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ABSTRACT Infrared (IR) small target detection is challenging because the IR imaging lacks detailed
features, weak shape features, and a low signal-to-noise ratio (SNR). The existing small IR target detection
methods usually focus on improving their high detective performance without considering the execution
time. However, high-speed detection is vital for various applications, such as early warning systems, military
surveillance, infrared search and track (IRST), etc. This paper proposes a fast and robust single-frame
IR small target detection algorithm with a low computational cost while maintaining excellent detection
performance. We propose a layered gradient kernel (LGK) based on the contrast properties of the human
visual system (HVS) and model it through a three-layer patch image model. The layered gradient kernel
is used to convolute with the input IR frame to obtain its gradient map. The target detection is further
performed on the acquired gradient map with an adaptive threshold method. This method is compared
with eight representative small target detection algorithms to evaluate the performance. Experimental results
demonstrate that the algorithm is fast and suitable for real-time applications, and it is very effective even
when the small target size is as small as 2× 2.

INDEX TERMS Infrared (IR) small target detection, signal-to-noise ratio (SNR), infrared search and track
(IRST), human visual system (HVS), layered gradient kernel (LGK), real-time.

I. INTRODUCTION
Target detection techniques in infrared (IR) images have been
widely used in many applications, such as early warning sys-
tems, military surveillance, infrared search and track (IRST),
medical images, and so on [1], [2]. IR images usually lack
certain detailed features, such as color, texture, and shape
information. By definition, the small target’s size is less than
0.15% of the whole images and pixels’ ranges is from 2×2 to
9× 9 [3]. IR target is hard to be detected due to long distance
from IR sensor and easily interference from the sharpness and
texture of features. The probed image is easily affected by
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the IR sensor’s noise or complex background, resulting in it
is hard to effectively separate the target and the background
under a low signal-to-noise ratio (SNR).

A lot of small IR target detection methods have been
designed over the last two decades. These methods focus
mostly on how to enhance the target and suppress back-
ground regions as much as possible. The techniques could
be roughly divided into two categories: single frame-
based methods and sequential frames-based methods [4]–[6].
Single frame-based methods are also called detection-before-
track (DBT) methods. Single frames-based methods usually
highlight the target through pre-processing and then use a
threshold to segment the target within the image. They are low
computation cost, easy for hardware implementation, suitable
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for real-time applications, and are widely used in practice.
Sequential frames-based approaches are also called track-
before-detection (TBD) methods. Sequential frames-based
methods deal with the spatial-temporal domain and separate
the small target from a series of images through the prior
information such as the small target’s shape, the grayscale
change, and the motion path. Sequential frames-based meth-
ods usually perform better than single frame-based meth-
ods in images with low SNR. However, they are more
complex and need more preliminary information, make them
unsuitable for real-time applications. Moreover, the sequen-
tial frame-based methods can be decomposed into single
frame-based manner within a certain period of time. There-
fore, the research on single frame-based methods has become
the leading research direction of the infrared dim and small
target detection [7].

The common single frame-based detection approaches
can be classified into three main categories: background
consistency-based methods, the HVS-based methods, and
patch image-based methods.

A. BACKGROUND CONSISTENCY-BASED METHODS
Background consistency-based methods firstly estimate the
original image background by a particular filter; then, the
target is enhanced and extracted from the background.
The selection of filters is crucial because it directly
affects the accuracy of the detection. The common meth-
ods are morphology-based methods, such as Top-Hat [8]
and Hit-or-miss transformation [9]. Statistics-based meth-
ods, such as max-mean/max-median filter [10] and median
subtraction filter [11]. Several improved methods based on
two-dimensional least mean square (TDLMS), such as bilat-
eral TDLMS (BTDLMS) filter [12] and edge directional
TDLMS (EDTDLMS) filter [13].

B. HVS-BASED METHODS
HVS-based methods are mainly based on the fact that the
response of the human eye’s ganglion cells to contrast
patterns is linear. Therefore, properly define the contrast
between the target and the background is the most crucial
part of these methods. Chen et al. proposed the local con-
trast measure (LCM) algorithm [14] by observing that small
targets have discontinuity with their neighboring regions
and concentrates in a small region, which can be seen as
a homogeneous compact region. Han et al. proposed the
improved LCM (ILCM) algorithm according to the HVS
size-adaptation and attention shift mechanism to reduce the
computation cost by using half window size as moving steps
and image sub-blocks to estimate contrast [15]. Wu et al.
proposed the DNGM algorithm, which uses a tri-layer sliding
window to calculate the double-neighborhood gradient under
a fixed window scale to avoid the ‘‘expansion effect’’ of the
traditional multiscale HVS-based methods [5]. Qin et al. pro-
posed a novel small target detection algorithm inspired from
facet kernel and random walker (FKRW) algorithm, which is
derived by the heterogeneity and compactness of the targets

and the directional consistency of the backgrounds. [16].
Nasiri and Chehresa proposed the VARD method based on
a three-layer model and calculate each variance of different
layers of neighboring patch-images [17]. The VARD method
can simultaneously enhance the target and suppress the back-
ground clutter with an acceptable speed.

C. PATCH IMAGE-BASED METHODS
Patch image-based methods vectorize the original IR image
into a patch image and separate the target from the back-
ground using optimization algorithms. Then, the target image
was obtained by reconstruction of the target patch-image.
The most representative method called the IPI algorithm [18].
IPI utilizes the non-local self-correlation to depict the
background and enhance and indicate the target by transform-
ing it into an optimization problem of recovering low-rank
and sparse matrices. IPI method has remarkable results but
leads to a high computation complexity. To obtain a more
precise reconstruction matrix, an efficient optimization algo-
rithm based on alternating direction method of multipliers
(ADMM) plus the difference of convex (DC) programming
was designed, called Non-convex Rank Approximation Min-
imization (NRAM) [19]. This approach not only utilizes the
weighted `1 norm to improve detection performance but also
exploits the `2,1 norm to overcome the elimination of strong
edge. Comparing with IPI, NRAM has lower computation
complexity.

In general, background consistency-based methods are
most suitable for real-time applications in a simple scene
with a smooth background. On the contrary, the HVS-based
methods and the patch image-based methods are suitable
for complex scenes with background noises by adopting
additional techniques to improve the overall performance.
But, their computation cost is higher and is not suitable for
real-time applications.

This article presents a fast and robust single-frame infrared
image small target detection method that supports real-time
applications. We propose the layered gradient kernel (LGK)
based on the contrast properties of the HVS and model it
through a three-layer patch image model [17]. The proposed
layered gradient kernel convolute with the input IR frame to
obtain its gradient map and conduct the small target detection
by an adaptive threshold algorithm.

The main contributions of this paper are as follows:
1) The proposed layered gradient kernel is apposite to

image convolution and has a lower computational cost
and high detection performance, which is very suitable for
real-time applications.

2) The proposed method can detect extremely dim and
small targets with excellent detection performance, and the
detection capability is as small as 2× 2.
The remainder of this paper is organized as follows:

Section 2 reviews the related works. Section 3 presents the
detail of our proposed method. Experimental results and
analysis are demonstrated in section 4. Section 5 gives the
conclusions.
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FIGURE 1. The three-layer patch-image model of a gaussian target in a
simulated IR image. T denotes the target layer, G denote the guard layer
and B denotes the background layer.

II. BACKGROUNDS
A. THREE-LAYER PATCH-IMAGE MODEL
According to the local intensity property, the brightness value
of the target is greater than the value of its surrounding pixels
in the infrared image [20]. Thus, the IR small target’s intensity
is usually more significant than the surrounding background
and can be modeled as a Gaussian function and concentrate
at the center. Common HVS-based methods considering the
local intensity property usually divide the detected image into
a target area and background. The VARD method subdivides
the target area into two layers: the target layer and the protec-
tive (guard) layer, and proposed the three-layer patch-image
model shows in Fig. 1 [17]. The target layer (T) consisting of
the maximum brightness intensity values of the target in its
center. The background layer (B) including the clutter of the
neighboring target. The guard layer (G) includes a range of
intensity values between the target and background layers.

The contrast between the target or the background in these
three layers can capture more target features, so it is easier to
separate the target from the background, thereby increasing
the detection rate and reducing the false alarm rate. The
VARDmethod uses a slidingwindow to scan the whole image
to extract patch images. By utilizing the three-layer model
for each patch-image to considerably enhance the targets and
suppress the backgrounds based on the difference between
different layers. Finally, by thresholding the different vari-
ance between the layers of the patch-images, targets are
discriminated from the background.

B. GRADIENT FILTER
The gradient of an image ∇f (x, y) can be calculated by its
directional derivatives given in (1).

∇f (x, y) =
[
∂f (x, y)
∂x

,
∂f (x, y)
∂y

]
(1)

where ∂f (x,y)
∂x and ∂f (x,y)

∂y denote the derivatives respect to the
x-axis and y-axis. The second-order derivative of an image
denotes in (2).

∇
2f (x, y) =

∂2f (x, y)
∂x2

+
∂2f (x, y)
∂y2

(2)

The location of an edge is the same as the location of
the extrema of ∂f (x,y)

∂x and ∂f (x,y)
∂y , and it is equivalent to the

locations of the zero-crossing of ∇2f (x, y). Zero-crossings
whose strength is greater than a threshold and finding zero-
crossings are much easier than finding extrema because of its
local property. The approximation of a second-order deriva-
tive can be accomplished by doing a convolution between a
kernel and an image to reduce computation cost.

The general expression of a convolution is given in (3).

g (x, y) =
a∑

u=−a

b∑
v=−b

f (x − u, y− v)K (u, v) (3)

where g (x, y) is the filtered image, f (x, y) is the original
image and K (u, v) is the filter kernel in which −a ≤ u ≤ a
and −b ≤ v ≤ b.

A 3 × 3 Laplacian filter is a common derivatives filter to
obtain the gradient of an image given in (4) to (6) [21].

Lf 1 =

 0 −1 0
−1 4 −1
0 −1 0

 (4)

Lf 2 =

−1 −0 −10 4 0
−1 0 −1

 (5)

Lf 3 =

−1 −1 −1−1 8 −1
−1 −1 −1

 (6)

where Lf 1 filter can calculate the sum of four direction
gradients, Lf 2 filter can calculate the sum of four diagonal
direction gradients, and Lf 3 filter can calculate the sum of
eight direction gradients.

Note that the values of Lf 1, Lf 2, and Lf 3 filters all add
up to 0. It implies that for smooth backgrounds, the average
value calculated by the kernel is around 0. If exists a target,
the kernel center will enhance the target with a higher weight
while decreasing the surrounding with a negative weight.

III. THE PROPOSED METHOD
A. LAYERED GRADIENT KERNEL
The local gradient property represents almost all gradients
point to its center for a two-dimensional Gaussian func-
tion [20]. The distribution of gradients is different between
target and background with strong edges, as shown in Fig. 2.
We proposed the layered gradient kernel based on the Lapla-
cian filter that combines the local intensity property and
the local gradient property. The Laplacian filter is modified
using the layered kernel to calculate the sum of all direction
gradients and extract more characteristics from the kernel
filter. The layered gradient kernel can be partitioned into three
regions: the target layer, the guard layer, and the background
layer, as shown in Fig. 3.

The target layer is used to capture the main energy of the
target. The guard layer is used to separate the target from its
neighbors and its size is determined by the captured image
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FIGURE 2. The local gradient property of an infrared image. (a) An
original infrared image. (b) The gradient vectors of small target labeled as
red rectangle. (c) The gradient vectors of local background labeled as
green rectangle.

FIGURE 3. Sketch map of proposed layered gradient kernel. The internal
is the target layer.

FIGURE 4. Examples of the proposed layered gradient kernel with
different sizes. (a) and (c) have a 1 × 1 target layer and are expected to
detect 1 × 1 infrared small targets; (b) has a 2 × 2 target layer and is
expected to detect 2 × 2 infrared small targets.

resolution and its diffraction effect. The background layer is
used to capture the surrounding background of the target.

The proposed layered gradient kernel size is N ×N , which
N is determined by the expected target size and is generally
2 to 9. The size of the background layer is fixed as one pixel,
and the coefficients are all set to −1. The coefficients of
the guard layer are all set to 0, which represents no need
to calculate gradients between the target layer and the guard
layer. The interval between the target and background layers
varies to keep the sum of all coefficients in the kernel equals
zero.

Figure 4 shows examples of proposed layered gradient
kernels with different sizes. Figure 4(a) and Figure 4(c) are
the kernels both expected to detect 1×1 small infrared targets.
Figure 4(b) is the kernel expected to detect 2×2 small infrared
targets. The kernel for the small target of 1 × 1 may have
the so-called pixel-size noises with high brightness (PNHB)
effect and interfere with noises [16]. Therefore, the kernel
size is recommended to set at least 6×6 or more for detecting
small targets with a size of 2×2. Note that the larger the kernel
size, the higher the computation cost required.

B. THE PROPOSED INFRARED SMALL TARGET
DETECTION SYSTEM
The method consists of three stages, as shown in Fig. 5.
Firstly, the original IR image convolved with the proposed
layered gradient kernel and then obtains its gradient map. The
pixel with a larger value represents a higher gradient. The
small target has a higher gradient than the background and is
located at the gradient map histogram’s right side. Secondly,
we utilize the adaptive threshold to transform the gradient
map into a binary image and filter potential targets [14].
The potential small targets may be decomposed when the
layered gradient kernel’s size is larger than its size. In the
last step, decomposed small targets will be combined into
the final small target. The details of the proposed method are
introduced below.

1) CONVOLUTION OF ORIGINAL IR IMAGE AND THE
PROPOSED LAYERED GRADIENT KERNEL
In general, the gradient map’s higher value represents the
larger sum of local gradients and implies a higher possibility
of the target’s location. We use the proposed layered gradient
kernel KG to convolute with the input IR image I to obtain its
gradient map (IGM ), which is given in (7).

IGM (x, y) =
a∑

u=−a

b∑
v=−b

I (x − u, y− v)KG (u, v) (7)

where (x, y) and (u, v) pairs are the sizes of the original IR
image I and the layered gradient kernel KG. Every element
of the kernel is considered by −a ≤ u ≤ a and −b ≤ v ≤ b.

The range of surrounding pixels and weighting are deter-
mined by the size of the layered gradient kernel and its
coefficients. After the convolution, it is obvious that the
smoothing background pixels concentrated on the low value
in the gradient map histogram, as shown in Fig. 5. The small
target has a higher value than the background and is located
at the gradient map histogram’s right side.

2) TARGET DETECTION THROUGH ADAPTIVE THRESHOLD
Background subtraction is a common and widely used tech-
nique whose aim is to detect changes in image sequences for
generating a binary image containing the pixels belonging to
foreground objects. We utilize the same idea to efficiently
separate the background and the target by using the adaptive
threshold to transform the gradient map into a binary image
and discriminate potential targets. The adaptive threshold Th
is described as (8) [14]:

Th = µIGM + k × σIGM (8)

where k is a parameter decided by the test image, µIGM
and σIGM denote the mean and standard deviation from the
gradient map, which are defined as (9) and (10), respectively.

µIGM =
1

M × N

M×N∑
i=1

gi (9)
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FIGURE 5. The proposed infrared small target detection system.

FIGURE 6. The correlation of the number of false targets and the
parameter k .

σIGM =

√√√√ 1
M × N

M×N∑
i=1

(gi − µIGM )
2 (10)

where gi denotes the value of the its gradient map IGM .
Note that the number of false targets can be effectively

reduced by appropriately selecting the parameter k in (8).
Fig. 6 shows an example of the correlation between the
number of false targets and the parameter k for a 256 × 200
image, the value of k from 12 to 14 can effectively reduce the
false targets. The target detection using the adaptive threshold
is shown in Algorithm 1. The locations of non-zero pixel
values represent possible small target locations.

3) DECOMPOSED TARGETS AGGREGATION
In generally, the feature of the infrared small target approx-
imately seems as a spot-like target with Gaussian distribu-
tion. The target can be accurately detected in this situation.
However, when the target has concrete shape, it may be
separated by convolving with the proposed layered gradient
kernel due to extracting the edge feature. To further suit
the circumstances of relatively large size than a spot-like
target and maintain the fast detection ability, we discard the
concept of multiscale for layered gradient kernel. On the con-
trary, in the post-processing, the potential decomposed small

Algorithm 1 Target Detection
Input: Original IR image I (x, y).
Output: Binary image IB(x, y).

1: Convolute with the original IR image I (x, y) and the
layered gradient kernelKG to obtain IGM (x, y) by using
(7).

2: Compute the threshold Th according to (8).
3: Transform IGM (x, y) to a binary image IB(x, y) accord-

ing to follows:

IB(x, y) =

{
1, if IGM (x, y) ≥ Th,
0, otherwise,

Algorithm 2 Decomposed Targets Aggregation
Input: Binary image IB(x, y).
Output: Final Image IF (x, y).

1: for x = 1: rows do
2: for y = 1: columns do
3: if IB(x, y) == 1 Then
4: IF (x, y) = 1
5: IF (x, y+ 1) = 1
6: IF (x + 1, y) = 1
7: IF (x + 1, y+ 1) = 1
8: end if
9: end for

10: end for

targets are aggregated into a complete one that is shown in
Algorithm 2. The decomposed targets aggregation is analog
to the 4-connectivity operation in binary image morphology.

Fig. 7 shows the decompose targets aggregation procedure.
Fig. 7 (b) demonstrates the Gradient map obtained by the
original IR Image, which convolved with layered gradient
kernel, and Fig. 7 (c) depicts the result of potential small
targets aggregation.
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FIGURE 7. Illustration of decomposed targets aggregation. (a) Original IR
Image (b) Gradient map obtained by original IR Image which convolved
with layered gradient kernel. (c) Result of decomposed targets
aggregation.

FIGURE 8. The six test data, red arrow point to the small target.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL SETUP
All the experiments are implemented by MATLAB software
on a personal computer with 16-GB memory and 3.7-GHz
Intel i3-4170 processor. To evaluate the proposed method’s
effectiveness and robustness, we used a total of six test data
consisting of both the actual IR image sequences and the
simulated images, as shown in Fig. 8. The details of the
test data are listed in Table 1. Each test data exists only
one target at each frame. Test Data 1–4 are actual IR image
sequences with various target sizes, and Test Data 5–6 are
simulated images both with only a single frame and 2 × 2
target sizes. Test Data 1 belongs to a complex background
among six test data, and the rest of the test data belong to
smooth backgrounds.

The signal-to-clutter ratio (SCR) is widely used to measure
the difference between targets and backgrounds and can be
frequently used to measure the detection difficulty. The SCR
is defined as (11):

SCR =
|µt − µb|

σb
(11)

where µt is the average pixel value of the target region, µb
is the average pixel value of the neighboring region around
the target, and σb is the standard deviation of neighboring
region.

Generally, a lower SCR means that it is more difficult to
detect the target. This implies that Test Data 2 (SCR= 8.89) is
the easiest for small target detection, and Test Data 6 (SCR=
0.12) is the most difficult one.

TABLE 1. Details of the test data.

B. RESULTS AND COMPARSIONS
Our method is compared with eight representative single
frame-based detection methods to evaluate the perfor-
mance in the experiments that is Top-Hat [8], LCM [14],
ILCM [15], DNGM [5], FKRW [16], VARD [17], IPI [18],
andNRAM [19]. The detailed parameter settings in the exper-
iments are described in Table 2. Fig. 9 to Fig. 14 illustrates
the detection results and the corresponding 3D display of
different methods. The target location within the data set is
marked with a red rectangle, and the peak in the 3D display
shows the detected target.

The experimental results in Fig. 9 to Fig. 14 showed that
our proposed method could efficiently detect all test data
targets. From Fig. 9, the target within Test Data 1 is just at
the edge of the cloud. The ILCMmethod reduces the contrast
after sub-block averaging, resulting in missing the detection.
Fig. 9 also shows that the IPI method will produce some black
spots (on the top right corner), and it may require further
post-processing to prevent possible false detections.

From Fig. 10 to Fig. 12, most methods have good detection
performance. We observed that the LCM, ILCM, DNGM,
FKRW, VARD, and NRAM methods cause the target to
shrink or break down into smaller targets in the Test Data
2–4. This may phenomenon increase the detection error rate
while the target is becoming smaller. Also, the FKRWmethod
misses the detection in Test Data 4; its peak shows in an
incorrect location, as shown in Fig. 12. Since the target size
of Test Data 5 and Test Data 6 is small as 2 × 2, only our
proposed method, DNGM method, IPI method, and FKRW
method can detect the target, as shown in Fig. 13 and Fig. 14.
Note that the DNGMmethod detected one false target in Test
Data 5, and resulted in two peaks in Fig. 13.

To meet the practical application of infrared small tar-
get detection, such as tracking of long-distance targets in
the early warning system, high-reliability detection must be
achieved in the shortest time. To demonstrate the proposed
method’s performance against the other seven algorithms,
the receiver operation characteristics (ROC) curves and time
consumption are used for detection performance compari-
son. ROC curves represent the dynamic relationship between
detection probability and false alarm probability. The detec-
tion probability Pd and false alarm probability Pf are defined
as (12) and (13).

Pd =
Number of true targets detected pixels

Number of real targets pixels
× 100% (12)
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FIGURE 9. Detection results and 3D gray distribution map obtained by different methods on Test Data 1. The ILCM method
missed the detection.

FIGURE 10. Detection results and 3D gray distribution map obtained by different methods on Test Data 2. All methods correctly
detect the target.

Pf =
Number of false alarm detected pixels

Number of all pixels
× 100% (13)

It should be noted that Test Data 5 and Test Data 6 consist
of a single frame. Therefore, the experimental results of the

ROC curves aremerely for Test Data 1–4which are composed
of consecutive frames. Figure 15 shows the results of ROC
curves of Test Data 1–4 of the proposed method and the other
seven compared methods. Figure 15(a) shows that IPI and
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FIGURE 11. Detection results and 3D gray distribution map obtained by different methods on Test Data 3. All methods correctly detect
the target.

FIGURE 12. Detection results and 3D gray distribution map obtained by different methods on Test Data 4. The FKRW method missed
the detection.

the proposed methods have better performance while ILCM,
DNGM and VARD are much lower detection performance

for Test Data 1. Figure 15(b) shows that IPI, VARD, and the
proposed methods have better performance while Top-hat,
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FIGURE 13. Detection results and 3D gray distribution map obtained by different methods on Test Data 5. The DNGM, FKRW, IPI and
proposed methods correctly detect the target, while the Top-Hat, LCM, ILCM, VARD and NARM methods missed the detection.

FIGURE 14. Detection results and 3D gray distribution map obtained by different methods on Test Data 6. The DNGM, FKRW, VARD, IPI
and proposed methods correctly detect the target, while the Top-Hat, LCM, ILCM, VARD and NARM methods missed the detection.

LCM, ILCM, DNGM and NRAM are at lower detection
performance for Test Data 2. Figure 15(c) shows that IPI,

VARD, FKRW, and the proposed methods have better per-
formance while Top-hat, ILCM, DNGM and NRAM are at

VOLUME 9, 2021 94897



T.-H. Hsieh et al.: Fast and Robust IR Image Small Target Detection

FIGURE 15. ROC curves on Test Data 1-4. (a) ROC curve of Test Data 1. (b) ROC curve of Test Data 2. (c) ROC curve of Test Data 3. (d) ROC curve of
Test Data 4.

TABLE 2. Detailed parameter settings of the compared methods.

lower detection performance for Test Data 3. Figure 15(d)
shows that IPI and the proposed methods have better perfor-
mance while LCM, ILCM, DNGM and FKRW are at lower
detection performance for Test Data 4. Overall, we can see
that the proposed method and IPI both take better detection
probability than other methods.

The average computational cost of the different meth-
ods is compared and shown in Table 3. From Table 3,
the proposed method and the VARD method achieves the
fastest detection speed, which an average of 0.02 seconds.
The Top-hat, ILCM, DNGM and FKRW can also achieve
fast detection speed in less than one second, while
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TABLE 3. Comparison of the time consumption (in seconds).

LCM, IPI and NRAM need longer time to complete the
detection.

The comparison results show that background consistency-
based methods (Top-hat) and HVS-based methods (LCM,
ILCM, DNGM, FKRW and VARD) can achieve a fast detec-
tion speed; however, their detection performance is relatively
lower for smaller targets detection. On the contrary, patch
image-based methods (IPI and NRAM) can achieve bet-
ter detection performance but need more computation cost.
In summary, the proposed method can achieve not only the
fastest detection speed but also with excellent performance
in detection probability in all the eight detection methods.

V. CONCLUSION
This paper proposes a fast and robust single-frame infrared
small target detection algorithm based on the human visual
system and the convolution of the layered gradient kernel
(LGK). Experimental results show the excellent detection
performance. The experimental results also demonstrate
the proposed method is especially good at detecting small
infrared targets as small as 2 × 2. The detection speed
of the proposed method is also superior to other detection
methods under similar detection performance, which an aver-
age of 0.02 seconds for detecting a single frame. This pro-
posed algorithm is quite suitable for real-time applications in
single-frame small infrared target detection or further used as
a basis in sequential target tracking.

ACKNOWLEDGMENT
The authors are thankful to Dr. Yuhwai Tseng and Wei-Yuan
Weng for their precious comments and suggestions which are
very helpful to improve the quality of the paper.

REFERENCES
[1] P. Zhang, X. Wang, X. Wang, C. Fei, and Z. Guo, ‘‘Infrared small target

detection based on spatial-temporal enhancement using quaternion discrete
cosine transform,’’ IEEE Access, vol. 7, pp. 54712–54723, 2019.

[2] P. Du and A. Hamdulla, ‘‘Infrared small target detection using
homogeneity-weighted local contrast measure,’’ IEEE Geosci. Remote
Sens. Lett., vol. 17, no. 3, pp. 514–518, Mar. 2020.

[3] X. Wang, Z. Peng, D. Kong, and Y. He, ‘‘Infrared dim and small tar-
get detection based on stable multisubspace learning in heterogeneous
scene,’’ IEEE Trans. Geosci. Remote Sens., vol. 55, no. 10, pp. 5481–5493,
Oct. 2017.

[4] S. S. Rawat, S. K. Verma, and Y. Kumar, ‘‘Review on recent development
in infrared small target detection algorithms,’’ Procedia Comput. Sci.,
vol. 167, pp. 2496–2505, Jan. 2020.

[5] L. Wu, Y. Ma, F. Fan, M. Wu, and J. Huang, ‘‘A double-neighborhood
gradient method for infrared small target detection,’’ IEEE Geosci. Remote
Sens. Lett., early access, Jun. 29, 2020, doi: 10.1109/LGRS.2020.3003267.

[6] Y. He, M. Li, J. Zhang, and Q. An, ‘‘Small infrared target detection
based on low-rank and sparse representation,’’ Infr. Phys. Technol., vol. 68,
pp. 98–109, Jan. 2015.

[7] S. Moradi, P. Moallem, and M. F. Sabahi, ‘‘Fast and robust small infrared
target detection using absolute directional mean difference algorithm,’’
Signal Process., vol. 177, Dec. 2020, Art. no. 107727.

[8] V. T. Tom, T. Peli, M. Leung, and J. E. Bondaryk, ‘‘Morphology-based
algorithm for point target detection in infrared backgrounds,’’ Proc. SPIE,
vol. 1954, pp. 2–11, Oct. 1993.

[9] X. Bai and F. Zhou, ‘‘Hit-or-miss transform based infrared dim small
target enhancement,’’ Opt. Laser Technol., vol. 43, no. 7, pp. 1084–1090,
Oct. 2011.

[10] S. D. Deshpande, M. H. Er, V. Ronda, and P. Chan, ‘‘Max-mean and
max-median filters for detection of small-targets,’’ Proc. SPIE, vol. 3809,
pp. 74–83, Oct. 1999.

[11] J. Barnett, ‘‘Statistical analysis of median subtraction filtering with appli-
cation to point target detection in infrared backgrounds,’’ Proc. SPIE,
vol. 1050, pp. 10–15, Jun. 1989.

[12] Y. Zhao, H. Pan, C. Du, Y. Peng, and Y. Zheng, ‘‘Bilateral two-dimensional
least mean square filter for infrared small target detection,’’ Infr. Phys.
Technol., vol. 65, pp. 17–23, Jul. 2014.

[13] T.-W. Bae, F. Zhang, and I.-S. Kweon, ‘‘Edge directional 2D LMS filter
for infrared small target detection,’’ Infr. Phys. Technol., vol. 55, no. 1,
pp. 137–145, Jan. 2012.

[14] C. L. P. Chen, H. Li, Y. Wei, T. Xia, and Y. Y. Tang, ‘‘A local contrast
method for small infrared target detection,’’ IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 1, pp. 574–581, Jan. 2014.

[15] J. Han, Y. Ma, B. Zhou, F. Fan, K. Liang, and Y. Fang, ‘‘A robust infrared
small target detection algorithm based on human visual system,’’ IEEE
Geosci. Remote Sens. Lett., vol. 11, no. 12, pp. 2168–2172, Dec. 2014.

[16] Y. Qin, L. Bruzzone, C. Gao, and B. Li, ‘‘Infrared small target detection
based on facet kernel and random Walker,’’ IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 9, pp. 7104–7118, Sep. 2019.

[17] M. Nasiri and S. Chehresa, ‘‘Infrared small target enhancement based on
variance difference,’’ Infr. Phys. Technol., vol. 82, pp. 107–119, May 2017.

[18] C. Gao, D. Meng, Y. Yang, Y. Wang, X. Zhou, and A. G. Hauptmann,
‘‘Infrared patch-image model for small target detection in a single image,’’
IEEE Trans. Image Process., vol. 22, no. 12, pp. 4996–5009, Dec. 2013.

[19] L. Zhang, L. Peng, T. Zhang, S. Cao, and Z. Peng, ‘‘Infrared small tar-
get detection via non-convex rank approximation minimization joint `2,1
norm,’’ Remote Sens., vol. 10, no. 11, p. 1821, Nov. 2018.

[20] H. Zhang, L. Zhang, D. Yuan, andH. Chen, ‘‘Infrared small target detection
based on local intensity and gradient properties,’’ Infr. Phys. Technol.,
vol. 89, pp. 88–96, Mar. 2018.

[21] A. Distante and C. Distante,Handbook of Image Processing and Computer
Vision, vol. 3. Basel, Switzerland: Springer, 2020.

TUNG-HAN HSIEH was born in Taichung,
Taiwan, in 1992. He received the B.S. degree in
electrophysics from National Chiayi University
(NCYU), Chiayi, Taiwan, in 2014. He is currently
pursuing the M.S. degree with the Institute of Pho-
tonic System, National Yang Ming Chiao Tung
University (NYCU), Tainan, Taiwan. His current
research interests include image processing and
infrared target detection.

VOLUME 9, 2021 94899

http://dx.doi.org/10.1109/LGRS.2020.3003267


T.-H. Hsieh et al.: Fast and Robust IR Image Small Target Detection

CHAO-LUNG CHOU received the Ph.D. degree
in electrical and electronics engineering from the
Chung Cheng Institute of Technology, National
Defense University, Taiwan, in 2012. Since 2015,
he has been an Assistant Professor with the
Computer Science and Information Engineering
Department, Chung Cheng Institute of Technol-
ogy, National Defense University. His research
interests include information security, image pro-
cessing, machine learning, and biometrics.

YU-PIN LAN received theM.S. and Ph.D. degrees
from the Institute of Electro-Optical Engineer-
ing, National Chiao Tung University, Hsinchu,
Taiwan. She has an extensive professional career
both in research and industry. Since 2016, she has
been an Assistant Professor with the College of
Photonics, National Yang Ming Chiao Tung Uni-
versity (NYCU), Taiwan. Her research interests
include the laser engineering and physics.

PIN-HSUAN TING received the B.S. degree in
electrical engineering from National Tsing Huang
University, Hsinchu, Taiwan. She is currently pur-
suing theM.S. degree with the Institute of Imaging
and Biomedical Photonics, National Yang Ming
Chiao Tung University (NYCU), Tainan, Taiwan.
Her research interests include image processing,
machine learning, and communication systems.

CHUN-TING LIN received the B.S. and M.S.
degrees in material science and engineering
from National Tsing Huang University, Hsinchu,
Taiwan, in 1997 and 2001, respectively, and
the Ph.D. degree in electro-optical engineering
from National Chiao-Tung University, Hsinchu,
in 2007. Since 2015, he has been a Professor
with the College of Photonics, National Yang
Ming Chiao Tung University (NYCU), Taiwan.
His research interests include radio-over-fiber sys-

tems, optical data formats, optoelectronic packages, and image processing.

94900 VOLUME 9, 2021


