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ABSTRACT Visible light communication (VLC) is considered an important complementary technology for
extremely high sixth-generation (6G) data transmission and has become part of a hybrid 6G indoor network
architecture with an ultradense deployment of VLC access points (APs) that presents severe challenges
to user mobility. An adaptive handover mechanism, which includes a seamless handover protocol and a
selection algorithm optimized with a deep reinforcement learning (DRL) method, is proposed to overcome
these challenges. Experimental simulation results reveal that the average downlink data rate with the
proposed algorithm is up to 48% better than those with traditional RL algorithms and that this algorithm
also outperforms the deep Q-network (DQN), Sarsa and Q-learning algorithms by 8%, 13% and 13%,
respectively.

INDEX TERMS 6G, visible light communication (VLC), handover, deep reinforcement learning (DRL).

I. INTRODUCTION
The upcoming sixth-generation (6G) networks will no longer
use single-frequency bands as channels, and they may have
great potential to achieve high throughput, extremely low
latency, strong connectivity and high reliability for meet-
ing the requirements of multi-scenario communication [1].
For example, visible light communication (VLC) plays a
prominent role in 6G networks [2] due to its extremely high
data transmission capacity, reliable security and low energy
consumption. However, there are still many problems to be
solved despite the numerous advantages of VLC. As men-
tioned in [3], indoor attenuation and blockage are impor-
tant challenges for VLC in 6G networking. Accordingly,
6G hotspots must act as central coordinators to implement
handover decisions in order to solve the problem that the
connection between a user device (UD) and its original access
point (AP) becomes gradually unreliable due to attenuation
of the visible light signal from a single AP with the user’s
movement; in addition, these hotspots should serve as reliable
wireless APs to maintain a UD’s connection to the network
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when VLC is blocked by human actions or obstacles. In the
VLC+6G hybrid network architecture illustrated in Fig. 1,
the indoor base stations of the 6G network should work
together with a group of APs for VLC to provide an extremely
high data rate for UDs. An ultradense deployment of APs is
required to achieve effective communication coverage in a
large-scale indoor space. However, a UD will not stay within
range of a specific AP for long and will need to frequently
switch between APs to ensure connectivity in this hybrid
architecture. Generally, the more frequently AP switching
occurs, the more vulnerable the system performance and
user quality of experience (QoE) are; therefore, this scenario
requires an adaptive AP handover mechanism to improve
handover efficiency and reduce its impact on the VLC+6G
hybrid network. The VLC AP handover mechanism should
also satisfy 6G QoE requirements, with low latency, high
throughput and continuous connectivity. We consider an
indoor hybrid network architecture consisting of a large num-
ber of APs for VLC coverage and radio frequency (RF) sites
for 6G, as discussed in [4]. The APs can perform high-
bit-rate downlink transmission, while the indoor 6G hotspots
are generally far away from the UDs and cannot provide
the required bandwidth. In addition, the indoor 6G hotspots
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FIGURE 1. Hybrid architecture with VLC and a 6G network in an indoor
environment.

play the role of controlling all of the VLC AP selections,
as shown in Fig. 1. A general movement path for one UD is
marked to illustrate the ultradense deployment of the hybrid
architecture.

Due to the asynchronization caused by phasing and delays,
researchers should focus on the complicated handover prob-
lems encountered in the heterogeneous networking environ-
ments of VLC+RF hybrid technologies. In [5], Nguyen et al.
proposed a hard link-switching scheme based on prescanning
and the received signal strength (RSS) that does not require
changes to the standard medium access control (MAC)
protocol. The ping-pong effect caused by an immediate han-
dover scheme seriously reduces system performance; there-
fore, Liu et al. proposed a dynamic dwell timer design to
improve system reliability [6]. Liang et al. [7] studied a sim-
ilar problem using the analytic hierarchy process (AHP) with
a cooperative game (CG) model for indoor environments.
These traditional methods without artificial intelligence (AI)
can be adopted to optimize vertical handover strategies under
heterogeneous networking conditions, thereby improving the
system reliability and performance in a conventional way.
In recent years, AI methods have also come to be considered
an important part of 6G networking [8] and have attracted
considerable attention in VLC handover mechanisms; in par-
ticular, reinforcement learning (RL) algorithms have been
applied in AP selection and handover mechanisms. RL can
be used to find the optimal scheme in an environment by
maximizing the long-term accumulation of rewards. Unlike
deep learning (DL), RL does not rely on the sample data
in an existing data set. Therefore, it is very suitable for
finding the optimal strategy for AP selection and solving
the handover problem regarding different channels in het-
erogeneous VLC networks. In [9], Wang et al. proposed a
scheme for vertical channel switching between VLC and RF
based on a Markov decision process (MDP), which greatly
reduces the switching cost while slightly increasing the delay.
Bao et al. also proposed a vertical switching algorithm based
on an MDP in [10] to improve the user QoE and reduce the
switching cost. Based on the Q-learning algorithm, in [11],

Alenezi et al. suggested a scheme that considerably improves
system throughput compared with traditional hybrid systems.
In [12], Du et al. combined the Q-learning algorithm with
transfer learning to improve the efficiency of the algorithm
itself, thereby further improving the convergence speed and
system performance over those achieved with traditional RL.
Shao et al. [13] proposed a self-optimization algorithm based
on Q-learning, where the switching parameters of the APs
were optimized by a centralized coordinator. In addition,
other AI algorithms have also been used in VLC handover
mechanisms; for example, Ji et al. [14] used a support vec-
tor machine (SVM) approach and Najla et al. [15] used a
deep neural network (DNN) approach to propose algorithms
that effectively improve the network switching performance
in VLC- and RF-based heterogeneous networks. However,
the performance of the RL algorithms adopted in the above
studies is significantly reduced by the restrictions on the
Q-table in a large-scale indoor scene with an ultradense
deployment of VLC APs. Other AI algorithms mentioned
above are difficult to work with because it is challenging
to obtain a sufficiently large amount of training data for a
particular application scenario. As an alternative, deep rein-
forcement learning (DRL) has a larger state and action space
than RL and does not require the collection of training data
sets; therefore, it is suitable for solving highly complex and
practical problems in large-scale indoor scenes.

In this paper, we propose a seamless AP handover protocol
and a DRL-based algorithm to constitute an adaptive VLC
handover mechanism for a hybrid 6G network architecture.
The proposed protocol can allow aUD to switch to a target AP
without interrupting downlink data transmission, thus greatly
reducing the handover delay and making the user insensitive
to handover behavior. For purposes of comparison, we design
a large and complex indoor scene and estimate the perfor-
mance of the proposed AI-based algorithm through compar-
ative simulationswith existing RL algorithms. The simulation
results show that the average downlink data rate of the pro-
posed algorithm is better than those of the deep Q-network
(DQN), Sarsa and Q-learning algorithms by 8%, 13% and
13%, respectively. Therefore, the proposed DRL-based algo-
rithm with a decreasing experience replay space exhibits the
best performance in the training process compared to the
other algorithms in the control group.

II. SYSTEM MODEL OF VLC IN A HYBRID 6G NETWORK
ARCHITECTURE
An indoor VLC system model for a hybrid 6G network
architecture, which combines indoor base stations (BSs) for
6G and VLC APs, is illustrated in Fig. 2. Note that although
the VLC handover mechanism proposed in this paper is
also applicable to non-line-of-sight (NLOS) links, we focus
only on line-of-sight (LOS) links. Since there is no mobil-
ity requirement between an indoor BS and its related APs,
stable and affordable wire cables can be adopted for control-
ling the signal transmission and data interaction processes.
A VLC channel combines illumination and specific downlink
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FIGURE 2. Diagram of the system model.

high-speed data transmission requirements. Each indoor BS
for 6G is powerful enough to run the handover algorithm to
control the signaling between the RF and VLC channels for
UDs.

We assume that there are un UDs that need to access the
wireless network in the hybrid 6G architecture and that the
channel of each VLC AP is shared by the UDs in a gen-
eral time-division duplex (TDD) mode [16]. APi denotes the
ith AP in the environment, the number of UDs accessing APi
is represented by ui,t (um ≥ ui,t ≥ 1), and um is the maximum
number of UDs that can access a single AP simultaneously.
For VLC systems that allow multiuser access, the downlink
data rate Rm of each UD accessing the same AP can be
expressed as:

Rm =
B
ui,t

log2 (1+ 0) , (1)

where B is the bandwidth of a single AP and 0 denotes
the signal-to-interference-plus-noise ratio (SINR) of the UD,
which is given by:

0 =

(
PtrhcRpd

)2
NVLCB/ui,t + PI

, (2)

where PI denotes the interference power, Ptr represents
the transmission power of a single AP, and Rpd and NVLC are
the detector response and the power spectral density (PSD)
of the noise at the UD photodetector (PD), respectively. The
channel gain is denoted by hc, which is given by [17]:

hc =
(m+ 1)Ada
2πw2

u,v
cosm φgs (ϑ) g (ϑ) cosϑ, (3)

where the Lambertian radiant order is expressed as m = −ln
2/ln cos 81/2, with 81/2 being the semi-angle of the AP
transmitter; Ada represents the physical area of the UD PD;
wu,v is the distance between theAP and theUD; and gs(ϑ) and
g(ϑ) are the optical signal transmission filter and the optical
concentrator gain, respectively. Note that g(ϑ) is regarded as
the gain in an idealized nonimaging concentrator [18] and can

be written as follows:

g (ϑ) =


n2

sin29M
, 0 ≤ ϑ ≤ 9M

0, ϑ > 9M,

(4)

where n is the internal refractive index of the nonimaging
concentrator and 9M denotes the semi-angle of the field of
view (FoV) at the UD PD.

III. USER-ORIENTED SEAMLESS AP HANDOVER
PROTOCOL
Considering the need for the intensive deployment of APs
due to the limited coverage of a single AP, an adaptive AP
selection algorithm is required to keep users online while
they move. However, the occurrence of a handover produces
additional data overhead, which might diminish the system
performance and cause the connection to fail. Therefore, a
handover protocol that does not interrupt data streaming is
designed in this paper by referring to the seamless handover
process for senseless movement in [19], whichmakes moving
users insensitive to the handovers between APs to reduce
the impact of handovers on the connection quality of service
(QoS). Fig. 3 shows the handover process among a UD, the
central coordinator (operating in an indoor 6G hotspot) and
the target AP.

As shown in Fig. 3, during the negotiation process, a 6G
indoor hotspot acts as the central coordinator for access con-
trol and runs the handover algorithm with its computational
capabilities. In the handover protocol, due to the introduc-
tion of sequence number (SN) status synchronization and
handover confirmation processes, the UD may participate
in the handover negotiation process while maintaining its
original data connection until the handover is successful; this
is done to achieve the dual purposes of uninterrupted data
transmission in the VLC channel and seamless handover for
the user. The main process and advantages of the proposed
handover protocol are described below.

For the entire time that a UD has access to the hybrid
6G network, the UD regularly reports the RSS statuses it
receives from different APs to the central coordinator, which
can then obtain the current location of the AP closest to
each UD in accordance with the changes in the reported
RSS statuses. This location information can be used as the
location parameter data for training the algorithm proposed
in this paper. Once the AP selection algorithm executed by
the central coordinator determines that a given UD needs to
switch to a new AP, it sends a handover request message to
the target AP, and the request is confirmed by a handover
request acknowledgment (Ack) packet. In this way, the UD is
assigned a clear target AP and a precondition for switching.
Then, the central coordinator sends an SN status request
to the UD to synchronize the UD’s current downlink data
transmission status and forwards the SN status reported by the
UD to the target AP. Because the SN status and Ack represent
the SN of each message segment and the SN of the next byte
expected to be received by the receiver, the communication
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FIGURE 3. Negotiation process of the seamless handover protocol.

process that has been completed before the handover can be
accurately recorded. During the handover negotiation pro-
cess, the UD continues communicating with the original AP
until it switches to the target AP. Therefore, the introduction
of SN status synchronization largely solves the problem of
resuming after interruption through a data synchronization
process performed after the selection of the target AP has
been negotiated. Finally, the handover process on the UD side
is continuously completed until the UD is receiving data from
the target AP. The UD reports its connection status to the cen-
tral coordinator, and the target AP becomes the current AP.
In contrast to the traditional VLC handover process, in which
a UD disconnects from the current AP before connecting to
the target AP, the current AP continues to send downlink data
to the UD until handover success is achieved in the proposed
handover protocol, thus greatly reducing or even eliminating
the delay caused by the UD gaining access to the new target
AP.

IV. ADAPTIVE AP SELECTION ALGORITHM WITH DRL
If the UDs’ random movements cause too many handovers,
this not only increases the amount of unavoidable interruption
time but also seriously affects the network performance due
to the sharp increase in overhead. Consequently, a fixed AP
selection algorithm (i.e., a method based on the principle of
proximity or an RSS threshold) is not suitable for large-scale
indoor VLC+6G hybrid networks. Therefore, the algorithm

proposed in this paper is a dynamic programming method
that determines how to act based on the environment for the
purpose of maximizing the expected benefits. To this end,
DRL is applied for the first time to reduce the delay incurred
by unnecessary handovers and increase the downlink data
rate.

A. HANDOVER SCHEMES BASED ON TRADITIONAL RL
METHODS
To date, several RL methods have been introduced into vari-
ous handover schemes to determine optimal action strategies
so as to obtain the highest possible cumulative rewards and
achieve accurate experience estimation.

In [11], Q-learning was used to solve the problem of max-
imizing throughput when a user selects a new AP. Q-learning
is a common model-free learning algorithm that is indepen-
dent of the transition probability of the environment. Since it
is impossible to expand an unknown model with full proba-
bility, Q-learning can only observe the transition states and
the rewards returned when selected actions are performed in
the environment as feedback to guide the selection of the
next action. Q-learning, as an off-policy algorithm, provides
temporal-difference updates for the sample generated from
each state in the form of quadruples (st, at, rt+1, st+1), where
st represents the current state, at is the action selected in st,
rt+1 denotes the reward returned after performing action at,
and st+1 is the state after the transition from st caused by
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FIGURE 4. DRL process in the hybrid architecture.

the impact of at on the environment. The Q-table, composed
of the state-action value function Q(·), lies at the core of
Q-learning, as it stores the update records of (st, at, rt+1, st+1).
Note that Q(st, at) is updated based on the Bellman equation,
which is as follows:

Q(st , at )← Q(st , at )+ α [rt→t+1 + γ maxQ(st+1, a)

−Q(st , at )] , (5)

where α ∈ [0, 1] and γ are the learning rate and the discount
factor, respectively, and maxQ(st+1, a) denotes the selection
of the largest Q-value among all actions in state st. Then,
st← st+1 until st is the terminal state.

The Sarsa algorithm was used in [20] to reduce the block-
ing probability for a handover. Its learning approach is very
similar to that of Q-learning; the difference is that in the cur-
rent state, Sarsa determines the action to be executed in the
next state and directly updates the current Q-value with the
Q-value of the action to be executed, whereas in Q-learning,
the action with the highest Q-value in the next state is not
necessarily chosen. Accordingly, Sarsa is called an on-policy
algorithm, and its Q(st, at) is updated as follows:

Q(st , at )←Q(st , at )+α [rt→t+1+γQ(st+1, a)−Q(st , at )] ,

(6)

where this equation is repeated for each step of an episode,
st← st+1 and at← at+1, until st is the terminal state.
Due to the limited capacity of the Q-table, it has a very

low search efficiency and sometimes cannot even store a
full state space. Consequently, traditional RL algorithms (i.e.,
Q-learning and Sarsa) have difficulty efficiently solving the

problem of optimal AP selection for a large-scale indoor VLC
hybrid network. Therefore, to address the problem of infinite
states and limited actions in the AP selection mechanism,
the use of DRL with a neural network is proposed to fit the
whole Q-table.

B. ALGORITHM FOR MAXIMIZING THE DATA RATE BASED
ON DRL
The DRL process in a large-scale indoor VLC hybrid net-
work environment process is illustrated in Fig. 4. DRL
requires the use of the difference between the Q-target and
the Q-evaluation to train a neutral network, and the states are
updated through backpropagation.
As shown in Fig. 4, the environment includes the physical

environment of the VLC network, where APs are densely
deployed and the UDs are the agents. The changes in the
RSSs from the APs caused by the UDs’ random movements
produce different types of state feedback, which interact with
the agents and produce a set of states S = (s1, s2, . . . , sT ).
An agent uses an ε-greedy policy to choose its optimal
action with a probability of 1 − ε from a set of actions
A= (a1, a2, . . . , aN ), which is obtained from feedback on the
state transitions and rewards in the environment. Here, N is
the number of APs from which the agent can receive a signal
at present. In addition, the agent randomly explores another
action with a probability of ε to avoid falling into a vicious
circle. The APs are evenly distributed in the environment, and
the width of the overlapping coverage area of adjacent APs is
less than the radius of a single AP coverage area. Therefore,
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the agent can receive signals from up to four APs at the same
time (0 < N ≤ 4).

During the DRL process, the reward is a value that can
be positive or negative. After a state transition, every state
returns a reward with a certain probability distribution, and
an additional award or penalty (a positive or negative reward)
is given based on the expected estimate of the last action.
The relationship between the RSS that a UD receives from
an AP and the distance between them follows the Lambert
model in equation (3). We refer to the Poisson point process
in [21] and assume that the reward R returned by each state
and the distance between the UD and the AP are related by a
cumulative Poisson distribution, which is given as:

R = am
∑
ri≤r

λbm−ri

(bm − ri)!
e−λ, (7)

where am and bm are the correlation coefficients between the
reward and the distance, λ is the average incidence parameter
of the Poisson distribution, and r and ri represent the radius of
the AP and the distance between the UD and the AP, respec-
tively, the latter of which varies with the UD’s movement.

As alluded to above, the DQN algorithm, as a landmark
algorithm in the field of DRL, uses a deep convolutional
neural network in place of the Q-table to estimate the value
function. Furthermore, the target network is independently
established to handle the time deviation (TD) in the time
difference algorithm. Note that breaking the relevance of the
data collected in RL through the experience replay technique
is the key step for the DQN algorithm to both ensure the
stability of the neural network and greatly improve the perfor-
mance of the algorithm. The experience replay technique uses
a memory space of fixed size as a sliding window, with which
random sampling is evenly performed. It utilizes additional
computations and memory to reduce the cost of interaction
between the agent and the environment. However, it has the
problem that distant and useless experiences produce negative
feedback and reduce the learning efficiency of the algo-
rithm. Considering this, we note that the performance of the
algorithm gradually converges with an increasing number of
training episodes, while the detrimental actions that cause
negative feedback gradually decrease. Therefore, we intro-
duce an experience replay space size parameter, which
decreases as the number of training episodes increases based
on the DQN algorithm. Thus, as the algorithm gradually con-
verges, more recent experience is considered more valuable.
We believe that global exploration is most needed in the early
stage of model training. In this stage, we give the model a
higher exploration probability and a larger experience replay
space than in other stages to avoid the algorithm falling into
a local optimum, thus endowing the model with stronger
performance in terms of global optimization. By the end of
model training, the learning experience tends to show a more
obvious trend of approaching the globally optimal value, so it
is no longer necessary to explore the early experience space.
Thus, during the implementation process, the experience

TABLE 1. Key simulation parameters.

FIGURE 5. Comparison of the numbers of handovers for the four
RL-based algorithms.

replay space size parameter follows a monotonically decreas-
ing trend to adaptively change the value with an increas-
ing number of episodes and the convergence trend of the
results, thereby improving the efficiency of experience data
utilization. Specifically, the mapping relationship between
the episode number Ep and the experience replay space size
parameter Er is Er → ae∗Ep+ be, where ae and be are
correlation coefficients. This mapping causes the experience
replay space size parameter to monotonically decrease with
the episode number. On this basis, the experience replay
space size parameter and the reward should simultaneously
maintain a relationship of the form Er → ar∗ log(br∗R +
cr)+ dr to satisfy the dynamically adaptive characteristics of
changing with the training situation, where ar, br, cr and dr
are correlation coefficients.

V. SIMULATION EXPERIMENTS AND RESULTS ANALYSIS
An experimental system was established with experimen-
tal VLC data and typical parameters reported for commer-
cially available devices to simulate the indicators for our
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FIGURE 6. Performance improvement of the proposed algorithm
compared with the other four methods in terms of the number of
handovers.

proposed AP selection algorithm, and the results were com-
pared with the performance of three classic RL algorithms:
Q-learning, Sarsa and DQN. The specific VLC parameters

are summarized in Table 1, and we set a fixed movement path
along which a UD could switch betweenAPs 46 times at most
and 4 times at least. In the simulations, we used the number
of handovers to measure the performance of the proposed
algorithm.

Due to the randomness and diversity of user mobility,
using only the RSS or another similar single decision stan-
dard would not reduce the number of handovers or mitigate
the performance degradation caused by system overhead.
Therefore, a lower number of handovers results in better
network performance when the UD remains within the effec-
tive coverage area of APs and the user QoE is sufficient.
We examined the convergence in the above situation with all
four RL-based algorithms for various UD movement speeds
and one thousand training episodes. As illustrated in Fig. 5,
when the UDmovement speed is 0.5 m/s, the four algorithms
all show an obvious convergence trend. The convergence
speed of Q-learning is the slowest, and its limit value is
the largest; meanwhile, the proposed algorithm has a fast
convergence speed and the lowest limit value (note that the
theoretical extreme value is 4 handovers), with the number
of handovers continuously oscillating close to the extreme

FIGURE 7. Convergence performance comparison of the different RL-based algorithms. (a) Our proposed algorithm. (b) DQN algorithm. (c) Sarsa
algorithm. (d) Q-learning algorithm.
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FIGURE 8. Evaluation of the average downlink data rates at four different exploration rates. (a) ε = 0.1. (b) ε = 0.2. (c) ε = 0.3. (d) ε = 0.4.

value due to the ε-greedy strategy. We observe that with
an increase in the UD movement speed, the convergence
trends of the classic algorithms become less obvious, and
the number of handovers continues to oscillate greatly as the
number of training episodes increases. The training effect of
the proposed algorithm is also obviously affected by the UD
movement speed, but it still exhibits the best performance
compared with the other algorithms and eventually reaches
the theoretical minimum value.

In addition, to reduce the number of handovers caused by
the user’s movement in the ultradense network to reduce the
impact on system performance, some traditional handover
methods that are independent of machine learning, instead
relying on handover skipping (HS), were proposed in [22]
and [23]. Thesemethods are based on the user’s trajectory and
can directly switch to the next AP when the user only briefly
passes through an adjacent cell while entering the coverage
area of another cell. We also compared the performance of
HS with that of the other four RL-based algorithms in terms

of the number of handovers in the simulation environment
considered in this paper, as shown in Fig. 6. In this figure,
the line chart refers to the y-axis on the right, which shows
the number of handovers with each of the five methods under
three UDmovement speeds from the simulations. We can see
that the four RL-based handover strategies all show better
performance than the HS methods in terms of the number of
handovers when the UD movement speed is 0.5 m/s, which
may be too slow for good compliance with HS. As the UD
movement speed increases, however, the number of han-
dovers increases more rapidly with the classic RL algorithms.
When the UD movement speed reaches 1.5 m/s, the number
of handovers with HS is less than those with Q-learning and
Sarsa. However, the performance of DQN is still better than
that of HS, and the handover algorithm proposed in this paper
continues to show great advantages over HS. The histogram
in Fig. 6 refers to the y-axis on the left, which shows the
performance improvement of the proposed algorithm com-
pared with the other four methods in terms of the number of
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handovers under each of the three UDmovement speeds from
the simulations. The proposed algorithm outperforms the HS,
Q-learning, Sarsa, and DQN algorithms by 66%, 55%, 52%
and 42%, respectively, in terms of the number of handovers
when the UD movement speed is 0.5 m/s. Regarding the
number of handovers, these results show that the proposed
method significantly outperforms the other four algorithms.

The reward is the feedback signal obtained after perform-
ing a series of actions, and it directly reflects the performance
of the action (AP) selection strategy. Moreover, the ε-greedy
strategy can prevent an algorithm from falling into local min-
ima and enable it to obtain the optimal solution. Therefore,
we also compared the four RL-based algorithms in terms
of the reward convergence with different exploration rates ε
(ε = 0.1, 0.2, 0.3, 0.4), as shown in Fig. 7.

First, all four algorithms are able to converge to their
respective optimal AP selection schemes, as seen from the
convergence performance comparison in Fig. 7. Note that the
convergence values in subgraphs (b), (c) and (d) are similar,
thereby proving that similar numbers of handovers are pro-
duced for the set movement path of the UD. Compared with
the other three subgraphs, it is obvious that the convergence
values in (a) are greatest when ε = 0.1, 0.2, 0.3, and 0.4,
as the continuous decrease of the experience replay space can
reduce the amount of distant or useless experience utilized
in the training process and yield an optimal solution that is
closest to the global optimum. Moreover, Fig. 7 reveals that
for each algorithm, a smaller ε leads to better convergence
performance, indicating that a relatively high exploration rate
leads to more punishment for useless actions with higher
probability.

The overhead caused by handovers increases the control
signaling burden and compresses the space available for
data transmission; therefore, the average downlink data rate
should also be considered as a metric for handover strategy
evaluation. Accordingly, the average downlink rates of the
four algorithms mentioned above with various ε values are
illustrated in Fig. 8.

It is evident that the proposed algorithm achieves a higher
average downlink data rate than the other approaches due to
its more efficient experience learning and its ability to avoid
vicious feedback loops. As shown in Fig. 8, with increasing ε,
the convergence performance and optimal value of each algo-
rithm decrease. Therefore, although an increase in ε might
bring more exploration opportunities to avoid converging to
a poor local optimal value, it also has a negative impact on the
existing positive learning experience. To accurately estimate
the performance of the algorithms in terms of their average
downlink data rates, Fig. 8 (a) is used as the control group,
in which each algorithm is in its best convergence state.
The simulation results indicate that the proposed algorithm
outperforms the DQN, Sarsa and Q-learning algorithms in
terms of the average downlink data rate by 8%, 13% and 13%,
respectively. Note that although an increase in ε reduces the
convergence speed of the proposed algorithm, its convergence
value is less affected than those of the other three algorithms;

the proposed algorithm outperforms the traditional RL algo-
rithms by up to 48% in terms of the average downlink data
rate when ε = 0.4, as shown in Fig. 8 (d), which reflects the
superior robustness of the proposed algorithm.

VI. CONCLUSION
In this paper, we proposed an adaptive VLC handover mech-
anism for 6G networks with hybrid architectures for the pur-
pose of reducing the interruption time incurred by handovers.
A DRL method was implemented to resolve the problem of
network performance degradation caused by unreasonable
handovers, and experimental simulations confirmed that the
proposed DRL-based algorithm can optimize the AP selec-
tion strategy tomaximize the downlink data rate. Specifically,
the results showed that the average downlink data rate with
the proposed algorithm is improved compared with those
achieved using the Q-learning, Sarsa and DQN algorithms
by 13%, 13% and 8%, respectively, for an indoor scene with
ultradense AP deployment; thus, it produces the largest data
rate improvements in a 6G network with high throughput
while also improving the QoE for users.
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