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ABSTRACT In this article, we consider the finite-time mixed H∞/passivity, finite-time stability, and
finite-time boundedness for generalized neural networks with interval distributed and discrete time-varying
delays. It is noted that this is the first time for studying in the combination of H∞, passivity, and finite-time
boundedness. To obtain several sufficient criteria achieved in the form of linear matrix inequalities (LMIs),
we introduce an appropriate Lyapunov-Krasovskii function (LKF) including single, double, triple, and
quadruple integral terms, and estimating the bound of time derivative in LKF with the use of Jensen’s
integral inequality, an extended single and double Wirtinger’s integral inequality, and a new triple integral
inequality. These LMIs can be solved by usingMATLAB’s LMI toolbox. Finally, five numerical simulations
are shown to illustrate the effectiveness of the obtained results. The received criteria and published literature
are compared.

INDEX TERMS Neural networks, Lyapunov-Krasovskii function, H∞ and passivity, time-varying delays,
finite-time bounded.

I. INTRODUCTION
For a number of years, neural networks have been widely
attended in many fields, for instance, model identification,
optimization, parallel computation, associative memories
design, image processing, and other engineering fields
[1]–[4], [6]–[21], [23], [24], [28]. The difficult problems
and the increase of system performance have been handled
by the powerful efficacy neural networks. At present, due
to the fact that there exist communication delays and
integration in biological and artificial neural systems, they
cause instability, oscillation, or poor performance. In a
real system, the occurrences of time-delay phenomena are
unavoidable. The existence of time-delay causes networks
are unstable and worse dynamic system performance. So,
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the research of time-delay has attracted much attention in
linear systems and neural networks. The sufficient criteria of
the neural networks have been presented as delay-dependent
and delay-independent. The former is less conservatism than
the latter when the size of delay is tiny. A huge number of
stability conditions have been presented in the works [1]–[4],
[6]–[8], [25].

The stability analysis in neural networks is studied with
several inequality techniques and Lyapunov approaches,
which are important to less conservatism. So,many inequality
techniques have been applied for estimating the upper bound
of the time derivative of introduced LKF in the published
literature. For Jensen’s integral inequality, it was applied to
determine the new stability conditions for the neural network
in [6]. The free-weighting-based inequality was employed to
achieve the conditions with the decline of conservatism [10].
The Wirtinger’s integral inequality and reciprocally convex
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optimization are combined in [29]. In addition, to obtain
better results, various types of LKF have been presented,
for example, activation function based LKF [27], multiple
integrals based LKF [26], and so on.

At present, the H∞ has been played a major key in neural
network control, industrial plant, energy management, and
other fields. It has been increasing attention to the problem
of dynamical systems with H∞ control such as robust
control, associative memories image, processing [30]–[33],
and so on. In [34], the authors presented H∞ control
of neural networks with the delay-dependent problem.
The problem of H∞ control for neural networks with
interval delay was considered in [35]. However, in recent
years, the combination of H∞ and passivity have been
more attraction of attention in the investigation, and the
researchers are interested in this problem with the various
system presented in [36]. Especially, the authors investigated
complex networks with H∞ and passive synchronization
problems in [39].

On the other hand, in the past few decades, there is
an indispensable property related to exponential stability:
finite-time stability, i.e., the solution of a system reach
the equilibrium point in finite-time and more precisely,
the time required for solutions to reach the equilibrium
concerns engineers. The concepts of finite-time stability
were presented by Peter Dorato [47] in 1961. At present,
Amato et al. [48] extend the finite-time stability to finite-time
stability with the external disturbances, which is called the
finite-time boundedness. In addition, many types of research
have beenwidely developed in the field of finite-time stability
for time-varying delay with neural networks as in [40]–[44].
Also, finite-time boundedness has been extensively studied
in [1], [4], [45], [46]. Furthermore, the finite-time passivity
and the finite-time H∞ have been studied for the time-delays
system; for example, stochastic systems with finite-time
have been discussed in [37]. The authors considered the
robust finite-timeH∞ in singular stochastic systems problem
in [38]. Finite-time passivity in neural networks has been
considered in [3]. However, unfortunately, the finite-time
with H∞/passivity for generalized neural networks has not
yet been studied.

With motivation mentioned above, we shall address
the above question and study the finite-time stability for
mixed H∞/passivity, finite-time stability, and finite-time
boundedness for generalized neural networks with mixed
interval time-varying delays problems based on an extended
Wirtinger integral inequality, a new triple integral inequality,
and Jensen’s integral inequality. In the numerical part, we give
some examples to present the efficiency of the theorems. The
major contributions and highlights of this paper are concluded
in the following key points.
• We consider the finite-time mixed H∞/passivity,
finite-time stability, and finite-time boundedness for
the generalized neural networks problems with both
interval distributed and discrete time-varying delays.
It is noted that this work is the first time for studying

the combination of H∞, passivity, and finite-time
boundedness.

• We construct the Lyapunov-Krasovskii functionals
including single, double, triple, and quadruple integral
terms in which more information on the delays ι1,
ι2, γ1, γ2, and a state variable is used. In addi-
tion, the LKF consisting of two new triple inte-
gral terms ι21

∫ t
t−ι1

∫ t
s

∫ t
u e

α(t−v)żT (v)S1ż(v)dvduds and
ι22

∫ t
t−ι2

∫ t
s

∫ t
u e

α(t−v)żT (v)S2ż(v)dvduds, that have not
been used in [6], [10]–[13], [15]–[18], [21]. Moreover,
we also introduced two new quadruple integral
terms ι31

∫ t
t−ι1

∫ t
s

∫ t
u

∫ t
v e

α(t−λ)żT (λ)U1ż(λ)dλdvduds and
ι32

∫ t
t−ι2

∫ t
s

∫ t
u

∫ t
v e

α(t−λ)żT (λ)U2ż(λ)dλdvduds which
have not appeared in [6], [9]–[21].

• We apply tighter inequalities, such as Jensen’s integral
inequality (Lemma 1), an extended single and double
Wirtinger’s integral inequalities (Lemma 2, 3), a new
triple integral inequality (Lemma 4). Using the above
new LKFs and the lemmas leads to less conservatism
of obtained results than literature, as demonstrated in
numerical examples.

• We obtain finite-time boundedness criterion
(Theorem 1), the finite-time stability conditions
(Corollary 1) and the finite-time mixed H∞/passivity
criterion (Theorem 2). The proposed conditions are
less conservative than the other references as shown in
Corollary 2.

• We present the numerical simulations to demonstrate
the efficiency and feasibility of the theorems and the
corollaries.

The outline of this work is organized in the following
form. In section 2, we describe the system model and some
preliminary results. In section 3, we discuss some results for
neural networks and their proofs. In section 4, we give five
numerical examples to present the efficiency of the obtained
criteria. Finally, in section 5, we present the conclusions and
some suggestions for future directions.
Notations: Rn denotes the n− dimensional Euclidean

space, and Rm×n is the set of all m × n real matrices. For
a matrix A, A > 0 means that A is a symmetric positive
definite matrix, λmin(P) and λmax(P) denote the minimum
and maximum eigenvalues of A, respectively. The superscript
‘‘T ’’ denotes matrix transposition. diag{. . .} denotes the
block diagonal matrix. Sym{A} = A+ AT .

II. PRELIMINARIES
Consider the following both interval distributed and discrete
time-varying delayed neural networks:

ż(t) = −Az(t)+ B0f (Wz(t))+ B1g(Wz(t − ι(t)))

+B2

∫ t−γ1(t)

t−γ2(t)
h(Wz(s))ds+ Cω(t), (1)

y(t) = D1z(t)+ D2z(t − ι(t))

+D3

∫ t−γ1(t)

t−γ2(t)
h(Wz(s))ds+ D4ω(t), (2)

z(t) = φ(t), t ∈ [−ι2, 0], (3)
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where z(t) = [z1(t), z2(t), . . . , zn(t)]T ∈ Rn is the neuron
state vector; y(t) is the output vector; ω(t) ∈ Rn is the
external disturbance that belongs to the class L2[0,∞);
f (z(t)), g(z(t)), h(z(t)) ∈ Rn are the neuron activation
functions; A ∈ diag{ai} ∈ Rn×n is a positive diagonal
matrix; B0, B1, and B2 are the connection weight matrices;
C is the connection disturbance; D1,D2, D3, D4 are known
real constant matrices of suitable dimension; φ(t) is the
initial function defined over [−ι2, 0]. The variable γi(t)(i =
1, 2) and ι(t) represent the interval distributed and discrete
time-varying delays satisfying

0 ≤ ι1 ≤ ι(t) ≤ ι2, ι̇(t) ≤ τ, (4)

0 ≤ γ1 ≤ γ1(t) ≤ γ2(t) ≤ γ2. (5)

Before moving on, we suggest the following necessary
lemmas, assumptions, and definitions for the proofs of our
results, and we let

ι21 = ι2 − ι1, γ21 = γ2 − γ1.

Assumption 1 [8]:
(A1) The activation function fi(·)(i = 1, 2, . . . , n) is contin-

uous and bounded satisfying the following inequality

F−i ≤
fi(Wu)− fi(Wv)
Wu−Wv

≤ F+i , (6)

u, v ∈ R, u 6= v where fi(0) = 0, F−i and F+i are known
real scalars.

(A2) The activation function gi(·)(i = 1, 2, . . . , n) is contin-
uous and bounded satisfying the following inequality

G−i ≤
gi(Wu)− gi(Wv)

Wu−Wv
≤ G+i , (7)

u, v ∈ R, u 6= v where gi(0) = 0, G−i and G+i are
known real scalars.

(A3) The activation function hi(·)(i = 1, 2, . . . , n) is contin-
uous and bounded satisfying the following inequality

H−i ≤
hi(Wu)− hi(Wv)

Wu−Wv
≤ H+i , (8)

u, v ∈ R, u 6= v where hi(0) = 0, H−i and H+i are
known real scalars.

Remark 1: The assumption of the neuron activation func-
tions satisfy the condition (6)-(8) may be non-differentiable,
non-monotonic, and unbounded of the time-varying delay.
The constant F−i , F

+

i , G
−

i , G
+

i , H
−

i , and H+i be able to
zero, positive, or negative. More especially, in this paper,
the assumption are weaker and more general than usual
Lipschitz condition |f (u) − f (v) ≤ F |u − v|. Therefore, Our
stability criteria with condition (6)-(8) are less conservative
than the usual Lipschitz condition.
For the convenience of presentation, we denote

Fp = diag{F−1 F
+

1 ,F
−

2 F
+

2 , . . . ,F
−
n F
+
n },

Fm = diag

{
F−1 + F

+

1

2
,
F−2 + F

+

2

2
, . . . ,

F−n + F
+
n

2

}
,

Gp = diag{G−1 G
+

1 ,G
−

2 G
+

2 , . . . ,G
−
n G
+
n },

Gm = diag

{
G−1 + G

+

1

2
,
G−2 + G

+

2

2
, . . . ,

G−n + G
+
n

2

}
,

Hp = diag{H−1 H
+

1 ,H
−

2 H+2 , . . . ,H
−
n H
+
n },

Hm = diag

{
H−1 + H

+

1

2
,
H−2 + H

+

2

2
, . . . ,

H−n + H
+
n

2

}
.

Assumption 2: For any given positive constant ρ and time
constant T , the external disturbance satisfies∫ T

0
ωT (t)ω(t)dt ≤ ρ.

Definition 1 (Finite-Time Bounded [7]): The system (1) is
finite-time bounded with reference to (c1, c2,T ,V , ρ) with
time constant T > 0, a matrix V > 0, and numbers
c2 > c1 > 0, if the following inequality holds:

sup
−ι2≤s≤0

{zT (s)Vz(s), żT (s)V ż(s)} ≤ c1

⇒ zT (t)Vz(t) < c2, ∀t ∈ [0,T ].
Definition 2 (Finite-Time Stable [7]): For a given time

T > 0, numbers c2 > c1 > 0, and a matrix V > 0,
the system (1) with ω(t) = 0 is finite-time stable with respect
to (c1, c2,T ,V ), if the following inequality holds:

sup
−ι2≤s≤0

{zT (s)Vz(s), żT (s)V ż(s)} ≤ c1

⇒ zT (t)Vz(t) < c2,∀t ∈ [0,T ].
Definition 3 (Finite-TimeH∞/PassivityPerformance[39]):

For given σ ∈ [0, 1], the system (1) is finite-time bounded
with a mixed H∞ and passivity performance δ, if the
following two conditions are satisfied:
(1) the system (1) is finite-time bounded in the sens of

Definition 2.
(2) under zero initial condition, there exists δ > 0 such that

the output y(t) satisfies∫ T

0
[−σyT (t)y(t)+ 2(1− σ )δyT (t)ω(t)]dt

≥ −δ2
∫ T

0
ωT (t)ω(t)dt, (9)

for any T ≥ 0 and any non-zero ω(t) ∈ L2[0,∞).
Remark 2: The performance index in (9) is mixed H∞ and

passivity index. By substitute the weighting parameter σ , the
expression in (9) become to the passivity performance or H∞
performance index. Furthermore, if σ = 0, the expression in
(9) reduce to the passivity performance index δ, if σ = 1,
the expression in (9) degenerates into the H∞ performance
index δ, and if σ take the value in (0, 1), the expression in (9)
represent the mixed H∞ and passivity performance index δ.
Lemma 1 [6]: For a given matrix R > 0 scalar α1 <

α2 and vector z : [α1, α2] → Rn such that the following
integrals are well defined, then the inequality holds:

(α2 − α1)
∫ α2

α1

zT (s)Rx(s)ds ≥
∫ α2

α1

zT (s)dsR
∫ α2

α1

z(s)ds.
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Lemma 2 [5]: For a positive definite matrix R ∈ Rn×n, for
any continuously differentiable function z : [α1, α2] → Rn,

the following inequality holds:∫ α2

α1

żT (s)Rż(s)ds

≥
1

α2 − α1
χT1 Rχ1 +

3
α2 − α1

χT2 Rχ2

+
5

α2 − α1
χT3 Rχ3 +

7
α2 − α1

χT4 Rχ4,

where

χ1 = z(α2)− z(α1),

χ2 = z(α2)+ z(α1)−
2

α2 − α1

∫ α2

α1

z(s)ds,

χ3 = z(α2)− z(α1)+
6

α2 − α1

∫ α2

α1

z(s)ds

−
12

(α2 − α1)2

∫ α2

α1

∫ α2

s
z(u)duds,

χ4 = z(α2)+ z(α1)−
12

α2 − α1

∫ α2

α1

z(s)ds

+
60

(α2 − α1)2

∫ α2

α1

∫ α2

s
z(u)duds

−
120

(α2 − α1)3

∫ α2

α1

∫ α2

s

∫ α2

u
z(v)dvduds.

Lemma 3 [5]: For a positive definite matrix R ∈ Rn×n, for
any continuously differentiable function z : [α1, α2] → Rn,

the following inequality holds:∫ α2

α1

∫ α2

s
żT (u)Rż(u)du ≥ 2χT1 Rχ1 + 4χT2 Rχ2 + 6χT6 Rχ3,

where

χ1 = z(α2)−
1

α2 − α1

∫ α2

α1

z(s)ds,

χ2 = z(α2)+
2

α2 − α1

∫ α2

α1

z(s)ds

−
6

(α2 − α1)2

∫ α2

α1

∫ α2

s
z(u)duds,

χ3 = z(α2)−
3

α2 − α1

∫ α2

α1

z(s)ds

+
24

(α2 − α1)2

∫ α2

α1

∫ α2

s
z(u)duds

−
60

(α2 − α1)3

∫ α2

α1

∫ α2

s

∫ α2

u
z(v)dvduds.

Lemma 4 [2]: For a positive definite matrix R ∈ Rn×n, for
any continuously differentiable function z : [α1, α2] → Rn,

the following inequality holds:∫ α2

α1

∫ α2

s

∫ α2

u
żT (v)Rż(v)dvduds

≥
6

(α2 − α1)3
χT1 Rχ1 +

10
(α2 − α1)3

χT2 Rχ2,

where

χ1 =
(α2 − α1)2

2
z(α2)

∫ α2

α1

∫ α2

s
z(u)duds,

χ2 = −
(α2 − α1)2

6
z(α2)

∫ α2

α1

∫ α2

s
z(u)duds

+
4

α2 − α1

∫ α2

α1

∫ α2

s

∫ α2

u
z(v)dvduds.

III. MAIN RESULTS
In this section, we will present sufficient conditions of
finite-time boundedness, finite-time stability, and finite-time
mixed H∞/passivity for generalized neural networks (1),
and we will demonstrate new stability criteria. To simplify
the illustration, some notations for vectors and matrices are
presented in the form:

ei =
[
0n×(i−1)n In×n 0n×(25−i)n

]
∈ Rn×25n

(i = 1, 2, . . . , 25),

%1 =
1

ι321

∫ t−ι1

t−ι2

∫ t−ι1

s

∫ t−ι1

u
zT (v)dvduds,

%2 =
1

ι22

∫ t

t−ι2

∫ t

s
zT (u)duds,

%3 =
1

ι31

∫ t

t−ι1

∫ t

s

∫ t

u
zT (v)dvduds,

%4 =
1

ι32

∫ t

t−ι2

∫ t

s

∫ t

u
zT (v)dvduds,

$ (t) =
[
zT (t),

∫ t−ι1

t−ι2
zT (s)ds,∫ t−ι1

t−ι2

∫ t−ι1

s
zT (u)duds, ι321%1

]T
,

ξ (t) =
[
zT (t), zT (t − ι1), zT (t − ι2), zT (t − ι(t)),

żT (t),
1
ι1

∫ t

t−ι1
zT (s)ds,

1
ι21

∫ t−ι1

t−ι2
zT (s)ds,

1
ι2

∫ t

t−ι2
zT (s)ds,

1

ι21

∫ t

t−ι1

∫ t

s
zT (u)duds,

1

ι221

∫ t−ι1

t−ι2

∫ t−ι1

s
zT (u)duds, %2, %3, %1,

%4, f T (Wz(t)), f T (Wz(t − ιt )),

f T (Wz(t − ι1)), f T (Wz(t − ι2)),

gT (Wz(t)), gT (Wz(t − ι(t))),

gT (Wz(t − ι1)), gT (Wz(t − ι2)),

hT (Wz(t)),
∫ t−γ1(t)

t−γ2(t)
hT (Wz(s))ds, ωT (t)

]T
,

9w = 81 +82 +83 +84 +85 +86 + ν1 + ν2

+ν3 + ν4 + ν5 + ν6,

81 = Sym
{
[eT1 , ι21e

T
7 , ι

2
21e

T
10, ι

3
21e

T
13]P

×

[
eT5 , e

T
2 − e

T
3 , ι21e

T
2 + ι1e

T
6 − ι2e

T
8 ,
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ι221

2
eT2 − ι

2
21e

T
10

]T}
,

82 = e−αι1eT2Q1e2 − (1− τ )eαι2eT4Q1e4 + eT1Q2e1
−eαι1eT1Q2e2 + eT1Q3e1 − eαι2eT3Q3e3,

83 = ι
2
1e
T
5 R1e5 + ι

2
21e

T
5 R2e5

83 = ι
2
1e
T
5 R1e5 + ι

2
21e

T
5 R2e5

−[eT1 − e
T
2 ]R1[e

T
1 − e

T
2 ]
T

−3[eT1 + e
T
2 − 2eT6 ]R1[e

T
1 + e

T
2 − 2eT6 ]

T

−5[eT1 − e
T
2 + 6eT6 − 12eT9 ]R1

×[eT1 − e
T
2 + 6eT6 − 12eT9 ]

T

−7[eT1 + e
T
2 − 12eT6 + 60eT9 − 120eT12]R1

×[eT1 + e
T
2 − 12eT6 + 60eT9 − 120eT12]

T

−[eT2 − e
T
3 ]R2[e

T
2 − e

T
3 ]
T

−3[eT2 + e
T
3 − 2eT7 ]R2[e

T
2 + e

T
3 − 2eT7 ]

T

−5[eT2 − e
T
3 + 6eT7 − 12eT10]R2

×[eT2 − e
T
3 + 6eT7 − 12eT10]

T

−7[eT2 + e
T
3 − 12eT7 + 60eT10 − 120eT13]R2

×[eT2 + e
T
3 − 12eT7 + 60eT10 − 120eT13]

T ,

84 =
ι4

2
eT5 S1e5 +

ι4

2
eT5 S2e5

−2ι21[e
T
1 − e

T
6 ]S1[e

T
1 − e

T
6 ]
T

−4ι21[e
T
1 + 2eT6 − 6eT9 ]S1

×[eT1 + 2eT6 − 6eT9 ]
T

−6ι21[e
T
1 − 3eT6 + 24eT9 − 60eT12]S1

×[eT1 − 3eT6 + 24eT9 − 60eT12]
T

−2ι22[e
T
1 − e

T
8 ]S2[e

T
1 − e

T
8 ]
T

−4ι22[e
T
1 + 2eT8 − 6eT11]S2[e

T
1 + 2eT8 − 6eT11]

T

−6ι22[e
T
1 − 3eT8 + 24eT11 − 60eT14]S2

×[eT1 − 3eT8 + 24eT11 − 60eT14]
T ,

85 =
ι61

6
eT5U1e5 +

ι61

6
eT5U2e5

−6

[
ι21

2
eT1 − ι

2
1e
T
9

]
U1

[
ι21

2
eT1 − ι

2
1e
T
9

]T

−10

[
−
ι21

6
eT1 − ι

2
1e
T
9 + 4ι21e

T
12

]
U1

×

[
−
ι21

6
eT1 − ι

2
1e
T
9 + 4ι21e

T
12

]T

−6

[
ι22

2
eT1 − ι

2
2e
T
11

]
U2

[
ι22

2
eT1 − ι

2
2e
T
11

]T

−10

[
−
ι22

6
eT1 − ι

2
2e
T
11 + 4ι22e

T
14

]
U2

×

[
−
ι22

6
eT1 − ι

2
2e
T
11 + 4ι22e

T
14

]T
,

86 = σ
2
21e

T
23Ye23 − e

T
24Ye24,

ν1 = [(FpW (eT1 − e
T
2 ))− e

T
15 + e

T
17]Lf 1

×[e15 − e17 − (FmW (e1 − e2))]

+[(FpW (eT1 − e
T
3 ))− e

T
15 + e

T
18]Lf 2

×[e15 − e18 − (FmW (e1 − e3))]

+[(FpW (eT1 − e
T
4 ))− e

T
15 + e

T
16]Lf 3

×[e15 − e16 − (FmW (e1 − e4))]

+[(FpW (eT4 − e
T
2 ))− e

T
16 + e

T
17]Lf 4

×[e16 − e17 − (FmW (e4 − e2))]

+[(FpW (eT4 − e
T
3 ))− e

T
16 + e

T
18]Lf 5

×[e16 − e18 − (FmW (e4 − e3))]

+[(FpW (eT2 − e
T
3 ))− e

T
17 + e

T
18]Lf 6

×[e17 − e18 − (FmW (e2 − e3))],

ν2 = [FpWeT1 − e
T
15]Vf 1[e15 − FmWe1]

+[FpWeT4 − e
T
16]Vf 2[e16 − FmWe4]

+[FpWeT2 − e
T
17]Vf 3[e17 − FmWe2]

+[FpWeT3 − e
T
18]Vf 4[e18 − FmWe3],

ν3 = [(GpW (eT1 − e
T
2 ))− e

T
19 + e

T
21]Lg1

×[e19 − e21 − (GmW (e1 − e2))]

[(GpW (eT1 − e
T
3 ))− e

T
19 + e

T
22]Lg2

×[e19 − e22 − (GmW (e1 − e3))]

[(GpW (eT1 − e
T
4 ))− e

T
19 + e

T
20]Lg3

×[e19 − e20 − (GmW (e1 − e4))]

[(GpW (eT4 − e
T
2 ))− e

T
20 + e

T
21]Lg4

×[e20 − e21 − (GmW (e4 − e2))]

[(GpW (eT4 − e
T
3 ))− e

T
20 + e

T
22]Lg5

×[e21 − e22 − (GmW (e2 − e3))]

[(GpW (eT2 − e
T
2 ))− e

T
21 + e

T
21]Lg6

×[e20 − e21 − (GmW (e4 − e2))],

ν4 = [GpWeT1 − e
T
19]Vg1[e19 − GmWe1]

+[GpWeT4 − e
T
20]Vg2[e20 − GmWe4]

+[GpWeT2 − e
T
21]Vg3[e21 − GmWe2]

+[GpWeT3 − e
T
22]Vg4[e22 − GmWe3],

ν5 = [HpWeT1 − e
T
23]Vh1[e23 − HmWe1],

ν6 = Sym{[eT1 X1 + e
T
5 X2][−e5 − Ae1 + B0e15

+B1e20 + B2e24 + Ce25]},

�1 =
eαι2 − eαι1

α
, �2 =

eαι1 − 1
α

, �3 =
eαι2 − 1
α

,

�4 =
eαι1 − αι1 − 1

α2
, �5 =

eαι2 − eαι1 − αι21
α2

,

�6 =
−2ι21 − 2αι31 − α

2ι41 + 2ι21e
αι1

2α3
,

�7 =
−2ι22 − 2αι32 − α

2ι42 + 2ι22e
αι2

2α3
,

�8 =
−6ι31 − 6αι41 − 3α2ι51 − α

3ι61 + 6eαι1

6α4
,
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�9 =
−6ι32 − 6αι42 − 3α2ι52 − α

3ι62 + 6eαι2

6α4
,

�10 =
eαγ2 − eαγ1 − ασ21

α2
,

ζ1 = λmin(P̂), ζ2 = λmax(P̂), ζ3 = λmax(Q̂1),

ζ4 = λmax(Q̂2), ζ5 = λmax(Q̂3), ζ6 = λmax(R̂1),

ζ7 = λmax(R̂2), ζ8 = λmax(Ŝ1) , ζ9 = λmax(Ŝ2),

ζ10 = λmax(Û1), ζ11 = λmax(Û2), ζ12 = λmax(Ŷ ),

ζ13 = λmax(M̂ ).

A. FINITE-TIME BOUNDEDNESS
In this subsection, we study finite-time boundedness for the
generalized neural networks in the following form:

ż(t) = −Az(t)+ B0f (Wz(t))+ B1g(Wz(t − ι(t)))

+B2

∫ t−γ1(t)

t−γ2(t)
h(Wz(s))ds+ Cω(t), (10)

z(t) = φ(t), t ∈ [−ι2, 0]. (11)

Theorem 1: For given positive scalars ι2, τ and α,
the system (10) is finite-time bounded if there exist symmetric
positive definition matrices P, Qi(i = 1, 2, 3), Rj, Sj,
Uj(j = 1, 2), Y , M, any matrices X1, X2 such that the
following LMIs hold:

9w − αeT25Me25 < 0, (12)

ζ1I ≤ P̂ ≤ ζ2I , 0 ≤ Q̂1 ≤ ζ3I ,

0 ≤ Q̂2 ≤ ζ4I , 0 ≤ Q̂3 ≤ ζ5I ,

0 ≤ R̂1 ≤ ζ6I , 0 ≤ R̂2,≤ ζ7I

0 ≤ Ŝ1 ≤ ζ8I , 0 ≤ Ŝ2 ≤ ζ9I ,

0 ≤ Û1≤ζ10I , 0≤ Û2 ≤ ζ11I ,

0 ≤ Ŷ ≤ ζ12I , 0≤M̂ ≤ ζ13I ,

(13)

eαT
[
5c1 + ωζ13(1− e−αT )

]
< ζ1c2. (14)

Proof:We construct the LKF as follows:

V (t, xt ) =
6∑
j=1

Vj(t, xt ) (15)

where

V1(t, xt ) = $ T (t)P$ (t),

V2(t, xt ) =
∫ t−ι1

t−ι(t)
eα(t−s)zT (s)Q1z(s)ds

+

∫ t

t−ι1
eα(t−s)zT (s)Q2z(s)ds

+

∫ t

t−ι2
eα(t−s)zT (s)Q3z(s)ds,

V3(t, xt ) = ι1

∫ t

t−ι1

∫ t

s
eα(t−u)żT (u)R1ż(u)duds

+ι21

∫ t−ι1

t−ι2

∫ t

s
eα(t−u)żT (u)R2ż(u)duds,

V4(t, xt ) = ι21

∫ t

t−ι1

∫ t

s

∫ t

u
eα(t−v)żT (v)S1ż(v)dvduds

+ι22

∫ t

t−ι2

∫ t

s

∫ t

u
eα(t−v)żT (v)S2ż(v)dvduds,

V5(t, xt ) = ι31

∫ t

t−ι1

∫ t

s

∫ t

u

∫ t

v
eα(t−λ)żT (λ)U1ż(λ)dλdvduds

+ι32

∫ t

t−ι2

∫ t

s

∫ t

u

∫ t

v
eα(t−λ)żT (λ)

×U2ż(λ)dλdvduds,

V6(t, xt ) = γ21

∫ t−γ1

t−γ2

∫ t

s
eα(t−u)hT (Wz(u))Yh(Wz(u))duds.

Then, the time derivative of (15) are computed as follows:

V̇1(t, xt ) = 2$ T (t)P$̇ (t)− α$ T (t)P$ (t)+ αV1
= ξT (t)81ξ (t)+ αV1,

V̇2(t, xt ) = eαι1zT (t − ι1)Q1z(t − ι1) (16)

−(1− ι̇(t))eαι2zT (t − ι(t))Q1z(t − ι(t))

+zT (t)Q2z(t)− eαι1zT (t − ι1)Q2z(t − ι1)

+zT (t)Q3z(t)− eαι2zT (t − ι2)Q3z(t − ι2)

+αV2
≤ eαι1zT (t − ι1)Q1z(t − ι1)

−(1− τ )eαι2zT (t − ι(t))Q1z(t − ι(t))

+zT (t)Q2z(t)− eαι1zT (t − ι1)Q2z(t − ι1)

+zT (t)Q3z(t)− eαι2zT (t − ι2)Q3z(t − ι2)

+αV2
= ξT (t)82ξ (t)+ αV2, (17)

V̇3(t, xt ) = ι21ż
T (t)R1ż(t)+ ι221ż

T (t)R2ż(t)

−ι1

∫ t

t−ι1
żT (s)R1eα(t−s)ż(s)ds

−ι21

∫ t−ι1

t−ι2
eα(t−s)żT (s)R2ż(s)ds+ αV3

≤ ι21ż
T (t)R1ż(t)+ ι221ż

T (t)R2ż(t)

−ι1

∫ t

t−ι1
żT (s)R1ż(s)ds

−ι21

∫ t−ι1

t−ι2
żT (s)R2ż(s)ds+ αV3

= ξT (t)83ξ (t)+ αV3. (18)

Using Lemma2, it gives

−ι1

∫ t

t−ι1
żT (s)R2ż(s)ds

≤ −[z(t)− z(t − ι1)]TR1[z(t)− z(t − ι1)]

−3
[
z(t)+ z(t − ι1)−

2
ι1

∫ t

t−ι1
z(s)ds

]T
R1

×

[
z(t)+ z(t − ι1)−

2
ι1

∫ t

t−ι1
z(s)ds

]
−5

[
z(t)− z(t − ι1)+

6
ι1

∫ t

t−ι1
z(s)ds
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−
12

ι21

∫ t

tι1

∫ t

s
z(u)duds

]T
R1

×

[
z(t)− z(t − ι1)+

6
ι1

∫ t

t−ι1
z(s)ds

−
12

ι21

∫ t

tι1

∫ t

s
z(u)duds

]

−7
[
z(t)+ z(t − ι1)−

12
ι1

∫ t

t−ι1
z(s)ds

+
60

ι21

∫ t

tι1

∫ t

s
z(u)duds− 120%3

]T
R1

×

[
z(t)+ z(t − ι1)−

12
ι1

∫ t

t−ι1
z(s)ds

+
60

ι21

∫ t

tι1

∫ t

s
z(u)duds− 120%3

]
,

−ι21

∫ t−ι1

t−ι2
żT (s)R2ż(s)ds

≤ −[z(t − ι1)− z(t − ι2)]TR2[z(t − ι1)−z(t−ι2)]

−3
[
z(t − ι1)+z(t − ι2)−

2
ι21

∫ t−ι1

t−ι2
z(s)ds

]T
R2

×

[
z(t − ι1)+ z(t − ι2)−

2
ι21

∫ t−ι1

t−ι2
z(s)ds

]
−5
[
[z(t − ι1)− z(t − ι2)+

6
ι21

∫ t−ι1

t−ι2
z(s)ds

−
12

ι221

∫ t−ι1

t−ι2

∫ t−ι1

s
z(u)duds

]T
×R2

[
[z(t − ι1)− z(t − ι2)+

6
ι21

∫ t−ι1

t−ι2
z(s)ds

−
12

ι221

∫ t−ι1

t−ι2

∫ t−ι1

s
z(u)duds

]
−7
[
z(t − ι1)+ z(t − ι2)−

12
ι21

∫ t−ι1

t−ι2
z(s)ds

+
60

ι221

∫ t−ι1

t−ι2

∫ t−ι1

s
z(u)duds− 120%1

]T
R2

×

[
z(t − ι1)+ z(t − ι2)−

12
ι21

∫ t−ι1

t−ι2
z(s)ds

+
60

ι221

∫ t−ι1

t−ι2

∫ t−ι1

s
z(u)duds− 120%1

]
.

V̇4(t, xt ) =
ι41

2
żT (t)S1ż(t)+

ι42

2
żT (t)S2ż(t)

−ι21

∫ t

t−ι1

∫ t

s
eα(t−u)żT (u)S1ż(u)duds

−ι22

∫ t

t−ι2

∫ t

s
eα(t−u)żT (u)S2ż(u)duds+ αV4

≤
ι41

2
żT (t)S1ż(t)+

ι42

2
żT (t)S2ż(t)

−ι21

∫ t

t−ι1

∫ t

s
żT (u)S1ż(u)duds

−ι22

∫ t

t−ι2

∫ t

s
żT (u)S2ż(u)duds+ αV4

= ξT (t)84ξ (t)+ αV4. (19)

By applying Lemma3, we can deduce

−ι21

∫ t

t−ι1

∫ t

s
żT (u)S1ż(u)duds

≤ −2ι21

[
z(t)−

1
ι1

∫ t

t−ι1
z(s)ds

]T
S1

×

[
z(t)−

1
ι1

∫ t

t−ι1
z(s)ds

]
−4ι21

[
z(t)+

2
ι1

∫ t

t−ι1
z(s)ds

−
6

ι21

∫ t

t−ι1

∫ t

s
z(u)duds

]T
S1[

z(t)+
2
ι1

∫ t

t−ι1
z(s)ds−

6

ι21

∫ t

t−ι1

∫ t

s
z(u)duds

]
−6ι21

[
z(t)−

3
ι1

∫ t

t−ι1
z(s)ds

+
24

ι21

∫ t

t−ι1

∫ t

s
z(u)duds− 60%3

]T
S1

×

[
z(t)−

3
ι1

∫ t

t−ι1
z(s)ds

+
24

ι21

∫ t

t−ι1

∫ t

s
z(u)duds− 60%3

]
,

−ι22

∫ t−ι1

t−ι2

∫ t

s
żT (u)S2ż(u)duds

≤ −2ι22

[
z(t)−

1
ι2

∫ t

t−ι2
z(s)ds

]T
S2

×

[
z(t)−

1
ι2

∫ t

t−ι2
z(s)ds

]
− 4ι22

[
z(t)

+
2
ι2

∫ t

t−ι2
z(s)ds−

6

ι22

∫ t

t−ι2

∫ t

s
z(u)duds

]T
S2

×

[
z(t)+

2
ι2

∫ t

t−ι2
z(s)ds−

6

ι22

∫ t

t−ι2

∫ t

s
z(u)duds

]
−6ι22

[
z(t)−

3
ι2

∫ t

t−ι2
z(s)ds

+
24

ι22

∫ t

t−ι2

∫ t

s
z(u)duds− 60%4

]T
S2[

z(t)−
3
ι2

∫ t

t−ι2
z(s)ds

+
24

ι22

∫ t

t−ι2

∫ t

s
z(u)duds− 60%4

]
.
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V̇5(t, xt ) =
ι61

6
żT (t)U1ż(t)+

ι62

6
żT (t)U2ż(t)

−ι31

∫ t

t−ι1

∫ t

s

∫ t

u
eα(t−v)żT (v)U1ż(v)dvduds

−ι32

∫ t

t−ι2

∫ t

s

∫ t

u
eα(t−v)żT (v)U2ż(v)dvduds

+αV5

≤
ι61

6
żT (t)U1ż(t)+

ι62

6
żT (t)U2ż(t)

−ι31

∫ t

t−ι1

∫ t

s

∫ t

u
żT (v)U1ż(v)dvduds

−ι32

∫ t

t−ι2

∫ t

s

∫ t

u
żT (v)U2ż(v)dvduds+ αV5

= ξT (t)85ξ (t)+ αV5. (20)

By utilizing Lemma4, we have

−ι31

∫ t

t−ι1

∫ t

s

∫ t

u
żT (v)U1ż(v)dvduds

≤ −6
[
ι21

2
z(t)−

∫ t

t−ι1

∫ t

s
z(u)duds

]T
U1[

ι21

2
z(t)−

∫ t

t−ι1

∫ t

s
z(u)duds

]
−10

[
ι21

6
z(t)−

∫ t

t−ι1

∫ t

s
z(u)duds

+
4
ι1

∫ t

t−ι1

∫ t

s

∫ s

u
z(v)dvduds

]T
U1

×

[
ι21

6
z(t)−

∫ t

t−ι1

∫ t

s
z(u)duds

+
4
ι1

∫ t

t−ι1

∫ t

s

∫ s

u
z(v)dvduds

]
,

−ι32

∫ t

t−ι2

∫ t

s

∫ t

u
żT (v)U2ż(v)dvduds

≤ −6
[
ι22

2
z(t)−

∫ t

t−ι2

∫ t

s
z(u)duds

]T
U2

×

[
ι22

2
z(t)−

∫ t

t−ι2

∫ t

s
z(u)duds

]
−10

[
ι22

6
z(t)−

∫ t

t−ι2

∫ t

s
z(u)duds

+
4
ι2

∫ t

t−ι2

∫ t

s

∫ s

u
z(v)dvduds

]T
U2

×

[
ι22

6
z(t)−

∫ t

t−ι2

∫ t

s
z(u)duds

+
4
ι2

∫ t

t−ι2

∫ t

s

∫ s

u
z(v)dvduds

]
.

V̇6(t, xt ) = σ 2
21h

T (Wz(t))Yh(Wz(t))

−σ21

∫ t−γ1

t−γ2
eα(t−u)hT (Wz(s))Yh(Wz(s))ds

≤ σ 2
21h

T (Wz(t))Yh(Wz(t))− (γ2(t)− γ1(t))

×eαι2
∫ t−γ1(t)

t−γ2(t)
hT (Wz(s))Yh(Wz(s))ds

= ξT (t)86ξ (t)+ αV6. (21)

By Lemma1, we obtain

−(γ2(t)− γ1(t))
∫ t−γ1(t)

t−γ2(t)
hT (Wz(s))Yh(Wz(s))ds

≤ −

∫ t−γ1(t)

t−γ2(t)
hT (Wz(s))dsY

∫ t−γ1(t)

t−γ2(t)
h(Wz(s))ds.

By utilizing Assumption 1, we get that

lfi(v1, v2) := 2[f (z(v1))− f (z(v2))

−FmW (z(v1)− z(v2))]TLfi
×[FpW (z(v1)− z(v2))

−f (z(v1))+ f (z(v2))] ≥ 0,

vfi(v) := 2[f (z(v))− FmWz(v)]TVfi
[FpWz(v)− f (z(v))] ≥ 0

lgi(v1, v2) := 2[g(z(v1))− g(z(v2))

−GmW (z(v1)− z(v2))]TLgi
×[GpW (z(v1)− z(v2))

−g(z(v1))+ g(z(v2))] ≥ 0,

vgi(v) := 2[g(z(v))− GmWz(v)]TVgi
×[GpWz(v)− g(z(v))] ≥ 0

vh(v) := 2[h(z(v))− HmWz(v)]TVh
×[HpWz(v)− h(z(v))] ≥ 0

where

Lfi = diag{l1fi, l2fi, . . . , lnfi},

Vfj = diag{v1fj, v2fj, . . . , vnfj},

Lgi = diag{l1gi, l2gi, . . . , lngi},

Vgj = diag{v1gj, v2gj, . . . , vngj},

Lhi = diag{l1hi, l2hi, . . . , lnhi},

Vh = diag{v1h, v2h, . . . , vnh}.

i = 1, 2, . . . , 6, j = 1, 2, 3,

Therefore, we have

lf 1(t, t − ι1)+ lf 2(t, t − ι2)+ lf 3(t, t − ι(t))

+lf 4(t − ι(t), t − ι1)+ lf 5(t − ι(t), t − ι2)

+lf 6(t − ι1, t − ι2) = ξ (t)ν1ξ (t) ≥ 0, (22)

vf 1(t)+ vf 2(t − ι(t))

+vf 3(t − ι1)+ vf 4(t − ι2) = ξ (t)ν2ξ (t) ≥ 0, (23)

lg1(t, t − ι1)+ lg2(t, t − ι2)+ lg3(t, t − ι(t)))

+lg4(t − ι(t), t − ι1)+ lg5(t − ι(t), t − ι2)

+lg6(t − ι1, t − ι2) = ξ (t)ν1ξ (t) = ξ (t)ν3ξ (t) ≥ 0,

(24)

vg1(t)+ vg2(t − ι(t))+ vg3(t − ι1)

+vg4(t − ι2) = ξ (t)ν4ξ (t) ≥ 0, (25)

vh(t) = ξ (t)ν5ξ (t) ≥ 0. (26)
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Moreover, the following equality holds for any n × n
matrices X1, X2:

0 = 2
[
zT (t)X1 + żT (t)X2

]
× [−ż(t)− Az(t)+ B0f (Wz(t))

+B1g(Wz(t − ι(t)))+ B2

∫ t−σ1(t)

t−σ2(t)
h(Wz(s))ds

]
= ξT (t)ν6ξ (t). (27)

Combining (16)-(27), it can be inferred that

V̇ (t, xt )− αV (t, xt )− αωT (t)Mω(t)

≤ ξT (t){9w − αeT25Me25}ξ (t). (28)

It follows from (12) and (28), we have

V̇ (t, xt )− αV (t, xt )− αωT (t)Mω(t) < 0. (29)

By multiplying of (29) with e−αt , then (29) becomes

d
dt

(
e−αtV (t, xt )

)
< αe−αtωT (t)Mω(t). (30)

By integrating (30) on [0, t] where t ∈ [0,T ] and
Assumption 2, we obtain

V (t, xt ) < eαT
[
V (0, x0)+ α

∫ T

0
e−αsω(s)Mω(s)ds

]
< eαT

[
V (0, x0)+ αλmax(M )ω

∫ T

0
e−αsds

]
< eαT

[
V (0, x0)+ ωζ13(1− e−αT )

]
. (31)

Next, we consider V (0, x0) by Assumption 1, we get

V (0, x0)

= $ T (0)P$ (0)+
∫
−ι1

−ι(0)
e−αszT (s)Q1z(s)ds

+

∫ 0

−ι1

e−αszT (s)Q2z(s)ds

+

∫ 0

−ι2

e−αszT (s)Q3z(s)ds

+ι1

∫ 0

−ι1

∫ 0

s
e−αużT (u)R1ż(u)duds

+ι21

∫
−ι1

−ι2

∫ 0

s
e−αużT (u)R2ż(u)duds

+ι21

∫ 0

−ι1

∫ 0

s

∫ 0

u
e−αvżT (v)S1ż(v)dvduds

+ι22

∫ 0

−ι2

∫ 0

s

∫ 0

u
e−αvżT (v)S2ż(v)dvduds

+ι31

∫ 0

−ι1

∫ 0

s

∫ 0

u

∫ 0

v
e−αλżT (λ)U1ż(λ)dλdvduds

+ι32

∫ 0

−ι2

∫ 0

s

∫ 0

u

∫ 0

v
e−αλżT (λ)U2ż(λ)dλdvduds

+σ21

∫
−γ1

−γ2

∫ 0

s
e−αuhT (Wz(u))Yh(Wz(u))duds

≤ $ T (0)P$ (0)+
∫
−ι1

−ι(0)
e−αszT (s)Q1z(s)ds

+

∫ 0

−ι1

e−αszT (s)Q2z(s)ds

+

∫ 0

−ι2

e−αszT (s)Q3z(s)ds

++ ι1

∫ 0

−ι1

∫ 0

s
e−αużT (u)R1ż(u)duds

+ι21

∫
−ι1

−ι2

∫ 0

s
e−αużT (u)R2ż(u)duds

+ι21

∫ 0

−ι1

∫ 0

s

∫ 0

u
e−αvżT (v)S1ż(v)dvduds

+ι22

∫ 0

−ι2

∫ 0

s

∫ 0

u
e−αvżT (v)S2ż(v)dvduds

+ι31

∫ 0

−ι1

∫ 0

s

∫ 0

u

∫ 0

v
e−αλżT (λ)U1ż(λ)dλdvduds

+ι32

∫ 0

−ι2

∫ 0

s

∫ 0

u

∫ 0

v
e−αλżT (λ)U2ż(λ)dλdvduds

+σ21

∫
−γ1

−γ2

∫ 0

s
e−αuzT (u)ĤTY Ĥz(u)duds

where Ĥ = diag{H+1 , . . . ,H
+
n }.

Furthermore, we let P̂ = V
−1
2 PV

−1
2 , Q̂i = V

−1
2 QiV

−1
2 , i =

1, 2, 3, R̂j = V
−1
2 RjV

−1
2 , Ŝj = V

−1
2 SjV

−1
2 , Ûj = V

−1
2 UjV

−1
2 ,

j = 1, 2, Ŷ = V
−1
2 ĤTY ĤV

−1
2 , we can derive that

V (0, x0)

≤ $ T (0)V
1
2 P̂V

1
2$ (0)

+

∫
−ι1

−ι(0)
e−αszT (s)V

1
2 Q̂1V

1
2 z(s)ds

+

∫ 0

−ι1

e−αszT (s)V
1
2 Q̂2V

1
2 z(s)ds

+

∫ 0

−ι2

e−αszT (s)V
1
2 Q̂3V

1
2 z(s)ds

+ι1

∫ 0

−ι1

∫ 0

s
e−αużT (u)V

1
2 R̂1V

1
2 ż(u)duds

+ι21

∫
−ι1

−ι2

∫ 0

s
e−αużT (u)V

1
2 R̂2V

1
2 ż(u)duds

+ι21

∫ 0

−ι1

∫ 0

s

∫ 0

u
e−αvżT (v)V

1
2 Ŝ1V

1
2 ż(v)dvduds

+ι22

∫ 0

−ι2

∫ 0

s

∫ 0

u
e−αvżT (v)V

1
2 Ŝ2V

1
2 ż(v)dvduds

+ι31

∫ 0

−ι1

∫ 0

s

∫ 0

u

∫ 0

v
e−αλżT (λ)V

1
2 Û1V

1
2 ż(λ)dλdvduds

+ι32

∫ 0

−ι2

∫ 0

s

∫ 0

u

∫ 0

v
e−αλżT (λ)V

1
2 Û2V

1
2 ż(λ)dλdvduds

+σ21

∫
−γ1

−γ2

∫ 0

s
e−αuzT (u)V

1
2 YV

1
2 z(u)duds
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≤ {λmax(P̂)+�1λmax(Q̂1)+�2λmax(Q̂2)

+�3λmax(Q̂3)+�4λmax(R̂1)+�5λmax(R̂2)

+�6λmax(Ŝ1)+�7λmax(Ŝ2)+�8λmax(Û1)

+�9λmax(Û2)+�10λmax(Ŷ )}

× sup
ι2≤s≤0

{zT (s)Vz(s), żT (s)V ż(s)} ≤ 0c1

where

0 = ζ2 +�1ζ3 +�2ζ4 +�3ζ5 +�4ζ6 +�5ζ7

+�6ζ8 +�7ζ9 +�8ζ10 +�9ζ11 +�10ζ12 (32)

In addition, it follows from (15) that

V (t, xt ) ≥ zT (t)Pz(t)

≥ λmin(P̂)zT (t)Vz(t) = ζ1zT (t)Vz(t). (33)

Then, from the inequalities (31)-(33) and the condi-
tion (14), we obtain

zT (t)Vz(t) ≤
eαT

ζ1

[
0c1 + ρζ13(1− e−αT )

]
< c2.

By definition (2), the system (10) is finite-time bounded.
The proof is complete. �
Remark 3: Choosing (v1, v2) as (t, t−ι1), (t, t−ι2), (t, t−

ι(t)), (t − ι(t), t − ι1), (t − ι(t), t − ι2), and (t − ι1, t − ι2) in
(6)−(8). Therefore, we used more information on cross terms
among the terms t, t− ι1, t− ι2, and ι(t). So, our method lead
to less conservative stability criteria.
Remark 4: In this paper, the LKFs including single,

double, triple, and quadruple integral terms in which more
information on the delays ι1, ι2, γ1, γ2, and a state variable
are used. In addition, the LKFs consisting of two new
triple integral terms ι21

∫ t
t−ι1

∫ t
s

∫ t
u e

α(t−v)żT (v)S1ż(v)dvduds
and ι22

∫ t
t−ι2

∫ t
s

∫ t
u e

α(t−v)żT (v)S2ż(v)dvduds are applied, that
have not been used in [6], [10]–[13], [15]–[18], [21].
Moreover, we also introduce two new quadruple inte-
gral terms ι31

∫ t
t−ι1

∫ t
s

∫ t
u

∫ t
v e

α(t−λ)żT (λ)U1ż(λ)dλdvduds and
ι32

∫ t
t−ι2

∫ t
s

∫ t
u

∫ t
v e

α(t−λ)żT (λ)U2ż(λ)dλdvduds which have not
appeared in [6], [9]–[21]. Furthermore, the stability and
performance analysis have applied more information on
activation functions, that is, in the proof we have F−i ≤
fi(Wu)−fi(Wv)

Wu−Wv ≤ F+i , G
−

i ≤
gi(Wu)−gi(Wv)

Wu−Wv ≤ G+i , and
H−i ≤

hi(Wu)−hi(Wv)
Wu−Wv ≤ H+i . Therefore, the major keys to

improving the results of our work are constructing new LKFs
and using new techniques for estimating the time derivatives,
which lead to less conservatism. The bound of the time
derivative of LKFs is tighter bound than the inequalities [49],
[50] when we use the Jensen’s integral inequality [6],
the new triple integral inequality [2], and extended single
and doubleWirtinger’s integral inequality [5] in the proof. All
of these lead to a reduction of the conservatism of obtained
results compared with previous works as shown in numerical
examples.

B. FINITE-TIME STABLE
We define

ei =
[
0n×(i−1)nIn×n0n×(24−i)n

]
∈ Rn×24n

(i = 1, 2, . . . , 24),

ξ (t) =
[
zT (t), zT (t − ι1), zT (t − ι2), zT (t − ι(t)),

żT (t),
1
ι1

∫ t

t−ι1
zT (s)ds,

1
ι21

∫ t−ι1

t−ι2
zT (s)ds,

1
ι2

∫ t

t−ι2
zT (s)ds,

1

ι21

∫ t

t−ι1

∫ t

s
zT (u)duds,

1

ι221

∫ t−ι1

t−ι2

∫ t−ι1

s
zT (u)duds, %2, %3, %1,

%4, f T (Wz(t)), f T (Wz(t − ιt )),

f T (Wz(t − ι1)), f T (Wz(t − ι2)),

gT (Wz(t)), gT (Wz(t − ι(t))),

gT (Wz(t − ι1)), gT (Wz(t − ι2)),

hT (Wz(t)),
∫ t−γ1(t)

t−γ2(t)
hT (Wz(s))ds

]T
,

9nw = 81 +82 +83 +84 +85 +86 + ν1 + ν2 + ν3

+ν4 + ν5 + νc6,

νc6 = Sym{[eT1 X1 + e
T
5 X2][−e5 − Ae1 + B0e15

+B1e20 + B2e24]}.

Remark 5: The generalized neural networks (1)-(2) with-
out output vector and external disturbance (y(t) = 0 and
ω = 0) satisfying (4)-(5) becomes

ż(t) = −Az(t)+ B0f (Wz(t))+ B1g(Wz(t − ι(t)))

+B2

∫ t−γ1(t)

t−γ2(t)
h(Wz(s))ds, (34)

z(t) = φ(t), t ∈ [−ι2, 0]. (35)
Corollary 1: For given positive scalars ι2, τ and α,

the system (34) is finite-time stable, P, Qi(i = 1, 2, 3), Rj,
Sj, Uj(j = 1, 2), Y , M, any matrices X1, X2 such that the
following LMIs hold:

9nw < 0, (36)

ζ1I ≤ P̂ ≤ ζ2I , 0 ≤ Q̂1 ≤ ζ3I , 0 ≤ Q̂2 ≤ ζ4I ,

0 ≤ Q̂3 ≤ ζ5I , 0 ≤ R̂1 ≤ ζ6I , 0 ≤ R̂2 ≤ ζ7I ,

0 ≤ Ŝ1 ≤ ζ8I , 0 ≤ Ŝ2 ≤ ζ9I , 0 ≤ Û1 ≤ ζ10I ,

0 ≤ Û2 ≤ ζ11I , 0 ≤ Ŷ ≤ ζ12I , (37)

eαT5c1 < ζ1c2. (38)

Proof: Similarly to the proof of Theorem 1, therefore,
it is omitted here. �
Remark 6: The generalized neural networks (34)-(35)

without distributed delay and W is identity matrix (B2 = 0
and W = I ) can be written as follows:

ż(t) = −Az(t)+ B0f (z(t))+ B1g(z(t − ι(t))) (39)

z(t) = φ(t), t ∈ [−ι2, 0]. (40)
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satisfying 0 ≤ ι(t) ≤ ι2 and ι̇(t) ≤ τ , which mean
that the system (39)-(40) becomes a special case of the
system (34)-(35)
Corollary 2: For given positive scalars ι2, τ and α,

the system (39) is asymptotically stable, if there exist
symmetric positive definition matrices Qi(i = 1, 2, 3), Rj, Sj,
Uj(j = 1, 2), any matrices P, X1, X2 such that the following
LMI holds:

9nw < 0. (41)

Proof: The proof of Corollary 2 is similar to the proof
of Theorem 1, hence it is omitted here. �
Remark 7: As shown in the above, from Corollary 2,

we can give stability criterion for a neural network with
time-varying delay, even any delay rate τ . Our results are
more effective, which is illustrated in the numerical example
part.

C. FINITE-TIME MIXED H∞/PASSIVITY ANALYSIS
In this subsection, we consider the finite-time mixed
H∞/passivity for the generalized neural networks as follows:

ż(t) = −Az(t)+ B0f (Wz(t))+ B1g(Wz(t − ι(t)))

+B2

∫ t−γ1(t)

t−γ2(t)
h(Wz(s))ds+ Cω(t), (42)

y(t) = D1z(t)+ D2z(t − ι(t))

+D3

∫ t−γ1(t)

t−γ2(t)
h(Wz(s))ds+ D4ω(t), (43)

z(t) = φ(t), t ∈ [−ι2, 0]. (44)

We define

ν7 = −γ1[e1 + D2e4 + D3e24 + D4e25]T

×[e1 + D2e4 + D3e24 + D4e25]

+2(1− σ )δ[e1 + D2e4 + D3e24 + D4e25]e25
+δ2eT25e25,

9mp = 9w + ν7.

Theorem 2: For given positive scalars ι2, τ and α,
the system (42)-(43) is finite-time bounded with a mixed
H∞ /passivity performance index δ if there exist symmetric
positive definition matrices P, Qi(i = 1, 2, 3), Rj, Sj,
Uj(j = 1, 2), Y , M, any matrices X1, X2 such that the
following LMIs hold:

9mp − αeT25Me25 < 0, (45)

ζ1I ≤ P̂ ≤ ζ2I , 0 ≤ Q̂1 ≤ ζ3I ,

0 ≤ Q̂2 ≤ ζ4I , 0 ≤ Q̂3 ≤ ζ5I ,

0 ≤ R̂1 ≤ ζ6I , 0 ≤ R̂2,≤ ζ7I

0 ≤ Ŝ1 ≤ ζ8I , 0 ≤ Ŝ2 ≤ ζ9I ,

0 ≤ Û1≤ζ10I , 0≤ Û2 ≤ ζ11I ,

0 ≤ Ŷ ≤ζ12I , 0 ≤ M̂ ≤ ζ13I ,

(46)

eαT
[
5c1 + ωζ13(1− e−αT )

]
< ζ1c2. (47)

Proof of Theorem 2: By using LKF and the proof of
Theorem 1, we have

V̇ (t, xt )− αV (t, xt )− J (t)

≤ ξT (t)
(
9w − αeT25Me25

)
ξ (t) (48)

where

J (t) = −σyT (t)y(t)+ 2(1− σ )δyT (t)w(t)+ σ 2ωT (t)ω(t).

From (45), we obtain

V̇ (t, xt )− αV (t, xt )− J (t) ≤ 0. (49)

Multiplying inequality (49) by e−αt and integration from 0
to T , we obtain

V (xt , t) < eαTV (x0, 0)+ eαT
∫ T

0
e−αsJ (s)ds.

Then, under the zero original condition V (x0, 0) = 0,
we get ∫ T

0
J (s)ds > eαTV (xt , t).

Meanwhile, V (xt , t) > 0. Thus,∫ T

0

[
−σyT (t)y(t)+2(1−σ )δyT (t)w(t)+σ 2ωT (t)ω(t)

]
ds>0.

which indicates that∫ T

0
σyT (t)y(t)− 2(1− σ )δy(t)ω(t)

≤ δ2
∫ T

0
ωT (t)ω(t)dt.

By definition (3), the system (42) is finite-time bounded
with a mixed H∞/passivity. This completes the proof.

IV. NUMERICAL EXAMPLES
Next, we show numerical examples to demonstrate the
efficiency of the present results.
Example 1: Consider the generalized neural networks

described in (10) with the following matrix parameters:

A = diag{1, 1}, Fm = Gm = Hm = diag{0, 0}

Fp = diag{−0.04, 0.04}, GP = diag{−0.16, 0.16},

HP = diag{−1,−1}, W = diag{1, 1},

B0 =
[
1.188 0.09
0.09 1.188

]
, B1 =

[
0.09 q0.14
0.05 0.09

]
,

B2 =
[
0.44 −0.21
0.29 0.41

]
, C =

[
0.2 −0.6
0.3 0.2

]
.

Let the interval discrete time-varying is ι(t) =

0.8 + 0.5 sin(t), the interval distributed time-varying delays
are γ1(t) = 0.3 + 0.2 sin(t) and γ2(t) = 0.5 + 0.3 sin(t),
the neuron activation functions are taken as f (z(t)) =
[0.2 tanh(z1(t)), 0.2 tanh(z2(t))]T , g(z(t)) = [0.2(|z1(t) +
1| − |z1(t) − 1|), 0.2(|z2(t) + 1| − |z2(t) − 1|)]T and
h(z(t)) = [tanh(z1(t)), tanh(z2(t))]T . For given scalars
τ = 0.5, ρ = 0.1, c1 = 1.12, T = 30, α = 0.1 and V
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FIGURE 1. The trajectories of z1(t) and z2(t) of system (10) in Example 1.

FIGURE 2. Time history of xT (t)x(t) for closed-loop system in Example 1.

is identity matrix. Solving LMIs (12) in Theorem 1, we obtain
c2 = 4.75.
For an initial condition φ(t) = [−0.40.4]T , figure 1

demonstrates the trajectories of solution z1(t) and z2(t) of
generalized neural networks (10) with various activation
functions and mixed time-varying. Figure 2 illustrates the
time history of zT (t)z(t) for the delay generalized neural
network system (10). In conclusion, system (10) is finite-time
boundedness with respect to (0.5, 4.75, 30, I, 0.1). Thus, this
proves the effectiveness of our obtained results in Theorem 1.
Example 2: Consider the generalized neural networks

described in (34) with the following matrix parameters:

A = diag{1, 1}, W = diag{1, 1},

Fm = Gm = Hm = diag{0, 0},

Fp = diag{−0.04, 0.04}, GP = diag{−0.16, 0.16},

HP = diag{−1,−1}, B0 =
[
1.188 0.09
0.09 1.188

]
,

B1 =
[
0.09 0.14
0.05 0.09

]
, B2 =

[
0.44 −0.21
0.29 0.41

]
.

FIGURE 3. The trajectories of z1(t) and z2(t) of system (34) in Example 2.

FIGURE 4. Time history of xT (t)x(t) for closed-loop system in Example 2.

Let the interval discrete time-varying is ι(t) = 0.8 +
0.5 sin(t), the interval distributed time-varying delays are
γ1(t) = 0.3 + 0.2 sin(t) and γ2(t) = 0.5 + 0.3 sin(t),
the neuron activation functions are taken as f (z(t)) =
[0.2 tanh(z1(t)), 0.2 tanh(z2(t))]T , g(z(t)) = [0.2(|z1(t)+1|−
|z1(t) − 1|), 0.2(|z2(t) + 1| − |z2(t) − 1|)]T and h(z(t)) =
[tanh(z1(t)), tanh(z2(t))]T . For given scalars τ = 0.5, c1 =
1.12, ρ = 0.1, T = 30, α = 0.1 and V is identity matrix.
Solving LMIs (36) in Corollary 1, we obtain c2 = 5.37.
For an initial condition φ(t) = [−0.20.2]T , figure 3

demonstrates the trajectories of solution z1(t) and z2(t) of
generalized neural networks (34) with various activation
functions and mixed time-varying. Figure 4 illustrates the
time history of zT (t)z(t) for the delay generalized neural
network system (34). In conclusion, system (34) is finite-time
stable with respect to (0.5, 5.37, 30, I, 0.1). Thus, this proves
the effectiveness of our obtained results in Corollary 1.
Example 3: Consider the neural networks described

in (39) with the matrix parameters as follows:

A = diag{2, 2}, W = diag{1, 1},

Fp = diag{0.4, 0.8}, Fm = diag{0, 0},

W0 =

[
1 1
−1 −1

]
, W1 =

[
0.88 1
1 1

]
.
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TABLE 1. Delay bounds ι2 with different τ .

TABLE 2. Delay bounds ι2 with different τ .

Let the time-varying ι(t) = 0.8 sin(t) + 4.8384,
the neuron activation function is taken as f (z(t)) =

[0.4 tanh(z1(t)), 0.8 tanh(z2(t))]T . The proposed criteria,
the maximum delay bounds with τ estimated by the Corol-
lary 2 are shown in Table 1. In addition, we compare
the obtained results with the published work. The results
guarantee that the stability conditions demonstrated in this
article are more efficient than the existing literature.
Example 4: Consider the neural networks described

in (39) with the matrix parameters in the following:

A = diag{1.5, 0.7}, W = diag{1, 1},

Fp = diag{0.3, 0.8}, Fm = diag{0, 0},

W0 =

[
0.0503 0.0454
0.0987 0.2075

]
, W1 =

[
0.2381 0.9320
0.0388 0.5062

]
.

Let the time-varying ι(t) = 0.4 sin(t) + 10.173,
the neuron activation function is taken as f (z(t)) =

[0.3 tanh(z1(t)), 0.8 tanh(z2(t))]T .The proposed conditions,
the maximum delay bounds with τ computed by the
Corollary 2 are shown in Table 2. In addition, we compare
the obtained results with the published work. The results
guarantee that the stability conditions demonstrated in this
article are more efficient than the existing literature.
Example 5: Consider the neural networks described

in (39) with the following matrix parameters:

A = diag{7.3458, 6.9987, 5.5949}, W0 = diag{0, 0, 0},

W1 = diag{1, 1, 1}, Fm = diag{0, 0, 0}

Fp = diag{0.3680, 0.1795, 0.2876},

W =

13.6014 −2.9616 −0.6936
7.4736 21.6810 3.2100
0.7290 −2.6334 −20.1300

 .
Let f (z(t)) = [0.3680 tanh(z1(t)), 0.1795 tanh(z2(t)),

0.2876 tanh(z3(t))]T . The proposed criteria, the maximum
delay bounds with τ estimated by the Corollary 2 are listed

TABLE 3. Delay bounds ι2 with different τ .

in Table 3. Additionally, we compare the obtained results with
the published work. The results guarantee that the stability
conditions demonstrated in this article are more efficient than
the existing literature.
Remark 8: From table 1-3, it is noticed that our results

presented larger bounds of time-delay than the existing litera-
ture by using themultiple integral terms Lyapunov-Krasovskii
function combined with inequalities.
Remark 9: The main advantage of this paper is to apply

Jensen’s integral inequality (Lemma 1), an extended single
and double Wirtinger’s integral inequalities (Lemma 2, 3),
a new triple integral inequality (Lemma 4) with new LKFs to
the proof. As a result, our maximum delay is greater than that
of [9]–[21].

V. CONCLUSION
In this article, the problem of finite-time mixedH∞/passivity,
finite-time stability, and finite-time boundedness for gener-
alized neural networks with interval distributed and discrete
time-varying delays has been studied. It is the first time for
the combination of H∞, passivity, and finite-time bound-
edness. By constructing a new multiple integral LKF and
applying an extended single and double Wirtinger integral
inequality, Jensen’s integral inequality, and a new triple
integral inequality, new stability conditions are established
to derive the finite-time boundedness, finite-time stabil-
ity, and finite-time mixed H∞/passivity neural networks.
Numerical examples are presented to verify the efficiency
of presented results and are better than the existing results.
We can see that the presented technique can be extended
to Takagi–Sugeno fuzzy non-homogeneous Markovian jump
systems [22]; in neural networks system, synchronization
of coupled reaction-diffusion [23] and synchronization of
coupled memristive [24].
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