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ABSTRACT Reliable wireless communication networks are a significant but challenging mission for
post-disaster areas and hotspots in the era of information. However, with the maturity of unmanned aerial
vehicle (UAV) technology, drone mobile networks have attracted considerable attention as a prominent solu-
tion for facilitating critical communications. This paper provides a system-level analysis for drone mobile
networks on a finite three-dimensional (3D) space. Our aim is to explore the fundamental performance limits
of drone mobile networks taking into account practical considerations. Most existing works on mobile drone
networks use simplified mobility models (e.g., fixed height), but the movement of the drones in practice is
significantly more complicated, which leads to difficulties in analyzing the performance of the drone mobile
networks. Hence, to tackle this problem, we propose a stochastic geometry-based framework with a number
of differentmobilitymodels including a randomBrownianmotion approach. The proposed framework allows
to circumvent the extremely complex reality model and obtain upper and lower performance bounds for
drone networks in practice. Also, we explicitly consider certain constraints, such as the small-scale fading
characteristics relying on line-of-sight (LOS) and non line-of-sight (NLOS) propagation, and multi-antenna
operations. The validity of the mathematical findings is verified via Monte-Carlo (MC) simulations for
various network settings. In addition, the results reveal some design guidelines and important trends for
the practical deployment of drone networks.

INDEX TERMS Drone mobile networks, mobility models, performance boundary, stochastic geometry
theory, system-level analysis.

I. INTRODUCTION
The exponential growth of wireless data driven by
mobile devices (e.g., tablets) has promoted the need for
non-terrestrial networks [1]. However, it’s a challenging task
for operators to provide data services in special use-cases and
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circumstances such as large-gatherings (e.g., competitions)
and man-made or natural disasters (e.g., earthquake). The
latter in particular, is unpredictable by nature and has critical
effects in terms of both ecological and economic costs.
Securing communications capability is a vital component for
disaster relief and response [2]. However, the conventional
cellular communication systems are difficult to provide stable
and reliable network connectivity. In the past few years,
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drone technology has matured and widely used in smart
city construction, such as security monitoring, real-time
video streaming [3]. The drone can be quickly deployed
by carrying a wireless communication module to form a
drone air base station, thereby alleviating network conges-
tion in hotspots [4], [5]. Drone opens up the possibility for
rapid restoration of damaged cellular system. Drone assisted
network is considered as a potential scheme for improving
conventional terrestrial cellular networks, so it has received
considerable attention in both industry and academia recently.
Field experiments show that the air base station can effec-
tively improve the user experience in the area with poor
coverage and achieve the change of throughput from valley-
to-peak [6]. The results shown that the UAV-based solution
can provide stable network access capabilities compared to
conventional systems in the scenario of large-scale gatherings
and terrestrial communication infrastructure being destroyed.
Therefore, current fifth generation (5G) and future integrated
sixth generation (6G) wireless network also consider the
application of UAVs in the system [7].While there is no doubt
about the advantages of UAVs, it still has some challenges for
large-scale applications.

The stochastic theory is an approach widely used in the
analysis of wireless networks because it can well capture
the connection distance and randomness between nodes
in many scenarios. The wrok in [8] used stochastic the-
ory to study device-to-device (D2D) communications in
post-disaster area. In [9], the authors borrowed tools from
stochastic theory to modeling the channel in high-speed
railway scenarios. The authors studied the coverage prob-
ability of low-earth-orbit satellites using stochastic geom-
etry tools in [10]. The authors used stochastic geometry
approach to describe the cache-enabled heterogeneous net-
works (HetNets) in [11]. Zhang et al. [12] analyzed the
performance of cellular networks with cooperative relays
using tools provided by stochastic geometry. The optimiza-
tion of non-orthogonal multiple access (NOMA) in massive
machine-type communications via stochastic theory has been
studied in [13]. The authors evaluated the performance of
full-duplex cooperative NOMA networks using stochastic
geometry tools in [14]. The system coverage probability
of UAV networks with the blockage effect using stochastic
tools has been studied in [15]. In [16], the authors com-
bined NOMA and full-duplex to solve the scarce of spectrum
in UAV network using stochastic approach. The 3D-UAV
enabled networks based on stochastic geometry as well as
air-to-ground (A2G) channel modeling are studied in [17],
and various effects such as the impact of shadowing in [18],
[19] or the adoption of point process for modeling the UAVs
distribution in [20], [21] are investigated. In [22], the authors
analyzed the A2G channel model based on stochastic tools,
where the 3D arbitrary trajectory changed.

Several studies on the performance of drone cellular net-
works based on stochastic geometry have also been reported
in the literature. The downlink coverage probability was
obtained ignoring LOS and NLOS propagation in [23].

In [24], the authors investigated the impact of Nakagami-m
and LOS propagation in drone networks ignoring NLOS
propagation. In [25], the authors studied the single drone
MIMO networks where NLOS propagation was considered.
In [26], the authors studied the coverage probability of static
drone networks at a certain height considering LOS and
NLOS propagation. In [27], the single drone network was
investigated with considering a single slope path loss model
where the drone could move to certain points. The single
dronemoving cyclically along the cell edgewas studied based
on stochastic geometry in [28]. The performance of multiple
drone networks with hovering flight drone and cruising drone
was studied in [29]. In [30], the authors compared the perfor-
mance of sub-6 GHz and millimeter wave (mmWave) under
drone hovering case. In [31], the authors investigated cover-
age probability of energy-harvesting-powered drones in 3D
spacewith randomly deployed drones betweenmaximum and
minimum height. The 3D space drone cellular network is
simplified to 2D plane by distributing UAVs at fixed height
in [32].

A. CONTRIBUTIONS
In contrast to the drone networks considering either LOS
or NLOS propagation in [23]–[25] and simplified drone
mobility model (e.g., hovering, cruising, fixed height, static)
in [27]–[32], we consider LOS and NLOS propagation with
random mobility model in drone cellular networks. Although
some randommobilitymodels in HetNets have been provided
in [33]–[36], the random mobility model of drone cellular
networks has not been extensively studied. The main obstacle
is the complex analysis of random mobility model, espe-
cially the Markov mobility model (i.e., the realistic mobility
model [37]). Motivated by the above works, we present an
analytical framework for the finite 3D drone mobile networks
based on stochastic geometry. In this framework, we use
the 3D Brownian motion and deterministic motion model
to obtain performance boundaries of realistic drone mobile
networks. Also, by considering LOS and NLOS propagation,
a closed-form expression for spectral efficiency (SE) and out-
age probability of different mobility models including a ran-
dom (Brownian) model are consequently provided. The main
contributions of this paper can be summarized as follows:

• We provide a system-level analysis of the drone mobile
networks, and the closed-form expressions of signal-
to-interference-plus-noise ratio (SINR), SE and outage
probability are derived. Also, we explicitly account for
small-scale and large-scale fading characteristics relying
on LOS and NLOS propagation and multi-slope path-
loss.

• Instead of applying the complex Markov mobility
model, we use the 3D Brownian motion and determin-
istic motion model to obtain performance boundaries of
realistic drone mobile networks. The proposed frame-
work allows for the study of drone mobile networks
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under a number of mobility models including a ran-
dom Brownian) motion model.

• Theoretical results are validated through MC simula-
tions. The results show that the key features of drone
mobile networks, in terms of high number of antennas
and lower transmit power.

B. PAPER ORGANIZATION
The remainder of this paper is organized as follows.
In Section II, the system description is given and a number
of mobility models are presented. The spectrum efficiency
and outage probability analysis of drone mobile network are
provided in Section III. Numerical results are presented in
Section IV, and finally, conclusions are provided in Section V.

Notation: x denotes a vector; Pr[.] denotes the probability;
Ex[.] indicates the expectation; Fx[.] indicates the cumula-
tive distribution function (CDF); Px[.] denotes the proba-
bility density function (PDF); Mx[.] illustrates the m.g.f.;
|x| denotes the modulus; ‖x‖ indicates the Euclidean norm;
Lx[.] denotes the Laplace transform (LT) function; I(.) is the
identity matrix; δ(.) indicates the Delta function; H(.) indi-
cates the Heaviside step function; G(κ, θ) denotes the Gamma
distribution with shape parameter κ and scale parameter θ ;
N (µ, σ 2) denotes the Gaussian distribution with mean µ and
variance σ 2; 0(.) and 0(., .) are respectively the Gamma and
incomplete (upper) Gamma functions.

II. SYSTEM DESCRIPTION
A. NETWORK TOPOLOGY
We consider a large-scale drone mobile network as shown
in Fig. 1, where K base stations (BSs) (i.e., UAVs) are
deployed on the finite 3D ball of radius R following a homo-
geneous poisson point process (PPP)8with spatial density λ.
The PPP-based abstractionmodel is confirmed to be a reliable
approach for drone mobile networks. Let KLOS and KNLOS
representing the number of drones under LOS and NLOS
propagation (i.e.,K = KLOS+KNLOS), respectively. Based on
Slivnyak’s theorem [38], and the stationary property of PPP,
the analysis is carried for the typical user o supposed to be
located at the origin.

B. PROPAGATION MODEL
In this network, the drones are mounted with M antennas,
and be assumed to serve a user at each resource block. The
typical user equip with single antenna.We assume each trans-
mitter drone has perfect knowledge of typical user channel.
hTb ∼ CN (0, IM ) indicates the small-scale fading channel
between user o and its serving drone b. Here, we utilize
the Nakagami-m distributed to capture the small-scale fading
for LOS propagation, and use the Rayleigh distributed (i.e.,
exp(1)) for NLOS propagation. Noted that the exponential
distribution is a special case of Gamma distribution with
m = 1, so the Nakagami-m parameter for NLOS propaga-
tion is mN = 1. In addition, η indicates the additive white

Gaussian noise (AWGN) at the typical user, where the mean
and variance σ 2 are zero.
Considering the drones apply conjugate-beamforming

(CB) in downlink (DL) direction of communications,
the intended small-scale fading channel power gains gb (from
the serving drone b) experiencing LOS and NLOS propaga-
tion follow the distribution G

(
mLM , 1

mL

)
and G

(
M , 1

mN

)
,

where mL and mN respectively denote the Nakagami-m
parameter for LOS and NLOS. The interfering small-scale
fading channel power gains gi (from the transmitting drone i)
experiencing LOS andNLOS propagation follow the distribu-
tion G

(
mL,

1
mL

)
and G (1, 1), respectively [39], [40]. Then,

the two-slope path-loss function can be constructed as

L(r) =

{
max

(
β0, β1r−αL

)
, LOS propagation

max
(
β0, β1r−αN

)
, NLOS propagation

(1)

where αL and αN represent path-loss exponents for LOS and
NLOS links respectively with αN > αL > 2. β0 illustrates the
minimum coupling loss, β1 indicates a constant parameter, r

denotes the distance. Here, β1 = 1
ε

(
c

4π fc

)2
, where fc denotes

the carrier frequency, and c represents the speed of light. For
LOS (LLOS(r)) and NLOS (LNLOS(r)) links, ε = εLOS =

1 dB and ε = εNLOS = 20 dB, respectively [41].
A commonly used distance-dependent ITU-R Umi LOS

and NLOS model (referred to as 3GPP LOS and NLOS
model) is given as (2). By using (2), the LOS probability can
be obtained as follows

Pr [LOS, r] = min
(
18
r
, 1
)
(1− e−

r
36 )+ e−

r
36 . (2)

The function of LOS probability can be expressed as the
following simplified model, which approximates widely uti-
lized 3GPP channel model [42]–[44].

Pr
[
LOS, r(.) = r

]
=

{
1, r ∈ [0,D)
0, r ∈ [D,R]

(3)

where D indicates the critical distance, Pr [NLOS, r] = 1 −
Pr [LOS, r]. According to the independence of homogeneous
PPP8, the drones are divided into two parts (i.e., LOS drones
and NLOS drones). The average number of LOS and NLOS
drones are K̄LOS =

4
3πD3λ and K̄NLOS =

4
3π
(
R3
− D3

)
λ,

respectively [45].

C. CELLULAR ASSOCIATION
The cellular association strategy is the path-loss based strat-
egy. Mathematically, this strategy is given as

L(rb) = arg max (L(rl)), ∀l ∈ 8, (4)

where L(rb) represents the path-loss of serving drone b, and
L(rl) indicates the path-loss of the l-th drone.

In next subsection, we will discuss three drone mobil-
ity models. Actually, the realistic drone mobility trajectory
should follow theMarkovmobilitymodel, butMarkovmobil-
ity model does not offer tractability for mathematical analy-
sis. Hence, in this paper, we propose drone mobility model
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FIGURE 1. Depicting the finite 3D drone mobile network topology and
propagation model with the path-loss based cellular association strategy.

(i.e., DM, 3D BM) to obtain upper and lower performance
bounds for practical drone networks.

First, we discuss the CDF and PDF of rb,LOS with
uniformly-deployed under LOS case, where rb,LOS denotes
the distance between user o and its serving LOS drone.

Assuming KLOS LOS drones (i.e., KLOS > 0) deployed on
the finite 3D ball of radius D following uniformly distribu-
tion, the CDF and PDF of rb,LOS are formulated as [46, Eqn.
(6)]

Frb,LOS(r) = 1−
(
1−

r3

D3

)KLOS

, 0 ≤ r ≤ D (5)

and

Prb,LOS(r) =
3 r2 KLOS

D3

(
1−

r3

D3

)KLOS−1

, 0 ≤ r ≤ D.

(6)

Next, we aim to obtain the CDF and PDF of rb,NLOS
with uniformly-deployed under NLOS case, where rb,NLOS
denotes the distance between user o and its serving NLOS
drone.

Assuming KNLOS NLOS drones (i.e., KLOS = 0) deployed
on the finite 3D ball double-bounded by radii R and D (<
R) following uniformly distribution, the CDF and PDF of
rb,NLOS are formulated as [47, Eqn. (3)]

Frb,NLOS (r) = 1−
(
1−

r3 − D3

R3 − D3

)KNLOS

, D ≤ r ≤ R

(7)

and

Prb,NLOS(r)

=
3 r2 KNLOS

R3 − D3

(
1−

r3 − D3

R3 − D3

)KNLOS−1

, D ≤ r ≤ R.

(8)

In this part, we obtain the CDF and PDF of rb,LOS and
rb,NLOS with uniformly-deployed under LOS andNLOS case.
Next part, we will consider the mobility model of the drones.

D. DRONE MOBILITY
We consider two case in 3D Brownian motion and deter-
ministic motion mode. (i) At any given time, the distance
between the mobile LOS drone and origin is smaller than D
(i.e., rLOS,j(t) = max

(
0,min

(
D, r̂(t)

))
, j ∈ {BM,DM}).

(ii) At any given time, the distance between the mobile NLOS
drone and origin is smaller than R and larger than D (i.e.,
rNLOS,j(t) = max

(
D,min

(
R, r̂(t)

))
, j ∈ {BM,DM}).

In this network, the interfering drones are randomly generated
in every time according to Poisson distributed in a 3D finite
space. Also, because the cell association takes place in a
slower time frame, once the user has been assigned a serving
drone, it will be some time before the user changes the serving
drone.

1) 3D BROWNIAN MOTION
In this subsection, we will analyze the mobility model 3D
Brownian motion (BM) and deterministic motion (DM).
In the mobility model, only the serving drone move, other
interfering drones still fixed. The serving drone will move
following the 3D BM model, the movement of the drone can
be obtained according to the following stochastic differential
equation (SDE) [48]

dl(t) = v db(t) (9)

where l(t) =
{
lx(t), ly(t), lz(t)

}
denotes a vector for the

Cartesian coordinates at time t , b(t) =
{
bx(t), by(t), bz(t)

}
indicates the Wiener process (i.e., standard BM) vector at
time t , and v (i.e., representing average velocity) indicates
a positive constant. Then, according to the characteristics
of the Wiener process, we can obtain bx(t), by(t), bz(t) ∼

N (0, t). r̂(t) =
√
l2x (t) + l2y (t) + l2z (t) is the corresponding

Euclidean distance to the origin at time t . First, we will
derive the CDF and PDF of rLOS(t), where rLOS(t) denotes
the distance to the origin under LOS propagation at time
t . Recall the mobility model for LOS drone under consid-
eration, rLOS,j(t) = max

(
0,min

(
D, r̂(t)

))
. The CDF of

rLOS,j(t) (a function of three variables) can be expressed
as [49]

FrLOS,j(t)(w) = F0(w) Fmin(D,r̂(t) )(w), (10)

where F0(w) indicates the CDF of constant 0, and
Fmin(D,r̂(t) )(w) represents the CDF of functionmin

(
D, r̂(t)

)
.

Based on the 3D BM, r̂(t) =

√
l2x (t) + l2y (t) + l2z (t).

By solving the Fokker-Plank equation (FPE) based on sat-
isfying the SDE in (9) and considering bx(t), by(t), bz(t) ∼
N (0, t), we can obtain lx(t), ly(t), lz(t) ∼ N (0, 2 vt). Hence,
we can readily apply the Central Limit Theorem (CLT) to
obtain r̂2(t) ∼ G( 32 , 4 vt). Then, r̂(t) ∼ Nakagami( 32 , 6 vt).
According to the characteristic of Nakagami-m distribution,
the CDF and PDF can be directly given by

Fr̂(t)(w) = 1−
2
√
π
0

(
3
2
,
w2

4vt

)
(11)
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and

Pr̂(t)(w) =
w2

2
√
π (vt)

3
2

exp
(
−
w2

4vt

)
. (12)

The CDF and PDF of x (a constant parameter), Fx(w) and
Px(w), are respectively given by

Fx(w) = H (w− x) (13)

and

Px(w) = δ (w− x) . (14)

Hence, we can arrive at the CDF and PDF expressions of
rLOS,BM(t) in (15) and (16), as shown at the bottom of the next
page.

Considering the 3D BM mobility, the CDF and PDF of
rLOS,BM(t) (i.e., mobile LOS drone distance) are formulated
as (15) and (16), respectively.

FrLOS,BM(t)(w)

=

(
1+

2
√
π
0

(
3
2
,
w2

4 vt

)
(H(w− D)− 1)

)
H(w) (15)

Next, we will derive the CDF and PDF of rNLOS,BM(t)
based on the 3D BM mobility model, where rNLOS,BM(t)
indicates the distance to the origin under NLOS propaga-
tion at time t . Recall the mobility model for NLOS drone,
rNLOS,BM(t) = max

(
D,min

(
R, r̂(t)

))
. We can express the

corresponding CDF as [49]

FrNLOS,j(t)(w) = FD(w) Fmin(R,r̂(t) )(w), (17)

where FD(w) indicates the CDF of constant D,Fmin(R,r̂(t) )(w)
represents the CDF of function min

(
R, r̂(t)

)
.

In formula (11) and formula (13), we derived the probabil-
ity distribution of Fr̂(t)(w), FR(w) and FD(w). Hence, with
some basic numerical steps, we can arrive at the CDF and
PDF expressions of rNLOS,BM(t) in (18) and (19), as shown at
the bottom of the next page.

Considering the 3D BM mobility, the CDF and PDF of
rNLOS,BM(t) (i.e., mobile NLOS drone distance) are formu-
lated as (18) and (19), respectively.

FrNLOS,BM(t)(w)

=

(
1+

2
√
π
0

(
3
2
,
w2

4 vt

)
(H(w− R)− 1)

)
H(w− D)

(18)

Also, we can obtain the CDF and PDF for LOS and NLOS
based on homogeneous PPP with density λ. The distribution
of BM movement distance is equivalent to the distribution of
the nearest drone distance following homogeneous PPP with
density λ [48], and we can obtain the CDF of homogeneous
PPP in (5), where KLOS =

4
3πD3λ, so (5) is identical

to (15) [48]. Then, by solving this equation, we can obtain the
density for LOS as shown at the bottom of the next page (20).
Also, a similar approach can be used to obtain the density for
NLOS given in (21), as shown at the bottom of the next page.

2) DETERMINISTIC MOTION
In this part, the characteristic of the deterministic motion
(i.e., moving towards a target at a constant speed) is studied.
Once the transmission link has been established, the serving
drone cannot move toward to other targets. The correspond-
ing Euclidean distance to the origin (i.e., t > 0) can be given
by

r̂(t) = r0−vt (22)

where v indicates a constant (e.g., representing velocity) and
r0 denotes the distance at time t = 0. It should be noted
that a positive value v means same direction and vice versa.
Then, we will derive the CDF and PDF of rLOS,DM(t), where
rLOS,DM(t) indicates the distance to the origin under LOS
propagation at time t . Recall the deterministic mobility model
for LOS drone, rLOS,DM(t) =max

(
0,min

(
D, r̂(t)

))
, where

r̂(t) = r0−vt . Consider Y = aX − b, where Y and X are
random variables, and a and b are constants. Hence, based on
this linear transformation, the PDF of Y is constructed as [30]

PY (y) =
1
|a|

PX
(
y− b

a

)
. (23)

Then, the CDF and PDF of r̂LOS(t) can be respectively
formulated as

Fr̂LOS(t)(w) = 1−
(
1−

(vt + w)3

D3

)KLOS

(24)

and

Pr̂LOS(t)(w) =
3(vt + w)2 KLOS

D3

(
1−

(vt + w)3

D3

)KLOS−1

.(25)

The CDF and PDF of r̂NLOS(t) can be respectively formu-
lated as

Fr̂NLOS(t)(w) = 1−
(
1−

(vt + w)3 − D3

R3 − D3

)KNLOS

(26)

and

Pr̂NLOS(t)(w)

=
3(vt + w)2 KNLOS

R3 − D3

(
1−

(vt + w)3 − D3

R3 − D3

)KNLOS−1

.

(27)

Using the above, together with the aid of similar expression
in (10) and (17), we can arrive at the results in (28) and (30).

Considering the deterministic motion mobility, the CDF
and PDF of rLOS,DM(t) are formulated in (28) and (29), as
shown at the bottom of the next page.

FrLOS,DM(t)(w)

= H(w)

(
1+ (H(w− D)− 1)

(
1−

(vt + w)3

D3

)KLOS
)
(28)

VOLUME 9, 2021 90559



J. Huang et al.: Drone Mobile Networks: Performance Analysis Under 3D Tractable Mobility Models

Considering the deterministic motion mobility, the CDF
and PDF of rNLOS,DM(t) are formulated in (30) and (31), as
shown at the bottom of the next page.

FrNLOS,DM(t)(w) = H(w− D)
(
1+ (H(w− R)− 1)

×(
R3
− (vt + w)3

R3 − D3 )KNLOS

)
(30)

E. SINR FORMULATION
Using the formula above, the received SINR can be formu-
lated as

SINR =
X

IIagg + σ 2 (32)

where

X = pgbL(rb) (33)

and

IIagg =
∑

i∈8\{b}

pgiL(ri) (34)

with σ 2 and p used to indicate the noise variance and transmit
power, respectively.

III. PERFORMANCE ANALYSIS
In this section, we will analysis the performances of spectral
efficiency and outage probability.

First, the spectral efficiency (in nat/s/Hz) of the typical
user is expressed as (35), as shown at the bottom of the next
page [50], where Pr [LOS, r = rb] and Pr [NLOS, r = rb]
denote the distance-dependent LOS and NLOS probabilities
given in (3). Prb (r) and FSINR|rb=r [γ ] indicate the PDF of
the transmitter-receiver distance (expressed in (6) and (8)),
and the CDF of the SINR conditioned on rb = r .

By using MGF methodlogy, the spectral efficiency of the
typical user conditioned on transmitter-receiver distance rb is
obtained.

E
[
log (1+ SINR)

]
=

∫ R

0

∫
+∞

0

[
(1−MX|rb (z))×MIagg|rb (z)

]
×
exp(−zσ 2)

z
Prb (r) dzdr (36)

where MX|rb (z) can be easily derived andMIagg|rb (z) can be
obtained by the LT of aggregate interference. The MX|rb (z)
conditioned on LOS and NLOS are respectively given by

MX|rb (z) =
(
1+

zpL(rb)
mL

)−MmL

(37)

PrLOS,BM(t)(w) =
(
1+

2
√
π
0

(
3
2
,
w2

4 vt

)
(H(w− D)− 1)

)
δ(w)

+

(
2
√
π
0

(
3
2
,
w2

4 vt

)
δ(w− D)−

w2

2
√
π (vt)

3
2

exp
(
−
w2

4 vt

)
(H(w− D)− 1)

)
H(w). (16)

PrNLOS,BM(t)(w) =
(
1+

2
√
π
0

(
3
2
,
w2

4 vt

)
(H(w− R)− 1)

)
δ(w− D)

+

 2
√
π
0

(
3
2
,
w2

4 vt

)
δ(w− R)−

1
2
√
πw

(
w2

vt

) 3
2

exp
(
−
w2

4 vt

)
(H(w− R)− 1)

H(w− D). (19)

λ =
3 log

(
1− H(w)

√
π

(
2H(w− D)0

(
3
2 ,

w2

4 tv

)
− 20

(
3
2 ,

w2

4 tv

)
+
√
π
))

4πD3 log
(
1− w3

D3

) (20)

λ =
3 log

(
1− H(w−D)

√
π

(
2H(w− R)0

(
3
2 ,

w2

4 tv

)
− 20

(
3
2 ,

w2

4 vt

)
+
√
π
))

4π
(
R3 − D3

)
log

(
1− w3−D3

R3−D3

) . (21)

PrLOS,DM(t)(w) = δ(w) + (H(w) δ(w− D)+ (H(w− D)− 1)δ(w) )
(
1−

(vt + w)3

D3

)KLOS

−H(w) (H(w− D)− 1)
3 KLOS(vt + w)2

D3

(
1−

(vt + w)3

D3

)KLOS−1

. (29)

90560 VOLUME 9, 2021



J. Huang et al.: Drone Mobile Networks: Performance Analysis Under 3D Tractable Mobility Models

and

MX|rb (z) =
(
1+

zpL(rb)
mN

)−M
. (38)

After deriving the expression of spectral efficiency, we will
deduct the expression of outage probability.

The CDF of the SINR (outage probability) conditioned
on ro = r is given by (39), as shown at the bottom of
the next page, with (i) written using the identity xnf (x) ≡
(−1)n dn

dsnLf (x)[s] (a property of LT function). Hence, the CDF
of the SINR (outage probability) of the typical user can be
expressed by (40), as shown at the bottom of the next page,
where Pr [LOS, r = rb] and Pr [NLOS, r = rb] denote the
distance-dependent LOS andNLOS probabilities given in (3).

Next, we will obtain the LT of the aggregate interference
under LOS and NLOS propagation by invoking the probabil-
ity generating functional (PGFL).

The LT of the aggregate interference under LOS andNLOS
propagation are respectively given by

LILOS [s] = E
[
exp(−sILOS)

]
= E

exp
−s ∑

i∈8LOS\{b}

pgiLLOS(ri)


= E8LOS

KLOS∏
i=1

1(
1+ sp

mL
LLOS(ri)

)mL


= Eri


 1(

1+ sp
mL
LLOS(ri)

)mL


KLOS

 (41)

and

LINLOS [s] = E
[
exp(−sINLOS)

]

= E

exp
−s ∑

i∈8NLOS\{b}

pgiLNLOS(ri)


= E8NLOS

[KNLOS∏
i=1

Egi
[
exp (−spgiLNLOS(ri))

]]

= E8NLOS

[KNLOS∏
i=1

1
1+ spLNLOS(ri)

]

= Eri

[(
1

1+ spLNLOS(ri)

)KNLOS
]

(42)

Hence, the LT of the aggregate interference under LOS and
NLOS propagation are respectively given by

LILOS [s]

=

∫ R

r
Pr [LOS, ri = y]

 1(
1+ sp

mL
LLOS(y)

)mL


KLOS

×
3 y2

R3 − r3
dy (43)

and

LINLOS[s]

=

∫ R

r
Pr [NLOS, ri = y]

(
1

1+ spLNLOS(y)

)KNLOS

×
3 y2

R3 − r3
dy. (44)

IV. NUMERICAL RESULTS
In this section, we analyze the performances of drone mobile
networks under the path-loss based strategies. We provide
some examples to varify the proposed analytical framework,
and compare the Monte-Carlo simulations with theoretical
results.

PrNLOS,DM(t)(w) = δ(w− D)

(
1+ (H(w− R)− 1)

(
R3
− (vt + w)3

R3 − D3

)KNLOS
)
+H(w− D)

×

(
δ(w− R)

(
R3
− (vt + w)3

R3 − D3

)KNLOS

−
3 KNLOS(H(w− R)− 1)(vt + w)2

R3 − D3

(
R3
− (tv+ w)3

R3 − D3

)KNLOS−1
)
.

(31)

E[log(1+ SINR)]

=

∫
+∞

0
Pr
[
log(1+ SINR) > γ

]
dγ

= Erb
[∫
+∞

0
Pr[LOS, rb = r] Pr[log(1+ SINR) > γ |rb = r]+ Pr[NLOS, rb = r] Pr[log(1+ SINR) > γ |rb = r]dγ

]
=

∫ R

0

∫
+∞

0
Pr[LOS, rb = r]

1− FSINR|rb=r [γ ]
1+ γ

Prb (r) + Pr[NLOS, rb = r]
1− FSINR|rb=r [γ ]

1+ γ
Prb (r) dγ dr (35)
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TABLE 1. Simulations parameters.

A. MONTE-CARLO SIMULATIONS
The method utilized for evaluating the spectral efficiency
and outage probability in single-user multi-antenna drone
mobile networks with CB using Monte-Carlo simulations are
presented below.

1) Set the number of PPP deployment density λ,
Nakagami-m fading parameter mL and mN, serving
drone velocity v, transmit power p, number of antennas
M , path-loss exponent αL, αN, and noise variance σ 2.

2) Define the 3D finite region radius R around the typical
user o located at the origin and the critical distance D.

3) Generate the statistical number of LOS drone and
NLOS drone using Poisson distribution with average
K̄LOS =

4
3πD3λ and K̄NLOS =

4
3π
(
R3
− D3

)
λ. Then,

uniformly-deployed in the region of volume 4
3πD3 and

4
3π
(
R3
− D3

)
, respectively.

4) Generate independent fading channel power gains from
all deployed drones to the typical user.

5) Associate the typical receiver to the nearest transmitter
drone based on path-loss strategy. Then, the serving
drone will move according to three mobility models,

and the intended signal power X during the movement
process can be obtained.

6) Calculate the aggregate network interference on the
typical user IIagg using the sum of received signal pow-
ers from all remaining interfering links.

7) Obtain the instantaneous SINR and spectral efficiency
(nat/s/Hz) of the typical receiver using SINR = X

IIagg+σ2
and log (1+ SINR), respectively.

8) By repeating the step 3-7 with a large number of times
and calculating the averages, we can compute the spec-
tral efficiency and outage probability.

Next, we will explain the theoretical results and
Monte-Carlo simulations based on a standard workstations
at present time. The execution time for Monte-Carlo simula-
tions which were repeated 20k times over a radius of 100 m
required can range from four hours to more than ten hours
depending on the network settings. The deployment density,
path-loss exponents, mobility model increase the complex-
ity of the Monte-Carlo trials. However, with the presented
theoretical framework, similar results can be obtained in few
minutes. In this paper, all the parameters are set according
to Table 1 unless otherwise stated in the subsequent results
analysis. Furthermore, all the parameters in this section are
merely chosen to illustrate the performance in an example,
and it can be modified to any other values depending on the
needs of different scenarios.

B. IMPACT OF NUMBER OF ANTENNAS
We investigate the effect of the number of antennas on the SE
in Fig. 2. Here, we consider three mobility models, consisting
(i) stationary model (red curves), (ii) deterministic mobility

FSINR|rb=r [γ ] = Pr [LOS, rb = r] Pr [SINR ≤ γ |LOS, rb = r]

+Pr [NLOS, rb = r] Pr [SINR ≤ γ |NLOS, rb = r]

= 1− Pr [LOS, rb = r] Pr [SINR > γ |LOS, rb = r]

−Pr [NLOS, rb = r] Pr [SINR > γ |NLOS, rb = r]

= 1− Pr [LOS, rb = r] Pr
[
gb >

γ

pLLOS(r)

(
ILOS + INLOS + σ 2

)
|LOS, ro = r

]
−Pr [NLOS, rb = r] Pr

[
gb >

γ

pLNLOS(r)

(
INLOS + σ 2

)
|NLOS, ro = r

]
(i)
= 1− Pr [LOS, rb = r]

mLM−1∑
n=0

{
(−s)n

n!
dn

dsn
exp

(
−sσ 2

)
LILOS [s]LINLOS[s]

}
s= mLγ

pLLOS(r)

−Pr [NLOS, rb = r]
M−1∑
n=0

{
(−s)n

n!
dn

dsn
exp

(
−sσ 2

)
LINLOS [s]

}
s= γ

pLNLOS(r)

(39)

FSINR[γ ] = 1−
∫ R

0

(
Pr [LOS, rb = r]

mLM−1∑
n=0

{
(−s)n

n!
dn

dsn
exp

(
−sσ 2

)
LILOS [s]LINLOS[s]

}
s= mLγ

pLLOS(r)

+Pr [NLOS, rb = r]
M−1∑
n=0

{
(−s)n

n!
dn

dsn
exp

(
−sσ 2

)
LINLOS [s]

}
s= γ

pLNLOS(r)

)
Prb (r)dr (40)
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FIGURE 2. Spectral efficiency against different number of antennas.
System parameters are: mL = 3, mN = 1, R = 100 m, D = 18 m, λ = 10−5

/m3, v = 3 m/s, p = 20 W, ε = εLOS = 1 dB, ε = εNLOS = 20 dB. (a) Time
t = 1 s. (b) Time t = 3 s.

model (blue curves), and (iii) 3D Brownian mobility model
(black curves). In order to compare the network performances
at different time, we obtain the SE values at time t = 1 s
and t = 3 s with different mobility models, respectively. The
reason is because the serving drone is just starting to move
according mobility models at time t = 1 s, and the drone
mobile networks will have a better network performance at
time t = 3 s. As it can been seen in Fig. 2(a) and Fig. 2(b),
the SE performance in all mobility models always increases
in the number of antennas. Furthermore, our findings show
that drone mobile networks applied CB can obtain a better
performance with more transmit antennas. Next, the effect
of connecting threshold on outage probability with 8 and
16 antennas are investigated in Fig. 3(a) and Fig. 3(b),
respectively. We can observe that the outage probability will

FIGURE 3. Outage probability against threshold with different number of
antennas. System parameters are: mL = 3, mN = 1, R = 100 m, D = 18 m,
λ = 10−5 /m3, v = 3 m/s, p = 20 W, t = 3 s, ε = εLOS = 1 dB,
ε = εNLOS = 20 dB. (a) Number of antennas M = 8. (b) Number of
antennas M = 16.

increase and become stable with the increasing of threshold in
all mobility models. The reason is because the serving drone
will change to LOS condition under deterministic mobility
model at time t = 3 s, but the serving drone still under NLOS
condition in other mobility models. It is important to note that
communicate under LOS condition can enhance the network
performance. In addition, it can be observed that the outage
probability performance underM = 16 is better thanM = 8,
that phenomenon fits the conclusion in Fig. 2. In Fig. 2 and
Fig. 3, we can observe that themulti-antenna communications
will increase the drone mobile performances. The reason is
because the multi-antenna communications will improve the
channel power gain, and hence, the useful signal power will
stronger, whilst the interference level still remaining same.
This trend highlights the important role of multi-antenna in
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FIGURE 4. The serving drone velocity impact on Spectral efficiency.
System parameters are: M = 8, mL = 3, mN = 1, R = 100 m, D = 18 m,
λ = 10−5 /m3, p = 20 W, ε = εLOS = 1 dB, ε = εNLOS = 20 dB. (a) Time
t = 1 s. (b) Time t = 3 s.

the drone mobile networks. In addition, it should be noted
that 3D BM is the disordered mobility model, and deter-
ministic motion is the ideal mobility model, in practical.
So we can say that the performance of 3D BM is the lower
bound of the reality drone networks and the performance of
deterministic model is the upper bound. This conclusion will
help to simplify the drone mobile networks in practical (i.e,
Markov-motion model).

C. IMPACT OF DRONE VELOCITY
The effect of the serving drone velocity on SE under three
mobility models at time t = 1 and time t = 3 are demon-
strated in Fig. 4(a) and Fig. 4(b). As we can find that the SE
under deterministic mobility model increase in the serving
drone velocity, but the velocity has little impact on SE under
stationary and 3D BM model. Depending on the characteris-

FIGURE 5. The threshold impact on Outage probability with different
serving drone velocities. System parameters are: M = 8, mL = 3, mN = 1,
R = 100 m, D = 18 m, λ = 10−5 /m3, p = 20 W, t = 3 s, ε = εLOS = 1 dB,
ε = εNLOS = 20 dB. (a) serving drone velocity v = 2 m/s. (b) serving drone
velocity v = 2.5 m/s.

tics of different mobility models, the distance between typical
user and serving drone will decrease with the increasing of
serving drone velocity. On the other hand, it is important to
note that the distance has little change under stationary and
3D BMmodel. We depict the impact of connecting threshold
on outage probability with v = 7.2 km/h and v = 9 km/h
in Fig. 5(a) and Fig. 5(b). As expected, the velocity of drones
will increase the drone mobile performances. Although the
serving drone velocity will enhance the performance of drone
mobile networks in practical, but it should be noted that strike
a balance between secure and performance. However, this
beyond the scope of this article.

D. IMPACT OF TRANSMITTER POWER
Finally, we proceed by studying the effect of transmit-
ter power on SE under three mobility models in Fig. 6.
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FIGURE 6. The transmitter power impact on Spectral efficiency. System
parameters are: M = 8, mL = 3, mN = 1, R = 100 m, D = 18 m, λ = 10−5

/m3, v = 3 m/s, ε = εLOS = 1 dB, ε = εNLOS = 20 dB. (a) Time t = 1 s.
(b) Time t = 3 s.

As expected, we can observe that the transmitter power has
little impact on SE. The reason is because the intended signal
power improve with the increasing of transmitter power, but
the aggregate interference power also increase. Furthermore,
it should be noted that the noise variance is small comparing
with intended signal and aggregate interference, so the spec-
tral efficiency and outage probability will remain stable at dif-
ferent transmit power. Hence, we can effectively allocate the
limited energy of battery to other requirements to boost the
overall performance of drone mobile networks in practical.

V. CONCLUSION
In this paper, a system-level analysis of the drone mobile
networks is presented. Aiming to providemeaningful insights
into the performance drone mobile networks in practice,
we provided a framework for the study of mobile drone

networks considering a number of mobility models, including
a 3DBrownianmotionmodel. Then, the expressions of SINR,
spectral efficiency and coverage probability are obtained by
using mathematical tools provided by stochastic geometry.
Furthermore, a novel bounded formulations are given towards
computing a lower-bound and upper-bound for the spectral
efficiency and outage probability of the considered drone
mobile networks. The Monte-Carlo simulation results vali-
date the theoretical derivation and confirm the feasibility of a
number of proposed mobility models. As for future work, one
direction is to combineNOMAand full-duplex to improve the
performances of drone mobile networks. Another direction
is to evaluate and optimize the energy efficiency for drone
mobile networks with considerations of simultaneous wire-
less information and power transfer (SWIPT). In addition,
the performance of drone mobile networks considering shad-
owing and terrestrial base stations is worth being developed
to satisfy the demands of wireless networks.
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