
Received May 30, 2021, accepted June 11, 2021, date of publication June 15, 2021, date of current version June 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3089492

A Secure and Fair Double Auction Framework
for Cloud Virtual Machines
KE CHENG 1, WEI TONG2, LELE ZHENG1, JIAXUAN FU1, XUTONG MU1,
AND YULONG SHEN 1, (Member, IEEE)
1School of Computer Science and Technology, Xidian University, Xi’an 710071, China
2School of Cyber Engineering, Xidian University, Xi’an 710071, China

Corresponding author: Yulong Shen (ylshen@mail.xidian.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFE0207600, in part
by the Key Research and Development Program of Shaanxi Province under Grant 2021KWZ-04, and in part by the Innovation Fund of
Xidian University under Grant YJS2103.

ABSTRACT Double auction is one of the most promising solutions to allocate virtual machine (VM)
resources in two-sided cloud markets, which can increase the utilization rate of VM resources. However,
most cloud auction mechanisms simply assume that the auctioneer is fully trusted while ignoring bid-privacy
preservation and trade fairness in the process of auction. Previous studies have indicated that some crypto-
graphic tools can be used to resolve the above issues, but the poor performance makes those techniques
difficult to practice. In this paper, we propose a Secure and Fair Double AuCtion framework (named
SF-DAC) for cloud virtual machines, which performs cloud auction efficiently while guaranteeing both bid
privacy and trade fairness. We design secure 3-party computation protocols that support secure comparison
and secure sorting, which enable us to construct a secure double auction scheme that outperforms all prior
comparable solutions. Furthermore, we propose a fair trading mechanism based on smart contracts to prevent
the bidders from halting the auction without financial penalties. The extensive experiments demonstrate that
SF-DAC achieves an order of magnitude reduction in computation and communication costs than prior arts.

INDEX TERMS Privacy preservation, secure double cloud auction, secure three-party protocol, trade
fairness.

I. INTRODUCTION
Auction-based resource allocation mechanism is increasingly
adopted for cloud virtual machine (VM) markets to cut costs
and increase revenues. For example, there are a large number
of VMs transactions through auction-style trading in Amazon
EC2. This trading mechanism is more common in complex
two-sided cloud markets. A two-sided cloud market means
multiple sellers provide various types of cloud VMs for rental
services, while multiple buyers can purchase VMs from mul-
tiple sellers to implement their respective tasks. Double cloud
auction is specifically designed for resource allocations in the
two-sided cloud markets [1].

Recently, various cloud auction schemes [1], [2] have
been proposed for VMs transactions with considering eco-
nomic characteristics such as truthfulness, budget balance,
and social welfare maximization. The existing cloud auction
schemes [1], [2] implicitly assume that the auctioneer is fully
trusted, and all bidders (including all sellers and buyers) send

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Aljawarneh .

their bids to the auctioneer unreservedly. However, the auc-
tioneer is not always trustable in practice, which would lead
to potential security risks and an absence of fairness. For
example, the auctioneer can simply adapt auction rules to
obtain extra profit by monitoring the bids from the sellers
and buyers. A dishonest bidder can select a bid untruthfully
to snatch maximum profit through prying into other partici-
pants’ private bids. More severely, by studying the historical
bids, external attackers can send the auctioneer hostile bids
to disrupt the normal order of the auction. In terms of auction
fairness, a dishonest bidder may drop out of the auction after
learning other participants’ bids, harming the interests of
other bidders. In short, the lack of bid-privacy protection and
trade fairness would lead to alarming economic losses during
the auctions.

To prevent bid information leakage, Chen et al. [3] design
the first privacy-preserving cloud auction. A crypto-service
provider is introduced in this solution and works with
the auctioneer to constitute a two-party computation (2PC)
model [4]. In this model, bidders send encrypted bids to
two parties (the auctioneer and crypto-service provider) who

87982 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7948-819X
https://orcid.org/0000-0002-8448-705X
https://orcid.org/0000-0001-5748-4921


K. Cheng et al.: Secure and Fair Double Auction Framework for Cloud VMs

perform privacy-preserving auction protocol based on the
garbled circuit (GC) [5], to provide a privacy guarantee
that no bid information is revealed to two parties except
the auction results. Since this scheme fails to work for the
more complicated two-sided cloud markets, a secure double
auction mechanism PDAM is proposed [6]. Based on the
multiple cryptographic primitives, PDAM designs a hybrid
auction protocol in the 2PC model. Unfortunately, these auc-
tion schemes bring considerable end-to-end (including offline
stage and online stage) computation time and communication
costs, making the systems very hard to deploy into realistic
environments. To achieve fair trading, a recent work [7] pro-
poses a decentralized cloud auction and trading framework
based on smart contracts [8]. However, the protection of
the bid privacy is not considered in this work. In summary,
designing a practical cloud auction scheme with bid-privacy
protection and trade fairness remains a challenge.

Inspired by the above efforts, we propose a Secure and
Fair Double AuCtion framework (named SF-DAC) for the
two-sided cloud markets. By following the SF-DAC frame-
work, the bid privacy of auction participants can be pro-
tected against adversaries, and every auction participant will
receive the profits they deserve as long as they faithfully
follow the auction protocols without an abort. To achieve
the design goal, we are facing two main challenges. The
first challenge originates from the conflicting requirements
of high efficiency and strong security. Existing secure cloud
auctions [3], [6] involve plenty of time-consuming encryp-
tions/decryptions or large-scale circuit evaluations, which
lead to considerable computation and communication costs.
The second challenge is how to ensure fairness in the entire
auction at low system overheads. To address these challenges,
our work makes efforts in the following areas. We first intro-
duce two auction agents who collaborate with the auction-
eer to construct a three-party computation (3PC) model [9].
All bidders send encrypted bids to the auctioneer and one
agent, and then the two parties collectively run the secure
interactive auction protocol with the help of another agent.
Then, we design 3PC-based protocols for secure compari-
son and secure sorting, and construct a secure and efficient
double auction protocol based on that, leading to an order of
magnitude speedup compared with the 2PC-based solutions
in [3] and [6]. Furthermore, SF-DAC leverages the smart
contract to motivate each auction participant to faithfully
follow the auction protocols, and successfully accomplish the
VM resource trading. In summary, we make the following
contributions.
• To the best of our knowledge, we are the first to design
a secure and fair auction framework towards double
cloud auctions by leveraging the 3PC model, which can
achieve bid-privacy preservation, trading fairness, and
high efficiency simultaneously.

• We propose secure 3PC-based protocols for performing
various secure arithmetic operations, secure compari-
son, and secure sorting based on the lightweight addi-
tive secret sharing, which are well applicable in other

auctions, such as spectrum auctions [10], [11], advertis-
ing auctions [12]. Moreover, to address the fairness issue
in secure cloud auctions, we design a fair and efficient
trading scheme based on smart contracts to incentivize
each auction participant to faithfully follow the auction
protocols.

• We present a thorough theoretical analysis of SF-DAC
in terms of both security and fairness. To demonstrate its
practicality, we implement the prototype of SF-DAC and
evaluate its performance by comparative experiments.
Concretely, SF-DAC incurs 69× lower total computa-
tion time and 108× lower communication costs than the
state-of-the-art double cloud auction [6].

The rest of the paper is organized as follows. Section II
reviews the related works. Section III gives an overview of
our system. Section IV presents the preliminaries. A set of
secure sub-protocols are provided in SectionV. In SectionVI,
the design of the SF-DAC framework is explained in detail.
We analyze the security and the trade fairness of SF-DAC
in Section VII. The proposed protocols and framework are
evaluated through extensive experiments in Section VIII.
We make a conclusion in Section IX.

II. RELATED WORK
A. CLOUD VIRTUAL MACHINE AUCTION
There are plenty of works [2], [13]–[18] using auction-based
pricing models to balance users’ and cloud VM provider’s
benefits. Shi et al. [13] propose the first online combinatorial
auction mechanism to optimize system efficiency across the
temporal domain and model heterogeneous VMs in practice.
Some works [14], [15] use game theory to optimize users’
profits in auction-based cloud VM trading. Li et al. [2] take
the heterogeneous demands into consideration and propose
a truthful auction mechanism in IaaS clouds to maximize
the cloud provider’s profit. Zheng et al. [16] design an
online auction mechanism for service clouds, with unique
features of job-oriented users and soft deadline constraints.
Parida et al. [17] propose a dynamic cloud auction scheme
with providing a flexible mechanism to change the VM cost
dynamically during the auction. Li et al. [18] formulate the
VM resource pricing and auction problem as a bin pack-
ing problem, which yields high efficiency. However, all of
the above works mainly focus on cloud VM auctions in a
single-sided market, while the two-sided cloud market is
more common and more complicated in practice.

With cloud integration services increasingly popular, mul-
tiple users and multiple VM providers are involved in cloud
trading. There has been a flurry of recent works [1], [19]–[22]
in the area of the double auction for the two-sided cloud
market. Li et al. [19] propose a double auction mecha-
nism for a two-sided cloud market, which enables the users
to have the choice of purchasing resources from multiple
providers to achieve higher cost-efficiency. Samimi et al. [20]
present a combinatorial double cloud auction, which allows
buyers to submit package bids for various VM resources.

VOLUME 9, 2021 87983



K. Cheng et al.: Secure and Fair Double Auction Framework for Cloud VMs

Singhal and Singhal [21] propose a feedback-based combi-
natorial double cloud auction, which allows the users to
access resources from different providers at optimal prices,
by prioritizing genuine providers with good feedback over
in-genuine providers with bad feedback. Gao et al. [22]
present a VM resource auction mechanism to allocate VMs
in geo-distributed edge cloud nodes to users and design a
greedy approximation algorithm to determine the winners of
the auction. Lu et al. [1] propose a double auction mecha-
nism (denoted as DAM), which is individual-rational, truth-
ful, and budget-balanced. In this mechanism, they use the
method of the second-price auction [23] for the pricing and
allocation of cloud virtual machines. However, none of the
above works take privacy preservation and trade fairness into
consideration.

Among all of the above cloud auctions, we select the DAM
scheme [1] as the underlying scheme of our secure solution.
There are two main reasons for this choice. Firstly, the DAM
scheme is an efficient trading mechanism for the two-sided
cloud markets, while being proved to be individually rational,
truthful, and budget-balanced. But the other works [19]–[22]
do not provide a complete proof for all the above proper-
ties. Secondly, a second-price method is employed in the
DAM scheme to determine the winners and their clearing
price, which is more tractable in a secure manner. Because
implementing the second-price method requires few loop
statements. Some works like [22] use a greedy algorithm to
determine the winners, which need to invoke a significant
number of loop statements. Obviously, it is difficult to con-
struct an efficient cloud auction in a secure manner based on
these works.

B. SECURE AND FAIR AUCTION
In recent years, some works [7], [24], [25] consider the
fairness of the auction-based resource allocation. The works
[24], [25] reduce the probability of user quit-auction prob-
lems based on the reputation system. Liu et al. [26] propose
a blockchain-based fair and secure double auction proto-
col. But it involves a large number of complicated verification
operations, which makes it more suitable for application sce-
narios with a small number of participants. To ensure trade
fairness in the cloud auction, the work [7] uses the smart
contract to charge a penalty for dishonest bidders.

As for bid privacy, Chen et al. [3] first propose a
privacy-preserving cloud auction scheme for a single-sided
market, which develops a data-oblivious cloud auction algo-
rithm and then employs garbled circuits to implement a secure
solution. Further, by employing homomorphic encryption
(HE), Xu et al. [27] design a privacy-preserving double auc-
tion (denoted as HE-based auction) for the more compli-
cated two-sided market. However, this solution is based on
expensive cryptographic primitives and incurs high compu-
tation and communication overheads. Recently, by combin-
ing two-party secret sharing and garbled circuits together,
a privacy-preserving double auction mechanism (PDAM) [6]
is proposed under the 2PC model. PDAM optimizes the

FIGURE 1. System architecture of SF-DAC.

2PC auction protocol into the offline-online setting so as to
improve the online performance, but the offline stage requires
considerable computation and communication costs.

A related research topic that we need to mention is secure
spectrum auctions, which usually employ a similar technical
route as secure cloud auctions. Chen et al. [28] first present an
information-theoretically secure framework ITSEC for truth-
ful spectrum auctions. The following work [10] has improved
the efficiency of ITSEC. The recent work [11] proposes a
privacy-preserving and truthful double auction mechanism
PS-TAHES for heterogeneous spectrum. Wang et al. [29]
design a secure cloud auction scheme PROST to provide
comprehensive protection for users’ location privacy and time
dynamics. Based on the trusted processors and the smart
contracts, a recent work [30] designs a general secure and
fair auction framework named SAFE for wireless markets.
To summarize, Table 1 makes a comparison of the property
differences between SF-DAC and the above secure and fair
auctions.

III. SYSTEM OVERVIEW
In this section, we present the system model, threat model,
and design goals.

A. SYSTEM MODEL
As illustrated in Figure 1, SF-DAC involves an auctioneer
(P0), two auction agents (P1 and P2), sellers, and buyers.
In the two-sided cloud market, Nb buyers purchase M types
of cloud VMs from Ns sellers. In our privacy-preserving
solution, buyers and sellers send the secret shares of the bids
to the auctioneer P0 and the auction agent P1, respectively. To
achieve the secure auction, P0 and P1 execute secure interac-
tive protocols with the help of P2 on the input shares, and
invoke smart contracts to complete the trading automatically.

We emphasize that the three parties P0, P1, and P2 do not
collude to break the protocols. There are some ways to realize
it. First, these parties are typically managed by different com-
panies. Therefore, collusion among them is highly unlikely as
it will damage their reputation, which affects their revenues.
Second, with blockchain technology, we can use an economic
approach to bound the probability of collusion [31], [32].

87984 VOLUME 9, 2021



K. Cheng et al.: Secure and Fair Double Auction Framework for Cloud VMs

TABLE 1. Comparison of SF-DAC with existing secure and fair auctions.

Third, we observe that the servers are now increasingly
equipped with a set of trusted computing mechanisms pow-
ered by software and hardware designs, such as Intel SGX
[33] and Arm TrustZone [34], which make the computations
on the servers more trustworthy. Actually, this model is not
new, which is a widely used assumption in previous works
[35]–[38]. Similar to the second method [31], we also employ
blockchain technology to guarantee that each participant will
perform rational behaviors. So our work can adopt the second
method [31] to restrain the three parties from colluding. We
refer readers to [31] for details.

B. THREAT MODEL AND DESIGN GOALS
The main goal of SF-DAC is to guarantee bid privacy and
trade fairness for the cloud auction. As mentioned above,
followingmany popular 3PC-based security works [35]–[38],
we assume that only one party among P0 to P2 is corrupted by
the semi-honest adversary, who performs the protocol faith-
fully but tries to infer private information from the interactive
messages. To demonstrate the security of SF-DAC, we resort
to the security proof method in the real-ideal paradigm [39].
The security of a protocol is modeled by defining two inter-
actions: a real interaction where the parties run a protocol π
and an ideal interaction where parties send their inputs to an
ideal functionalityF completed by a trusted party. A protocol
π is said to realize a functionality F securely if for every
adversary A in the real interaction, there is a simulator S
in the ideal interaction, such that the ideal world adversary’s
view is indistinguishable from the real world adversary’s
view.

It is worth mentioning that, malicious adversary model
[40] is a stronger threat model where the adversary is able
to launch an attack actively to break secure multi-party com-
putation (MPC) protocols. Although there are some gen-
eral techniques [40], [41] to convert any semi-honest secure
MPC protocol into a secure MPC protocol against malicious
attacks, these methods introduce a large amount of overhead
or the trusted computing base. Designing tailoredMPC proto-
cols under themalicious adversarymodel for the double cloud
auctions is an interesting research direction, and we leave this
as future work.

Furthermore, our system uses smart contracts to complete
the trading for ensuring fairness. The trade fairness ensures
that 1) it is impossible for a seller to drop out of the auction
without financial penalties, or to get fees without providing
requestedVM resources; 2) it is impossible for a buyer to drop
out of the auction without financial penalties, or to obtain

TABLE 2. Notations and definitions.

VM resources without paying fees; 3) the auctioneer and the
agents should be given the corresponding reward.

IV. PRELIMINARIES
In this section, we review a plaintext algorithm for double
cloud auction and introduce secure cryptographic primitives
and smart contracts that are used in the paper. Table 2 sum-
marizes the notations and definitions used in this paper.

A. DOUBLE AUCTION FOR CLOUD VMs ALLOCATION
We introduce an advanced scheme DAM for double cloud
auction [1]. Initially, all buyers submit the buy-bids bi =
(xi, ci)(1 ≤ i ≤ Nb) to the auctioneer, where xi =
(x1i , . . . , x

M
i ) is the buyer i’s purchasing need, xmi is the

number of type-mVMs,1 ci is the payment for the purchasing
need. At the same time, all sellers submit the sell-bids smj =
(Xmj , θ

m
j )(1 ≤ m ≤ M , 1 ≤ j ≤ Ns) to the auctioneer, where

Xmj is the number of type-mVMs held by seller j, and θmj is the
unit price of type-m VMs required by the seller j. After that,
the auctioneer will execute the following steps to determine
the auction results.

1) WINNER MATCHING
The auctioneer generates the bid density for the buyer i by

φi = ci/(xi · µ), (1)

whereµ = (µ1, . . . , µM )T is the capacity utilization for each
type of VMs, and is public to all participants.

The auctioneer determines the winning sellers and buy-
ers according to second-price auction rules [23]. That is,
the buy-bids are sorted in non-ascending order according to
bid densities, and the sell-bids are sorted in non-descending

1In the original work, xi is obtained by a cost-aware resource provisioning
algorithm with the input of the users’ task requirements, the payments, and
some public parameters. Since it is independent of the auction process,
we omit this step.

VOLUME 9, 2021 87985



K. Cheng et al.: Secure and Fair Double Auction Framework for Cloud VMs

order according to the quoted price of type-m VMs. The
auctioneer obtains the following ranked bid lists L1 and L2.

L1 : φα1 ≥ φα2 ≥ · · · ≥ φαNb . (2)

L2 : θmβ1 ≤ θ
m
β2
≤ · · · ≤ θmβNs

,∀m ∈ {1, . . . ,M}. (3)

Note that αi is the index of i-th largest bid density and βj
is the index of j-th smallest quoted price. After that, the auc-
tioneer finds the index (j∗) of the least profitable transaction
by:

j∗ = argmax{
M∑
m=1

xmα1 · θ
m
βj∗
≤ φα2 · xα1 · µ} (4)

The first buyer in L1 (with largest bid density) and the top
j∗ − 1 sellers in L2 (with sell-bids θmβ1 , . . . , θ

m
βj∗−1

) are the
auction winners.

2) PRICING AND VMs ALLOCATION
The auctioneer calculates the payment of the winning buyer
winb is

ĉwinb = φα2 · xwinb · µ; (5)

The unit price of type-mVM charged by the winning seller
wins is

θ̂mwins = θ
m
βj∗
; (6)

Each winning seller wins sells the same amount (X̂mwins ) of
type-m VMs to the winning buyer, where

X̂mwins =
⌈ xmwinb
(j∗ − 1)

⌉
(7)

At this point, the auctioneer has finished one round of
the double auction, then remove the winning buyer and the
winning sellers from the auction.

B. ADDITIVE SECRET SHARING
Given an `-bit value x, a 2-out-of-2 additive secret sharing of
x (denoted by 〈x〉) is a pair (〈x〉0 , 〈x〉1) = (x−r, r) (such that
x = 〈x〉0 + 〈x〉1) where r is a random number from the ring
Z2` [42]. Additive secret sharing can perfectly hide value x
as long as no party obtains both 〈x〉0 and 〈x〉1.

To compute the sum of two shared values 〈x〉 and 〈y〉,
party Pi locally computes 〈x + y〉i = 〈x〉i + 〈y〉i. To perform
secure multiplication 〈x · y〉 = 〈x〉 · 〈y〉, we use Beaver’s
multiplicative triples (MTs) [42] of the form 〈ab〉 = 〈a〉 · 〈b〉.
Party Pi locally computes 〈e〉i = 〈x〉i − 〈a〉i and 〈f 〉i =
〈y〉i − 〈b〉i. To recover e and f , P0 and P1 exchange 〈e〉i and
〈f 〉i, and compute e = 〈e〉0+〈e〉1 and f = 〈f 〉0+〈f 〉1. At last,
P0 sets 〈ab〉0 = f · 〈a〉0 + e · 〈b〉0 + 〈c〉0 and P1 sets 〈ab〉1 =
e·f+f ·〈a〉1+e·〈b〉1+〈c〉1. For division over the secret-shared
data, we invoke a state-of-the-art cryptographic protocol [43],
denoted as SecDiv(). On input 〈x〉 and 〈y〉, SecDiv outputs
secret shares of 〈x/y〉 with the required accuracy. We only
introduce the function of this protocol; readers may refer to
the original study [43] for details.

C. SMART CONTRACT
Smart contracts in Ethereum [8] are transaction-driven,
state-based code contracts that extend blockchain applications
beyond monetary transactions to more practical functions.
Each smart contract contains a transaction processing and
storage mechanism, and a Turing-complete state machine.
This contract is signed and verified by multiple nodes just
like a normal transaction to ensure its validity, and the valid
contract is successfully executed. The whole process is com-
pleted automatically by Ethereum with the characteristics of
transparency and immutability. The contract’s code cannot be
modified forever even by its creator.

V. CRYPTOGRAPHIC BUILDING BLOCKS
Before describing the specifics of the SF-DAC Framework,
we construct some cryptographic building blocks, includ-
ing secure comparison protocol and secure sorting protocol,
by using additive secret sharing under the 3PC model. Recall
that we assume the existence of three parties P0, P1, and P2,
such that secure interactions happen among them. P2 is an
assist party in these secure protocols by providing relevant
randomness and assistant parameters for P0 and P1. All oper-
ations to be performed are on the ring Z2` .

A. SECURE COMPARISON PROTOCOL
To support the sort over two secret-shared data, we propose
a secure comparison (SC) protocol. Assume that P0 and P1
hold the shares of x, y over Z2` . On input 〈x〉 , 〈y〉, SC outputs
(〈min(x, y)〉 , 〈max(x, y)〉) without revealing any information
about x, y to P0, P1, and P2. The rationale behind SC protocol
is as follows:{

min(x, y) = x + f (y− x)
f := x ≥ y.

max(x, y) = y+ f (x − y)
(8)

The detailed procedure of SC protocol is described in
Algorithm 1. To begin with, our protocol securely computes
the flag 〈f 〉with the help of P2, where f specifies whether x is
greater than y (f = 1) or not (f = 0). Concretely, for ∀(x, y),
(x − y)r ≥ 0 ⇒ x ≥ y with r > 0. For that, P0 and P1
generate random positive numbers 〈r〉0 and 〈r〉1, respectively.
P2 generates the secret shares of value 0 and 1, i.e., lets 〈u〉i =
〈0〉i and 〈v〉i = 〈1〉i , i ∈ {0, 1} (Line 1). Then P0 and P1 com-
pute 〈t2〉 = 〈(x − y) · r〉 based on Beaver MTs (Line 2 & 3).
P0 and P1 send 〈t2〉0 and 〈t2〉1 to P2, who recovers t2 by
t2 = 〈t2〉0+〈t2〉1. If t2 ≥ 0, P2 sends secret shares of value 1
to P0 and P1, respectively. Otherwise, P2 sends secret shares
of value 0 to them (Line 4& 5). After that, P0 and P1 compute
the minimum and maximum of x and y based on Equation (8)
cooperatively (Line 6 & 7). At the end of SC protocol, P0
outputs the sorted pair (〈min(x, y)〉0 , 〈max(x, y)〉0), and P1
outputs (〈min(x, y)〉1 , 〈max(x, y)〉1).

B. SECURE SORTING PROTOCOL
The underlying scheme in Section IV-A shows that the sorting
process is one of the most crucial operations during the

87986 VOLUME 9, 2021



K. Cheng et al.: Secure and Fair Double Auction Framework for Cloud VMs

Algorithm 1 Secure Comparison (SC) Protocol
Input: P0 inputs (〈x〉0 , 〈y〉0), P1 inputs (〈x〉1 , 〈y〉1)
Output: P0 outputs (〈min(x, y)〉0 , 〈max(x, y)〉0)

P1 outputs (〈min(x, y)〉1 , 〈max(x, y)〉1)
1: P0 and P1 generate random positive numbers 〈r〉0 and
〈r〉1, P2 generates the secret shares of value 0 and 1,
i.e., 〈u〉i = 〈1〉i and 〈v〉i = 〈0〉i, i ∈ {0, 1}.

2: Pi computes 〈t1〉i = 〈x〉i − 〈y〉i, i ∈ {0, 1}.
3: P0 and P1 compute 〈t2〉 = 〈t1〉 · 〈r〉 by Beaver MTs.
4: Pi (i ∈ {0, 1}) sends 〈t2〉i to P2.
5: P2 recovers t2 by computing t2 = 〈t2〉0 + 〈t2〉1.

If t2 ≥ 0, P2 lets 〈f 〉 = 〈u〉. Otherwise P2 lets 〈f 〉 = 〈v〉.
P2 sends 〈f 〉0 and 〈f 〉1 to P0 and P1, respectively.

6: P0 and P1 computes 〈t3〉 = 〈x〉 + 〈f 〉 · (〈y〉 − 〈x〉) and
〈t4〉 = 〈y〉 + 〈f 〉 · (〈x〉 − 〈y〉).

7: P0 outputs (〈min(x, y)〉0 , 〈max(x, y)〉0) = (〈t3〉0 , 〈t4〉0),
P1 outputs (〈min(x, y)〉1 , 〈max(x, y)〉1) = (〈t3〉1 , 〈t4〉1).

auction. Therefore, we implement a secure sorting (SST)
protocol on the foundation of additive secret sharing and SC
protocol. Consider a array of values X = [x1, . . . , xn] is
secret-shared into two shares 〈X〉0 = [〈x1〉0 , . . . , 〈xn〉0] and
〈X〉1 = [〈x1〉1 , . . . , 〈xn〉1], stored in P0 and P1 respectively.
Let αi is the index of the i-th largest element in the array X .
In SST protocol, with the help of P2, P0 and P1 obtain a new
sorted secret-shared array 〈Xα〉 = [

〈
xα1
〉
,
〈
xα2
〉
, · · · ,

〈
xαn
〉
].

The security requirements imply that a secure sorting pro-
tocol should be input-independent, i.e., the execution path of
SST protocol does not rely on the input data. However, most
of the conventional sorting algorithms are input-dependent,
which would cause the leakage of data access patterns (e.g.,
the order among the elements in X ). In consideration of
security and performance, the construction of SST protocol
is built on the Shuffle-then-Compute strategy. We first shuf-
fle the input array and then use the disturbed data as the
input to the conventional sorting process. Since the shuffled
array is disconnected from the original input, the adversary
cannot infer the access patterns during the sorting process.
Concretely, we use a permutation matrix to permute elements
to obfuscate their orders. For example, given the original
array Xa = [xa1 , xa2 , · · · , xan ], we can get a new array Xb =
[xb1 , xb2 , · · · , xbn ] of the same elements with different orders,
using an n× n sorting matrixW . For moving the element xai
to the new position xbj , we set wi,j = 1 and wi,k = 0,∀k 6= j.
The following equation illustrates the shuffle operation by
permutation matrix with n = 3.

[x1, x2, x3] ·

 0 1 0
0 0 1
1 0 0

 = [x3, x1, x2]

Algorithm 2 shows the steps of SST protocol. Party P2
uses pseudo random generator (PRG) to generate a random
permutation matrix W and the assistant matrices A,B,C
where C = A · B. Then P2 sends the secret shares of these
matrices to P0 and P1, respectively. P0 and P1 execute the

Algorithm 2 Secure Sorting (SST) Protocol
Input: P0 inputs 〈X〉0 = [〈x1〉0 , . . . , 〈xn〉0]

P1 inputs 〈X〉1 = [〈x1〉1 , . . . , 〈xn〉1]
Output: P0 outputs 〈Xα〉0 = [

〈
xα1
〉
0 , . . . ,

〈
xαn
〉
0]

P1 outputs 〈Xα〉1 = [
〈
xα1
〉
1 , . . . ,

〈
xαn
〉
1]

1: P2 generates a random permutation matrixW ∈ Zn×n2
and two random matrices A ∈ Z1×n

2` , B ∈ Zn×n2` by PRG.
P2 gets a 1× n matrix C by C = A · B.

2: P2 gets the secret shares ofW ,A,B,C , and sends
(〈W 〉0 , 〈A〉0 , 〈B〉0 , 〈C〉0),(〈W 〉1 , 〈A〉1 , 〈B〉1 , 〈C〉1) to
P0 and P1, respectively.

3: P0 computes 〈E〉0 = 〈X〉0 − 〈A〉0 and
〈F〉0 = 〈W 〉0 − 〈B〉0. P1 computes 〈E〉1 = 〈X〉1 − 〈A〉1
and 〈F〉1 = 〈W 〉1 − 〈B〉1.

4: P0 and P1 exchange the shares of E,F , then recover
E,F by E = 〈E〉0 + 〈E〉1 and F = 〈F〉0 + 〈F〉1.

5: P0 computes
〈
X ′
〉
0 = 〈X〉0 F + E 〈W 〉0 + 〈C〉0, P1

computes
〈
X ′
〉
1 = 〈X〉1 F + E 〈W 〉1 + 〈C〉1 − EF .

6: for i = 0 to n do
for j = 0 to n− i− 1 do
P0 and P1 invoke SC(

〈
X ′j
〉
,
〈
X ′j+1

〉
).

end for
end for

7: P0 outputs 〈Xα〉0 =
〈
X ′
〉
0, P1 outputs 〈Xα〉1 =

〈
X ′
〉
1.

matrix multiplication to obtain
〈
X ′
〉
= 〈X ·W 〉 (Line 3-5),

i.e., each party receives one share of the shuffled array X ′.
After that, P0 and P1 invoke SC protocol to execute bubble
sort [44]. Note that, we can also choose other classical sorting
algorithms (e.g., quick sort and Shell sort [45]) in this step,
and have no effect on the security of SST. At the end of
the protocol, P0 and P1 output the ranked array Xπ in the
secret-shard form.

The above section demonstrates that SST protocol can sort
a secret-shared one-dimensional array. We now describe how
to upgrade this protocol to make it work on a secret-shared
key-value array. To this end, we begin by upgrading SC
protocol, which is the cornerstone of SST protocol. To avoid
repetition, we only describe themain changes of the upgraded
SC protocol. On input the secret-shared key-value array
[(〈k1〉 , 〈x1〉), 〈k2〉 , 〈x2〉)], the upgraded SC protocol outputs
[(
〈
kα1
〉
,
〈
xα1
〉
),
〈
kα2
〉
,
〈
xα2
〉
)], where α1 is the index of min-

imum value between x1 and x2, α2 is the index of max-
imum value between x1 and x2. P0 and P1 first compute
〈f 〉 according to x1 and x2, and then execute the same
computations on 〈xi〉 and 〈ki〉, such that the keys can be
swapped according to their values. For the upgraded SST
protocol, the input is the secret-shared key-value array
(〈k1〉 , 〈x1〉), (〈k2〉 , 〈x2〉), · · · , (〈kn〉 , 〈xn〉), and similarly for
the output. In addition, we use the same permutation matrix
W to shuffle xi and ki simultaneously, and use the upgraded
SC protocol to swap the key-value pairs. That is, if the values
are reordered so do their corresponding keys. In a similar way,
SST protocol can be extended to support secure sorting over
the secret-shared multi-dimensional array.

VOLUME 9, 2021 87987



K. Cheng et al.: Secure and Fair Double Auction Framework for Cloud VMs

FIGURE 2. SF-DAC overview.

VI. DESIGN OF SF-DAC FRAMEWORK
In this section, we specify the design details of the SF-DAC
framework. As mentioned before, our design rationale
is based on the auction mechanism DAM described in
Section IV-A. The technical difficulty is to execute the auc-
tion on the secret-shared data in a data-oblivious manner.
To achieve this, we improve the DAM auction mechanism
to make it data-oblivious, and refactor it by using secure
sub-protocols presented in Section V. Moreover, we ensure
the trade fairness of our auction scheme by the smart contract.

As illustrated in Figure 2, the SF-DAC framework consists
of the following four phases: system initialization, bidding
submission, secure auction, and fair trading. First, the sys-
tem initialization establishes system parameters and gathers
deposits from all auction participants. Then, the sellers and
the buyers submit the secret-shared bids to the auctioneer and
the agent. After that, the main auction protocol is executed
among the auctioneer and the two agents. Finally, fair trading
is completed to reach a fair transaction.

A. SYSTEM INITIALIZATION
In this phase, the auctioneer sets some system parameters,
and the sellers and the buyers transfer a deposit to the smart
contract. Algorithm 3 shows the main steps in this phase. The
auctioneer sets the deposit-transfer end time t0, the initial-
ization end time t1, the bid-submission end time t2, the pay-
ment start time t3, and the payment end time t4 to ensure
that the auction can be achieved in a limited time. Then,
the auctioneer sets the deposit dptseller that each seller needs
to pay, where dptseller = pledgeS + GL, pledgeS denotes
the pledge of each seller and GL denotes the max cost for
executing the smart contracts. Similarly, the auctioneer sets
the deposit dptbuyer that each buyer needs to pay, where
dptbuyer = pledgeB, pledgeS denotes the pledge of each
seller. After that, each seller registers VM resources with the
smart contract SCinit , and transfers to SCinit a deposit dptSj .
Analogously, each buyer transfers to SCinit a deposit dptBi .
When the current time t ≥ t1, SCinit verifies the following

Algorithm 3 System Initialization
1: The auctioneer P0 sets the deposit-transfer end time t0,

the initialization end time t1, the bid-submission end
time t2, the payment start time t3, and the payment end
time t4, the deposit dptbuyer that each buyer needs to
pay, the deposit dptseller that each seller needs to pay.

2: if the current time t < t0 then
3: for 1 ≤ j ≤ Ns do
4: Seller j registers VM resources with the smart

contract SCinit , transfers to SCinit a deposit dptSj .
5: end for
6: for 1 ≤ i ≤ Nb do
7: Buyer i transfers to SCinit a deposit dptBi .
8: end for
9: else
10: SCinit verifies the following conditions:

∀j, dptSj ≥ dptseller and ∀i, dptBi ≥ dptbuyer .
If the conditions are not satisfied, abort the protocol.

11: end if

conditions: ∀j, dptSj ≥ dptseller and ∀i, dptBi ≥ dptbuyer .
If the conditions are not satisfied, the initialization protocol
is terminated. Otherwise, we can move to the next phase.

B. BIDDING SUBMISSION
In the bid-submission phase (the current time t < t2), all
sellers first divide their ID IDsj and sell-bids smj (1 ≤ m ≤ M ,
1 ≤ j ≤ Ns) locally by additive secret sharing, and then
send the two shares of the IDs and buy-bids to the auctioneer
(P0) and the auction agent (P1), respectively. To be specific,
for a seller’s ID IDsj and a sell-bid smj = (Xmj , θ

m
j ), three

random numbers r1, r2, r3 are chosen randomly in Z2` . Then,
the seller sets 〈IDsj 〉0 = r1 and 〈smj 〉0 = (〈Xmj 〉0, 〈θ

m
j 〉0) where

〈Xmj 〉0 = r2, 〈θmj 〉0 = r3, and computes 〈IDsj 〉1 = IDsj − r1,
〈smj 〉1 = (〈Xmj 〉0, 〈θ

m
j 〉1) where 〈X

m
j 〉1 = Xmj − r2, 〈θmj 〉1 =

θmj − r3. After that, the shares (〈IDsj 〉0, 〈s
m
j 〉0) are submitted

to P0 and the other shares (〈IDsj 〉1, 〈s
m
j 〉1) are submitted to P1.

In a similar fashion, the buyers send the secret shares of the
IDs IDbi and buy-bids bi = (xi, ci)(1 ≤ i ≤ Nb) to P0 and P1,
respectively. SoP0 andP1 receive the following secret-shared
bids from the buyers and sellers:
Buyers: (〈IDbi 〉, 〈bi〉), i = 1, . . . ,Nb
Sellers: (〈IDsj 〉, 〈s

m
j 〉), j = 1, . . . ,Ns and m = 1, . . . ,M .

C. SECURE CLOUD VM AUCTION
The security requirements imply that the cloud VM auc-
tion protocol ought to be executed in a data-independent
manner while the underlying insecure algorithm is executed
depending on the layout of the input data. So we modify
the underlying auction scheme to be an input-independent
version by introducing a set of binary flags, and then construct
a secure solution by the proposed secure sub-protocols. In the
auction phase (the current time t < t3), with the help of the
auction agent P2, the auctioneer P0 and the auction agent P1
execute the secure cloud VM auction protocol to implement

87988 VOLUME 9, 2021



K. Cheng et al.: Secure and Fair Double Auction Framework for Cloud VMs

Algorithm 4 Secure Cloud VM Auction (SCA) Protocol
Input: The secret-shared bids from the buyers and sellers.
Output: The secret-shared winning bidders’ IDs and final

prices, and the number of the sold VMs.
1: for 1 ≤ i ≤ Nb do
2: for 1 ≤ m ≤ M do
3: P0 computes 〈Um

i 〉0 = 〈x
m
i 〉1 · µm,

P1 computes 〈Um
i 〉1 = 〈x

m
i 〉1.

4: end for
5: P0 and P1 compute 〈Vi〉 = 〈U1

i 〉 + 〈U
2
i 〉 + · · · +

〈UK
i 〉 and 〈φi〉 = SecDiv(〈ci〉, 〈V 〉).

6: end for
7: P0 and P1 Bind 〈Vi〉, 〈φi〉 with (〈IDbi 〉, 〈bi〉) to get tuple

array B = (〈IDbi 〉, 〈bi〉, 〈Ui〉, 〈φi〉), i ∈ [1,N ].
8: P0, P1, and P2 invoke SST protocol to sort B in

non-ascending order according to φi, then gain the
ranked array 〈φα1〉, · · · , 〈φαNb 〉, the buyer’s ID 〈ID

b
α1
〉,

and the purchasing need 〈xα1〉.
9: P0 and P1 set S = (〈IDsj 〉, 〈s

m
j 〉), j ∈ [1,Ns],m ∈ [1,M ].

10: P0, P1, and P2 invoke SST protocol to sort S in
non-descending order according to θmj , then gain the
ranked arrays 〈θmβ1〉, · · · , 〈θ

m
βNs
〉,m ∈ [1,M ].

11: for 1 ≤ m ≤ M do
12: P0 computes 〈γmα1〉0← 〈x

m
α1
〉0 · µm,

P1 computes 〈γmα1〉1← 〈x
m
α1
〉1.

13: end for
14: P0 and P1 compute
〈8〉 = 〈φα2〉 · (〈γ

1
α1
〉 + 〈γ 2

α1
〉 + · · · + 〈γMα1 〉).

15: for 1 ≤ j ≤ Ns do
16: P0 and P1 compute

〈δj〉 = 〈x1α1〉 · 〈θ
1
βj
〉 + · · · + 〈xMα1〉 · 〈θ

M
βj
〉.

17: P0,P1 and P2 compute 〈λj〉 = SCMP(〈8〉, 〈δj〉),
〈IDsβj〉 = 〈λj〉 · 〈ID

s
βj
〉, and

〈θ̂mβj〉 = 〈λj〉 · 〈θ
m
βj
〉,m ∈ [1,M ].

18: P0 and P1 add 〈IDsβj〉 into the list 〈Sellers〉.
19: end for
20: P0 and P1 add 〈IDbα1〉 into the list 〈Buyers〉.
21: for 1 ≤ j ≤ Ns − 1 do
22: P0 and P1 compute 〈ηj〉 ← 〈λj〉 − 〈λj+1〉.
23: end for
24: P0 and P1 set 〈ηNs〉 = 〈λNs〉, 〈̂cα1〉 = 〈φα2〉 · 〈Vα1〉,

compute 〈j∗〉 = 〈η1〉 · 〈1〉 + · · · + 〈ηNs〉 · 〈Ns〉.
25: for 1 ≤ m ≤ M do
26: P0 and P1 compute
〈X̂m〉 = SecDiv(〈xmα1〉, 〈j

∗
〉 	 〈1〉).

27: end for
28: P0 and P1 output 〈Buyers〉, 〈Sellers〉, 〈Buyers〉, 〈̂cα1〉,
〈θ̂mβj〉, 〈X̂

m
〉, m ∈ [1,M ], j ∈ [1,Ns].

1) winners matching and 2) pricing and VMs allocation,
as shown in Algorithm 4.

1) WINNERS MATCHING
P0 and P1 calculate the buy-bid density by inputting
〈bi〉 = (〈xi〉, 〈ci〉) with two looping statements according to

Equation (1) (Line 1-6). Then, P0 and P1 bind 〈Vi〉, 〈φi〉
with (〈IDbi 〉, 〈bi〉) to get the multi-dimensional array B =
[(〈IDbi 〉, 〈bi〉, 〈Vi〉, 〈φi〉)], i ∈ [1,Nb]. Then, with the help
of P2, P0 and P1 invoke SST protocol with inputting B to
obtain a ranked Bα according to φi in non-ascending order.
After sorting, P0 and P1 obtain a ranked bid-density array
〈φα1〉, · · · , 〈φαNb 〉, the buyer’s ID 〈ID

b
α1
〉 and the purchasing

need 〈xα1〉 corresponding to the largest bid density (Line 7 &
8). Next, by the sameway,P0,P1, andP2 invoke SST protocol
to sort the arrays S = (〈IDsj 〉, 〈s

m
j 〉), j ∈ [1,Ns],m ∈ [1,M ] in

non-descending order according to θmj , then gain the ranked
arrays 〈θmβ1〉, · · · , 〈θ

m
βNs
〉,m ∈ [1,M ] (Line 9 & 10).

Afterward, P0 and P1 find the winning buyer and sellers
by Equation (4) (Line 11-20). To obtain the critical index j∗

without leaking the order of the bids, we introduce two arrays
of binary flags λj and ηj with j ∈ [1,Ns] to aid the secure
computation. Let λj indicate whether j is less than or equal to
the critical index j∗ (λj = 1) or not (λj = 0). Let ηj indicate
whether j is equal to the critical index j∗ (ηj = 1) or not (ηj =
0). The numerical relationship between the two flag arrays is
as follows:

j : 1 · · · j∗ − 1 j∗ j∗ + 1 · · · Ns
λj : 1 · · · 1 1 0 · · · 0
ηj : 0 0 0 1 0 · · · 0

According to Equation (4), the flag λj can be computed

as λj = (φα2 · xα1 · µ ≥
M∑
m=1

xmα1 · θ
m
βj
), j ∈ [1,Ns] (Line

15-19). In particular, we invoke SCMP protocol to execute
the comparison operation over the secret-shared data. SCMP
protocol is implemented similarly to SC protocol shown in
Algorithm 1, and the only change is to make P0 and P1 output
the secret-shared flag 〈f 〉. From the above pattern, we also
compute the flag ηj by ηj = λj − λj+1, j ∈ [1,Ns − 1]
(Line 21-24). Then, P0 and P1 compute the ID of winning
sellers by IDsβj = IDsβj · λj. Finally, P0 and P1 add 〈IDsβj〉
into the winning-seller list 〈Sellers〉, and add 〈IDbα1〉 into the
winning-buyer list 〈buyers〉.

2) PRICING AND VMs ALLOCATION
To compute the wining bidders’ final prices and the number
of the sold VMs, P0 and P1 compute the index j∗ by j∗ =∑Ns

j=1 j ·ηj. Then, P0 and P1 obtain the final price for winning
buyer ĉα1 (Line 24), the income of type-mVMfor thewinning
seller θ̂mβj (Line 17) and the amount of sold type-m VMs X̂m
(Line 25-27) based on Equation (5)-(7).

D. FAIR TRADING
Algorithm 5 shows the main steps in the phase of fair
trading (the current time t ≥ t3). After executing the
privacy-preserving auction protocol, the smart contract SCft
receives the auction results Buyers, Sellers, ĉα1 , θ̂

m
βj
, X̂m, m ∈

[1,M ], j ∈ [1,Ns]. SCft first refunds the deposits to all failed
sellers and the failed buyers. Then, each winning buyer i pays
costBi to SCft . SCft verifies that whether costBi is greater than
the payment of thewinning buyer ĉα1 . If costBi ≥ ĉα1 , the deal

VOLUME 9, 2021 87989



K. Cheng et al.: Secure and Fair Double Auction Framework for Cloud VMs

Algorithm 5 Fair Trading
1: if t3 ≤ t < t4 then
2: The smart contract SCft receives the auction results

Buyers, Sellers, ĉα1 , θ̂
m
βj
, X̂m, m ∈ [1,M ], j ∈ [1,Ns].

3: SCft refunds the deposit dptSj and dptBi to the failed
sellers and the failed buyers.

4: SCft computes the payment costSj of the winning
seller
should receive by costSj =

∑M
m=1 X̂

m
· θ̂mβj .

5: Winning buyer i pays costBi to SCft .
6: if costBi ≥ ĉα1 then % deal

succeeds
7: SCft makes the ownership of required VM resources

belongs to winning buyer i. SCft transfers to the
winning

seller costSj as a reward.
8: SCft transfers to the auctioneer costBi − costSj

as a reward.
9: else % deal fails

10: SCft transfers to the winning seller dptBi as
financial penalties.

11: end if
12: end if
13: if t ≥ t4 then % timeout
14: SCft transfers to the winning seller dptBi from the

winning buyers without paying on time. SCft refunds
dptBi to the winning seller with paying on time.

15: SCft gets commission from all winning sellers’
deposits,
and refunds the left deposits to them.

16: end if

succeeds, such that SCft makes the ownership of required
VM resources belong to winning buyers, and transfers the
rewards to the winning sellers and the auctioneer. If the deal
fails, SCft transfers the deposit of the winning buyer (dptBi )
to the winning seller as financial penalties. When the current
time t ≥ t4, SCft transfers the deposit of the winning buyer
without paying on time to the winning seller as financial
penalties, and refunds dptBi to the winning seller with paying
on time. Finally, SCft gets commission from all winning
sellers’ deposits, and refunds the left deposits to them.

VII. THEORETICAL ANALYSIS
A. SECURITY ANALYSIS
We analyze the security of SF-DAC with the security goals
described in Section III-B. As can be seen from our auction
scheme, the sellers and buyers do not take part in the auction
computations, such that what they can get from the auction
is only the auction outcome. Thus, we mainly prove that
the auctioneer and the agents cannot get anything about the
sensitive inputs except for the auction results.

We state that the cryptographic primitives (described in
Section IV-B) involved in our auction protocol are secure
under the semi-honest adversaries model [40], whose formal

security proofs of them can be found in [46]. Based on
the above definition and security properties, Theorem 1 and
Theorem 2 give the security proofs of SC protocol and SST
protocol. Then, combining with the composition theory [40],
we prove the security of the secure cloud VM auction (SCA)
protocol in SF-DAC against semi-honest adversaries, which
is stated as Theorem 3.
Theorem 1: As long as secure computation primitives are

secure under the semi-honest adversary model, SC protocol
(as shown in Algorithm 1) is secure under the semi-honest
adversary model.

Proof: To prove the security of SC protocol, we con-
struct simulators in three distinct cases depending on which
party is corrupted. Case 1: P0 is corrupted by an adversary,
we construct a simulator S0 to simulate P0’s view. For P0
receives 〈f 〉0, S0 randomly selects a value l0 from Z2` . Since
l0 and 〈f 〉0 are all uniformly random chosen from Z2` , any
PPT adversary cannot distinguish l0 from the interactive mes-
sage 〈f 〉0. Case 2: P1 is corrupted by an adversary, we can
construct a simulator S1 as the same as S0, because SC pro-
tocol is symmetric for two parties. Case 2: P2 is corrupted
by an adversary, we construct a simulator S2 to simulate P2’s
view. For P2 receives 〈t2〉0 and 〈t2〉1, S2 randomly select two
values l1 and l2 from Z2` . Since 〈t2〉0 and 〈t2〉1 are the secret
shares of t1r over Z2` , any PPT adversary cannot distinguish
them from l1 and l2 due to the security of the additive secret
sharing. Putting the above results together, we can claim
that SC protocol is secure under the semi-honest adversary
model.
Theorem 2: As long as SC protocol is secure against

semi-honest adversaries, SST protocol (as shown in Algo-
rithm 2) is secure under the semi-honest adversary model.

Proof: SST protocol makes O(n2) calls to SecSC pro-
tocol. Hence, for the interactive messages in these calls,
the simulators for SST protocol can be trivially constructed
by calling corresponding simulators of SC protocol. Except
for the above interactive messages, there are some trans-
mitting secret-shared matrices 〈W 〉0 , 〈A〉0 , 〈B〉0 , 〈C〉0 (resp.
〈W 〉1 , 〈A〉1 , 〈B〉1 , 〈C〉1) between P0 and P2 (resp. P1 and
P2) in SST protocol. Since the matrices W ,A,B,C are all
generated randomly, the simulators can generate random
matrices with the same size to simulate these interactive
messages. The transmitting secret-shared matrices 〈E〉 and
〈F〉 are masked by the random matrices 〈A〉 and 〈B〉, respec-
tively. The simulators can also generate random matrices to
simulate these messages. Therefore, any PPT adversary can-
not distinguish the simulator’s views from these interactive
messages. We can claim that SST protocol is secure under the
semi-honest adversary model.
Theorem 3: As long as the secure computation primitives

and SST protocol are secure against semi-honest adversaries,
SCA protocol in SF-DAC (as shown in Algorithm 4) is secure
under the semi-honest adversary model.

Proof: The exchanges data in SCA protocol consist of
the interactive messages while executing the secure arith-
metic operations and SST protocol. The secure arithmetic

87990 VOLUME 9, 2021



K. Cheng et al.: Secure and Fair Double Auction Framework for Cloud VMs

operations over the secret shares and SST protocol are proved
to be secure against semi-honest adversaries, so any PPT
adversary cannot distinguish the simulator’s views from the
interactive messages. According to the composition theory
[40], we can declare that SCA protocol is secure against
semi-honest adversaries as all secure computation steps are
composed sequentially.

B. TRADE FAIRNESS ANALYSIS
In this subsection, we explain how SF-DAC guarantees trade
fairness. Our system requires the sellers to registers their
VM resources with the smart contract and to send deposits
to the smart contract before the auction. That is, the owner-
ships of these resources are transferred to the smart contract
temporarily, which can prevent a seller from dropping out of
the auctionwithout financial penalties, or getting fees without
providing requested VM resources. SF-DAC also requires
the buyers to send deposits to the smart contract before the
auction, such that a buyer cannot drop out of the auction
without financial penalties or obtain VM resources without
paying fees. Since the rewards of the auctioneer and the
agents are from the winner sellers’ deposits, the deliveries of
the corresponding rewards can be guaranteed. In conclusion,
SF-DAC is able to guarantee trade fairness.

VIII. EXPERIMENTAL EVALUATION
A. EXPERIMENT SETUP
We implemented SF-DAC by using C++ and Solidity.
Specifically, all secure protocols are constructed by C++,
and the smart contracts are constructed by Solidity 0.4.24.
The implementations of all secure protocols are multi-
threaded. We set the bit length for an integral part ` = 32
and the bit length for the fractional part `F = 16 to achieve
the same level of accuracy as the underlying auction scheme.
We use three PCs with a 3.60-GHz Intel i7-4790 CPU and
8 GB of memory to act as the auctioneer and the two
auction agents. The communication bandwidth among these
machines for the LAN setting is set to 1 GB/s. In our exper-
iment, we assume that each seller holds 1000 VMs in five
types of VMs (M = 5). To implement the smart contracts,
we build an Ethereum test network on a local server and
use multiple EVM to set up Ethereum nodes. Since a small
number of transactions and blocks are generated during the
auction, we do not consider the impact of the world state on
the invocation of the smart contracts.

B. MICROBENCHMARKS OF BUILDING BLOCKS
We evaluate the performance of all secure arithmetic oper-
ations over secret-shared data, SC Protocol and SST Pro-
tocol. Table 3 reports the benchmarking result (including
computation time and communication cost) of the above
building blocks. Specifically, the secure addition only takes
1 µs, and the secure multiplication takes 15 µs. Although the
secure division takes about 1.5 ms, this operation is called in
our auction protocol only once. Thanks to the assistant of a

FIGURE 3. Comparison of the computation time between SST protocol
and prior works.

TABLE 3. Benchmarking results of different secure sub-protocols on
secret-shared data.

third party, SC protocol takes 34 µs to achieve the compare
and swap. In short, these operations can work at extremely
high efficiency, and establish the foundation for an efficient
auction framework.

Recall that secure sorting takes up the bulk of the entire
auction time. We plot the computation time of SST protocol
for different sizes and different dimensions of the arrays
in Figure 3(a) and Figure 3(b), respectively. As a point of ref-
erence, we also include the corresponding results of the prior
works SecSort [6] and EncSort [47], which are under the two-
party-computation setting. Note that, SecSort and EncSort
protocols are designed in the offline-online mode, we only
list the online computation time for them in Figure 3(a). For
a varying size of arrays, the computation performance of our
work is superior to that of SecSort and EncSort. In partic-
ular, when the size n = 10000, the computation time of
SecSort and EncSort is 40s and 91s, respectively. By com-
parison, the computation time of our protocol is 15.7s, which
improves performance by 60% and 82%percent, respectively.
The underlying reason is that our method is 3PC-based pro-
tocol and does not involve any time-consuming operations
such as garbled circuits [5] or homomorphic encryptions [48],
while SecSort invokes a large number of garbled circuits and
EncSort mainly depends on the homomorphic encryptions.
By contrast, SST protocol is able to finish all secure opera-
tions by using the lightweight additive secret sharing, which
benefits from the help of the third party.

C. PERFORMANCE OF SF-DAC FRAMEWORK
1) PERFORMANCE OF SECURE CLOUD VM AUCTION
To demonstrate the performance superiority of SF-DAC
framework, we compare the secure cloud VM auction (SCA)
protocol (as shown in Algorithm 4) with the advanced
secure auction schemes including HE-based auction [27],
PS-TAHES [11], PROST [29], and PDAM [6]. Recall that the

VOLUME 9, 2021 87991



K. Cheng et al.: Secure and Fair Double Auction Framework for Cloud VMs

TABLE 4. Computation time (in second) and communication cost (in MB)
of different auction schemes (the number of buyers Nb = 200 and the
number of sellers Ns = 20).

HE-based auction performs secure double auction based on
homomorphic encryption. PS-TAHES and PROST execute
the secure auction protocol by combining with homomorphic
encryption and garbled circuits (GC). PDAM alternately uses
additive secret sharing, garbled circuits, and homomorphic
encryptions to achieve secure auction. In addition, we also
make a comparison with the GC-based solution by using a
state-of-the-art GC framework EMP-toolkit [49]. Note that,
although PS-TAHES and PROST are designed for spectrum
auctions, we can slightly modify the original protocols to
make them achieve the same functions. In this experiment,
we fix the number of sellers Ns = 20 and the number of
buyers Nb = 200.
Table 4 shows the computation time and the communi-

cation cost for secure cloud VM auction. Compared with
these works, the results in Table 4 demonstrate that SF-DAC
achieves an order of magnitude speedup in both total com-
putation and communication costs. In particular, compared
with HE-based auction, PS-TAHES, PROST, PDAM, and
GC-based auction, SF-DAC attains the shortest total com-
putation time and reduces it by 57×, 73×, 81×, 69×
and 63×, respectively. Furthermore, SF-DAC incurs 132×,
114×, 121×, 108× and 226× lower total communication
cost than these comparedworks. Next, we analyze the reasons
for the above results. Secure auction schemes with a single
technique (e.g., homomorphic encryption and garbled cir-
cuits) incur a longer computation time in general. HE-based
auction involves expensive cryptographic primitives and does
not optimize it to offline-online mode, which both result
in considerable overheads. GC-based auction needs to exe-
cute large-scale circuits for the secure auction, meaning that
it is more computationally intensive. Prior arts, including
PS-TAHES, PROST, and PDAM, design mixed protocols by
multiple techniques to perform secure auction. And these
works optimize their 2PC protocols into the offline-online
mode so as to improve the online performance, but there are
many time-consuming and high-traffic operations required
for generating randomness and assistant parameters during
the offline stage. By contrast, SF-DAC uses the lightweight
technique (i.e., additive secret sharing) under 3PC model to
vastly reduce the computation time for relevant randomness
and assistant parameters. In addition, SF-DAC does not have
to pre-generate assistant parameters in the offline stage due
to the assistant of a third party. Hence, SF-DAC outperforms
the above works in both the computation time and the com-
munication cost for the secure auction.

FIGURE 4. Online computation time of cloud auction for different the
number of buyers (the number of sellers Ns = 20).

FIGURE 5. Online communication cost of cloud auction for different the
number of buyers (the number of sellers Ns = 20).

In the following experiments, we further show the
online performance for different secure auctions. The results
in Table 4 show that the online performance of HE-based
auction is considerably lower than that of other works, and
HE-based auction is not further discussed. Figure 4 shows
the online computation time of secure auction protocols with
different numbers of buyers (Nb). We demonstrate that the
online computation time of SF-DAC are 1.2×−1.9×, 1.4×
−2.5×, 1.1×−1.3× and 2.1×−2.9× faster than PS-TAHES,
PROST, PDAM and GC-based auction, respectively. Due
to the introduction of the third party, our auction proto-
col can achieve all the secure operations over secret-shared
data with few interactions. In contrast to our scheme, dur-
ing the online stage, PS-TAHES, PROST, and PDAM still
involve secure operations based on the homomorphic encryp-
tions or garbled circuits, while GC-based auction needs to
execute the complex garbled circuits. Figure 5 shows the
online communication overhead of secure auction protocols
with different numbers of buyers (Nb). Similarly, SF-DAC
also offers significant savings over prior works in terms of
online communication costs. Benefited from the third party,

87992 VOLUME 9, 2021



K. Cheng et al.: Secure and Fair Double Auction Framework for Cloud VMs

TABLE 5. Running time (in second) of the smart contracts.

the expensive cryptographic primitives can be avoided in our
protocol. However, other solutions inevitably invoke homo-
morphic encryptions or garbled circuits, which lead to a lot
of communication costs.

2) PERFORMANCE OF THE SMART CONTRACTS
SF-DAC framework uses two smart contracts SCinit (for sys-
tem initialization) and SCft (for trading) to guarantee trade
fairness. To show the performance of these smart contracts,
we list the exact values of running time in Table 5. We can
find that the running time of both smart contracts is lin-
early related to the number of Ethereum nodes and increases
slowly. Specifically, SF-DAC framework always takes less
time to execute these contracts, which is typically less than
2.5s. Overall, we can implement fair trading efficiently by
smart contracts.

IX. CONCLUSION
In this paper, we proposed a secure and fair double auc-
tion framework SF-DAC in two-sided cloud markets, which
achieves bid-privacy protection and trade fairness. At the core
of SF-DAC, we design a set of efficient 3PC protocols based
on additive secret sharing to achieve security and efficiency
simultaneously. We also use smart contracts to avoid trade
disavowing and to ensure trade fairness. Formal security anal-
ysis demonstrates that the protocols in SF-DAC are secure
under the semi-honest adversary model. Finally, the experi-
mental results demonstrate that SF-DAC allows us to achieve
an order of magnitude reduction in computation time and
communication cost compared to the state-of-the-art prior
works. As for future work, we plan to extend our framework
to defend against malicious attackers.

REFERENCES
[1] L. Lu, J. Yu, Y. Zhu, and M. Li, ‘‘A double auction mechanism to bridge

users’ task requirements and providers’ resources in two-sided cloud mar-
kets,’’ IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 4, pp. 720–733,
Apr. 2018.

[2] J. Li, Y. Zhu, J. Yu, C. Long, G. Xue, and S. Qian, ‘‘Online auction for
IaaS clouds: Towards elastic user demands and weighted heterogeneous
VMs,’’ IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 9, pp. 2075–2089,
Sep. 2018.

[3] Z. Chen, L. Chen, L. Huang, and H. Zhong, ‘‘On privacy-preserving
cloud auction,’’ in Proc. IEEE 35th Symp. Reliable Distrib. Syst. (SRDS),
Sep. 2016, pp. 279–288.

[4] C. Hazay and M. Venkitasubramaniam, ‘‘On the power of secure two-
party computation,’’ in Proc. Annu. Int. Cryptol. Conf. Berlin, Germany:
Springer, 2016, pp. 397–429.

[5] V. Kolesnikov and T. Schneider, ‘‘Improved garbled circuit: Free XOR
gates and applications,’’ in Proc. Int. Colloq. Automata, Lang., Program.
Berlin, Germany: Springer, 2008, pp. 486–498.

[6] K. Cheng, Y. Shen, Y. Zhang, X. Zhu, L. Wang, and H. Zhong, ‘‘Towards
efficient privacy-preserving auction mechanism for two-sided cloud mar-
kets,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–6.

[7] Z. Chen, W. Ding, Y. Xu, M. Tian, and H. Zhong, ‘‘Fair auctioning
and trading framework for cloud virtual machines based on blockchain,’’
Comput. Commun., vol. 171, pp. 89–98, Apr. 2021.

[8] G. Wood, ‘‘Ethereum: A secure decentralised generalised transaction
ledger,’’ Ethereum Project Yellow Paper, vol. 151, no. 2014, pp. 1–32,
2014.

[9] S. G. Choi, J. Katz, A. J. Malozemoff, and V. Zikas, ‘‘Efficient three-party
computation from cut-and-choose,’’ in Proc. Annu. Cryptol. Conf. Berlin,
Germany: Springer, 2014, pp. 513–530.

[10] K. Cheng, L.Wang, Y. Shen, Y. Liu, Y.Wang, and L. Zheng, ‘‘A lightweight
auction framework for spectrum allocation with strong security guaran-
tees,’’ in Proc. INFOCOM IEEE Conf. Comput. Commun., Jul. 2020,
pp. 1708–1717.

[11] Q. Wang, J. Huang, Y. Chen, X. Tian, and Q. Zhang, ‘‘Privacy-preserving
and truthful double auction for heterogeneous spectrum,’’ IEEE/ACM
Trans. Netw., vol. 27, no. 2, pp. 848–861, Apr. 2019.

[12] M. Ostrovsky andM. Schwarz, ‘‘Reserve prices in Internet advertising auc-
tions: A field experiment,’’ in Proc. 12th ACM Conf. Electron. Commerce,
2011, pp. 59–60.

[13] W. Shi, L. Zhang, C.Wu, Z. Li, and F. C.M. Lau, ‘‘An online auction frame-
work for dynamic resource provisioning in cloud computing,’’ IEEE/ACM
Trans. Netw., vol. 24, no. 4, pp. 2060–2073, Aug. 2016.

[14] W. Wei, X. Fan, H. Song, X. Fan, and J. Yang, ‘‘Imperfect information
dynamic stackelberg game based resource allocation using hidden Markov
for cloud computing,’’ IEEE Trans. Services Comput., vol. 11, no. 1,
pp. 78–89, Jan. 2018.

[15] C. Esposito, M. Ficco, F. Palmieri, and A. Castiglione, ‘‘Smart cloud
storage service selection based on fuzzy logic, theory of evidence and
game theory,’’ IEEE Trans. Comput., vol. 65, no. 8, pp. 2348–2362,
Aug. 2016.

[16] B. Zheng, L. Pan, S. Liu, and L. Wang, ‘‘An online mechanism for
purchasing IaaS instances and scheduling pleasingly parallel jobs in cloud
computing environments,’’ in Proc. IEEE 39th Int. Conf. Distrib. Comput.
Syst. (ICDCS), Jul. 2019, pp. 35–45.

[17] S. Parida, B. Pati, S. C. Nayak, and C. R. Panigrahi, ‘‘Offer based auc-
tion mechanism for virtual machine allocation in cloud environment,’’
in Advanced Computing and Intelligent Engineering. Berlin, Germany:
Springer, 2020, pp. 339–351.

[18] S. Li, J. Huang, and B. Cheng, ‘‘A price-incentive resource auction mecha-
nism balancing the interests between users and cloud service provider,’’
IEEE Trans. Netw. Service Manage., vol. 18, no. 2, pp. 2030–2045,
Jun. 2021.

[19] H. Li, C. Wu, Z. Li, and F. C. M. Lau, ‘‘Virtual machine trading in a
federation of clouds: Individual profit and social welfare maximization,’’
IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1827–1840, Jun. 2016.

[20] P. Samimi, Y. Teimouri, and M. Mukhtar, ‘‘A combinatorial double auc-
tion resource allocation model in cloud computing,’’ Inf. Sci., vol. 357,
pp. 201–216, Aug. 2016.

[21] R. Singhal and A. Singhal, ‘‘A feedback-based combinatorial fair economi-
cal double auction resource allocation model for cloud computing,’’ Future
Gener. Comput. Syst., vol. 115, pp. 780–797, Feb. 2021.

[22] G. Gao, M. Xiao, J. Wu, H. Huang, S. Wang, and G. Chen, ‘‘Auction-
based VM allocation for deadline-sensitive tasks in distributed edge
cloud,’’ IEEE Trans. Services Comput., early access, Mar. 4, 2019, doi:
10.1109/TSC.2019.2902549.

[23] B. Edelman, M. Ostrovsky, and M. Schwarz, ‘‘Internet advertising and
the generalized second-price auction: Selling billions of dollars worth of
keywords,’’ Amer. Econ. Rev., vol. 97, no. 1, pp. 242–259, Mar. 2007.

[24] J. Murillo, B. López, V. Muñoz, and D. Busquets, ‘‘Fairness in recurrent
auctionswith competingmarkets and supply fluctuations,’’Comput. Intell.,
vol. 28, no. 1, pp. 24–50, 2012.

[25] G. Baranwal and D. P. Vidyarthi, ‘‘A fair multi-attribute combinatorial
double auction model for resource allocation in cloud computing,’’ J. Syst.
Softw., vol. 108, pp. 60–76, Oct. 2015.

[26] L. Liu, M. Du, and X. Ma, ‘‘Blockchain-based fair and secure electronic
double auction protocol,’’ IEEE Intell. Syst., vol. 35, no. 3, pp. 31–40,
May 2020.

[27] Y. Xu, Z. Chen, and H. Zhong, ‘‘Privacy-preserving double auction mech-
anism based on homomorphic encryption and sorting networks,’’ 2019,
arXiv:1909.07637. [Online]. Available: http://arxiv.org/abs/1909.07637

[28] Z. Chen, L. Huang, and L. Chen, ‘‘ITSEC: An information-theoretically
secure framework for truthful spectrum auctions,’’ in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2015, pp. 2065–2073.

VOLUME 9, 2021 87993

http://dx.doi.org/10.1109/TSC.2019.2902549


K. Cheng et al.: Secure and Fair Double Auction Framework for Cloud VMs

[29] Q. Wang, J. Huang, Y. Chen, C. Wang, F. Xiao, and X. Luo, ‘‘PROST:
Privacy-preserving and truthful online double auction for spectrum allo-
cation,’’ IEEE Trans. Inf. Forensics Security, vol. 14, no. 2, pp. 374–386,
Feb. 2019.

[30] Y. Chen, X. Tian, Q. Wang, J. Jiang, M. Li, and Q. Zhang, ‘‘SAFE:
A general secure and fair auction framework for wireless markets with
privacy preservation,’’ IEEE Trans. Dependable Secure Comput., 2020.

[31] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. van Moorsel,
‘‘Betrayal, distrust, and rationality: Smart counter-collusion contracts for
verifiable cloud computing,’’ in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., Oct. 2017, pp. 211–227.

[32] J. Chen and S. Micali, ‘‘Algorand,’’ 2016, arXiv:1607.01341. [Online].
Available: http://arxiv.org/abs/1607.01341

[33] V. Costan and S. Devadas, ‘‘Intel SGX explained,’’ IACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1–118, 2016.

[34] T. Alves and D. Felton, ‘‘TrustZone: Integrated hardware and software
security,’’ ARM Inf. Quart., vol. 3, no. 4, pp. 18–24, 2004.

[35] L. Shen, X. Chen, J. Shi, Y. Dong, and B. Fang, ‘‘An efficient 3-party
framework for privacy-preserving neural network inference,’’ in Proc. Eur.
Symp. Res. Comput. Secur. Berlin, Germany: Springer, 2020, pp. 419–439.

[36] S. Wagh, D. Gupta, and N. Chandran, ‘‘SecureNN: 3-Party secure com-
putation for neural network training,’’ Proc. Privacy Enhancing Technol.,
vol. 2019, no. 3, pp. 26–49, Jul. 2019.

[37] S. Faber, S. Jarecki, S. Kentros, and B. Wei, ‘‘Three-party oram for secure
computation,’’ in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur. Berlin,
Germany: Springer, 2015, pp. 360–385.

[38] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and
F. Koushanfar, ‘‘Chameleon: A hybrid secure computation framework for
machine learning applications,’’ in Proc. Asia Conf. Comput. Commun.
Secur., May 2018, pp. 707–721.

[39] R. Canetti, ‘‘Universally composable security: A new paradigm for crypto-
graphic protocols,’’ in Proc. 42nd IEEE Symp. Found. Comput. Sci., 2001,
pp. 136–145.

[40] O. Goldreich, Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge, U.K.: Cambridge Univ. Press, 2009.

[41] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and R. Sharma,
‘‘Cryptflow: Secure tensorflow inference,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2020, pp. 336–353.

[42] D. Demmler, T. Schneider, and M. Zohner, ‘‘ABY—A framework for
efficient mixed-protocol secure two-party computation,’’ in Proc. NDSS,
2015, pp. 1–15.

[43] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, ‘‘CrypTFlow2: Practical 2-Party secure inference,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2020, pp. 325–342.

[44] O. Astrachan, ‘‘Bubble sort: An archaeological algorithmic analysis,’’
ACM Sigcse Bull., vol. 35, no. 1, pp. 1–5, 2003.

[45] C. R. Cook and D. J. Kim, ‘‘Best sorting algorithm for nearly sorted lists,’’
Commun. ACM, vol. 23, no. 11, pp. 620–624, Nov. 1980.

[46] M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara, ‘‘Private
collaborative forecasting and benchmarking,’’ in Proc. ACM Workshop
Privacy Electron. Soc., 2004, pp. 103–114.

[47] F. Baldimtsi and O. Ohrimenko, ‘‘Sorting and searching behind the cur-
tain,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur.Berlin, Germany:
Springer, 2015, pp. 127–146.

[48] P. Paillier et al., ‘‘Public-key cryptosystems based on composite degree
residuosity classes,’’ in Eurocrypt, vol. 99. Berlin, Germany: Springer,
1999, pp. 223–238.

[49] X. Wang, A. J. Malozemoff, and J. Katz. (2016). EMP-Toolkit:
Efficient MultiParty Computation Toolkit. [Online]. Available:
https://github.com/emp-toolkit

KE CHENG received the B.S. and M.S. degrees
from Anhui University, China, in 2015 and 2018,
respectively. He is currently pursuing the Ph.D.
degree with the School of Computer Science
and Technology, Xidian University, China. His
research interests include data security and privacy
protection technology.

WEI TONG received the B.E. degree from the
Jiangsu University of Science and Technology,
China, in 2017. He is currently pursuing the
Ph.D. degree with the School of Cyber Engi-
neering, Xidian University, China. His research
interest includes the performance optimization of
blockchain.

LELE ZHENG received the B.S. degree from
Xidian University, China, in 2018, where he is cur-
rently pursuing the Ph.D. degreewith the School of
Computer Science and Technology. His research
interests include differential privacy and the IoT
data security.

JIAXUAN FU received the B.S. degree from
Xidian University, China, in 2019, where he is cur-
rently pursuing the Ph.D. degreewith the School of
Computer Science and Technology. His research
interests include the IoT data security and machine
learning security.

XUTONG MU received the B.S. degree from
the North University of China, China, in 2019.
He is currently pursuing the Ph.D. degree with
the School of Computer Science and Technology,
Xidian University, China. His research interests
include machine learning security and differential
privacy.

YULONG SHEN (Member, IEEE) received the
B.S. and M.S. degrees in computer science and the
Ph.D. degree in cryptography from Xidian Uni-
versity, Xi’an, China, in 2002, 2005, and 2008,
respectively. He is currently a Professor with the
School of Computer Science and Technology,
Xidian University, where he is also the Associate
Director of the Shaanxi Key Laboratory of Net-
work and System Security and a member of the
State Key Laboratory of Integrated Services Net-

works. His research interests include wireless network security and cloud
computing security. He has also served on the technical program committees
of several international conferences, including ICEBE, INCoS, CIS, and
SOWN.

87994 VOLUME 9, 2021


