512 and 640 units, it still outperformed WORLD, Parallel
WaveGAN, and WG-WaveNet. In this experiment, Parallel
WaveGAN and WG-WaveNet were inferior to WORLD,
which is a conventional vocoder. This may be because we
simply used the same parameters as those used in the orig-
inal models. The synthesis quality of these vocoders may

be improved by adjusting the hyperparameters to match
the corpus and sampling frequency. Although we evaluated
two conditions using different acoustic features in Parallel
WaveGAN, there was no significant difference between these
conditions. This means that these two features do not differ
in expressiveness. Comparing the conditions of 24 kHz and
48 kHz audio, there was no significant difference between
24 kHz LPCNet and 48 kHz LPCNet with 640 GRUA units.
We believe that the accuracy of the high-frequency com-
ponents was not sufficiently evaluated because the corpus
comprises normal speech.

For TTS conditions, Full-band LPCNet with 640 GRUA
units achieved the best score surpassing the results
of analysis-synthesis and it was comparable to the
original score.8 Although the acoustic features estimated
by TTS are usually inferior to those extracted from natural
speech, this inferiority was not confirmed by this experiment.
In [15], it was been reported that a full-band mel-scale
spectrogram inferred by TTS causes over-smoothing of high-
frequency components and deterioration of quality. How-
ever, the proposed acoustic features for Full-band LPCNet
comprises the Bark cepstrum equivalent to the vocal tract
filter and the fundamental frequency equivalent to the vocal

8Because the speaker in the JSUT corpus is not a professional speaker and
the pronunciation is often inaccurate, we believe that the smoothed speech
inferred by TTS was often more highly evaluated than the natural audio.
Therefore, the MOS values of Full-band LPCNet and Parallel WaveGAN
with estimated acoustic features by TTS were higher than those of the
analysis-synthesis condition. Evaluation using a professional speaker with
a sampling frequency of 48 kHz is a subject for future work.
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TABLE 4. Objective evaluation results in singing voice synthesis.

cord vibration. We assume that these features are easier to
predict than mel-spectrograms and they achieved sufficient
quality for 48 kHz speech waveform synthesis. Therefore, the
proposed acoustic features of Full-band LPCNet are effective
for neural TTS.

FIGURE 6. Result of MOS test including PeriodNet using normal speech
with 10 listening subjects. Confidence level of the error bars is 95 %.

Figure 6 shows the results of the MOS test including the
conditions of PeriodNet and 24 kHz TTS. Although Period-
Net achieved an excellent score in the objective evaluation,
the MOS score of PeriodNet was insufficient and comparable
with that of Parallel WaveGAN. We believe that PeriodNet
has insufficient fidelity to aperiodic signals, and this deterio-
rates the quality. We also believe that the objective evaluation
did not sufficiently evaluate the quality of the aperiodic sig-
nal. In the original paper of PeriodNet, because the quality
of speech was only evaluated for singing voice synthesis,
we think that an appropriate adjustment of the hyperparam-
eters for normal speech synthesis may be needed. In addi-
tion, there was no significant difference between 24 kHz
TTS and 48 kHz TTS. Because normal speech contains few
components at high frequencies, it may have been difficult to
perceive the difference between these qualities.

D. EVALUATION OF SINGING VOICE SYNTHESIS
1) THE EFFECT OF BATCH LENGTH
As mentioned in Section III-B, it was necessary to adjust
the input batch lengths appropriately when training LPCNet
using a singing voice. Fig. 7 shows the transition of the loss
function on with batch lengths of 16 and 3. When the value of
the loss function spikes, sparse coding is applied to simplify
the network. In the case of the batch length of 16, the loss
value did not decrease and the network was not trained suf-
ficiently. Conversely, with a batch length of 3, it generally

FIGURE 7. Transition of loss value for each batch length in training of
Full-band LPCNet with 640 GRUA units.

TABLE 5. Properties of F0 on each corpus.

converged to a loss value during training, in the same manner
as normal speech.

Fig. 8 shows the spectrograms of singing audio syn-
thesized by Full-band LPCNet trained with batch lengths
of 16 and 3, and original speech. with a batch length of 16,
the spectrogram looks like a blur, whereas with a batch
length of 3, the harmonic components were stably synthe-
sized and high-fidelity synthesis was achieved. As shown
in Fig. 8(b) the harmonic components above 12 kHz can be
slightly synthesized by the proposed LPCNet with a batch
length of 3. We believe that the reason why the processing
is required is that singing audio contains a wide variety of
F0. Table 5 shows the properties of F0 on the JSUT corpus
and Tohoku Kiritan database. Comparing these corpora, the
Kiritan database has a high average of F0 and large fluctua-
tions. We believe that it is difficult to infer audio samples by
increasing the batch length to expand the receptive field when
F0 is high and the fluctuations are large.

2) OBJECTIVE EVALUATION
Weevaluated the distortion between the original and synthetic
speech, in the same manner as in the experiment evaluating
normal speech synthesis. Table 4 shows the results of the
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FIGURE 8. Spectrograms of singing audio synthesized by Full-band LPCNet for each batch length.

FIGURE 9. Result of MOS test using singing audio with 10 listening subjects. Confidence level of the error bars is 95 %.

objective evaluation of singing voice synthesis. With the
evaluation metrics related to the frequency domain, WORLD
achieved the highest score, as in the experiment with nor-
mal speech synthesis. ParallelWaveGAN,WG-WaveNet, and
LPCNet with 384 GRUA units had lower SNR thanWORLD.
The results show that modeling of the singing voice is a more
difficult task than modeling normal speech.

3) SUBJECTIVE EVALUATION
To investigate the perceptual quality of speech that con-
tains high-frequency components, we conducted a MOS test
using singing audio with 20 test set phrases. The listening
subjects and experimental environment were the same as
with the experiment using normal speech. Fig. 9 shows the
results of the MOS test using singing audio. In the results
using vocoders, Full-band LPCNet with 640 GRUA units
achieved the best score. Remarkably, there was a significant
difference between the conventional LPCNet for 24 kHz
and full-band LPCNet with 640 GRUA units. This means
that Full-band LPCNet can synthesize high-fidelity audio
including high-frequency components. However, the synthe-
sis speech quality for singing audio was not as high as that
for normal speech. We believe that this is a consequence
of the lack of training data. Although [52] shows that the
amount of data required for training neural vocoders for
24 kHz synthesis is about one hour, singing audio contains

a wide variety of F0 and the sampling frequency is 48 kHz.
Therefore, we believe that it requires more data for sufficient
training. These detailed investigations are a topic of future
work.

FIGURE 10. Result of MOS test including PeriodNet using singing audio
with 10 listening subjects. Confidence level of the error bars is 95 %.

Figure 10 shows the results of the MOS test including
the condition of PeriodNet. Compared with the proposed
Full-band LPCNet, PeriodNet realized higher synthesis qual-
ity for singing voice synthesis, as in [40]. This is because a
singing voice includes fewer aperiodic components than nor-
mal speech and the F0-based excitation signals were explic-
itly given into PeriodNet. Therefore, PeriodNet effectively
achieved high quality synthesis with fewer training data in
singing voice synthesis. In contrast, as mentioned above,
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the proposed Full-band LPCNet requires more training data
for higher fidelity synthesis. However, PeriodNet cannot real-
ize real-time inference with a CPU.

Consequently, Full-band LPCNet is the only neural
vocoder that can realize real-time and high-fidelity speech
synthesis with a sampling frequency of 48 kHz using a CPU.
As future work, Full-band LPCNet can be made much faster
by applying acceleration methods, such as the subband [20],
[33], [49], [51], sample bunching [50] and tensor decom-
position [47] methods. Additionally, Full-band LPCNet can
be extended to multi-speaker neural vocoder to synthesize
the speech waveforms of many and unspecified speakers that
were not included in training [74].

V. CONCLUSION
This paper proposed Full-band LPCNet which can synthesize
high-fidelity 48 kHz speech waveforms in real-time using a
CPU, by introducing simple but effective modifications to
the conventional LPCNet. The input feature was extended to
50-dimensional BFCC and the number of model parameters
was increased. Experiments, using both normal speech and a
singing voice, were conducted to compare Full-band LPCNet
with conventional source-filter and neural vocoders. The
results of the RTF evaluation indicate that Full-band LPCNet
can realize speech synthesis and neural TTS for 48 kHz
speech waveforms in real time using a CPU. The results of
the subjective evaluations suggest that Full-band LPCNet can
realize higher-fidelity synthesis than other real-time neural
vocoders in normal speech synthesis. In particular, the effec-
tiveness of Full-band LPCNet was validated in singing voice
synthesis and compared with LPCNet for 24 kHz audio,
although PeriodNet realized higher synthesis quality than
the proposed Full-band LPCNet. Additionally, the proposed
acoustic features with 50-dimensional BFCC were effective
for neural TTS. Consequently, the results of the experiments
demonstrated Full-band LPCNet is the only neural vocoder
that can realize real-time and high-fidelity speech synthesis
for 48 kHz speech waveforms using a CPU.
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