
Received May 16, 2021, accepted June 2, 2021, date of publication June 14, 2021, date of current version June 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3089196

An Evolutionary Generation Method of Test Data
for Multiple Paths Based on Coverage Balance
SHUPING FAN1, NIANMIN YAO 2, LI WAN3, BAOYING MA 4, AND YAN ZHANG1
1School of Computer and Information Technology, Mudanjiang Normal University, Mudanjiang 157011, China
2School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
3Department of Intelligence and Computing, Tianjin University, Tianjin 300350, China
4School of Health Management, Mudanjiang Medical University, Mudanjiang 157011, China

Corresponding authors: Baoying Ma (mabaoying6688@163.com) and Nianmin Yao (lucos@dlut.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018AAA0100300; in
part by the Innovation Foundation of Science and Technology of Dalian under Grant 2018J12GX045; in part by the Scientific and
Technological Plan Project of Mudanjiang City under Grant HT2020JG049; in part by the Natural Science Foundation of Heilongjiang
Province under Grant LH2020F038, and in part by the Science and Technology Research Project of Mudanjiang Normal University
(Research on Optimization Method of Test Cases in Regression Testing).

ABSTRACT Test data generation is one of the main tasks of software testing. The goal of test data generation
based on search algorithms is to automate the task and find test data that meet test criteria. In this study,
an evolutionary generation method for test data that cover multiple paths is proposed. Firstly, the method
obtains the coverage balance for each target path based on the number of individuals traversing the true and
false branches of branch nodes, and calculates the individual’s influence on coverage balance before and
after an individual joining based on our previous work. Then, according to the number of branch nodes on
each target path, the weights of different target paths are designed to obtain the individual fitness to adjust
the evolution process and quickly generate test data covering multiple target paths. Finally, the proposed
method is compared with existing techniques. Experimental results of benchmark programs and industrial
use cases show that the proposed method can effectively improve the efficiency of test data generation for
multiple paths.

INDEX TERMS Keywords software testing, test data generation, multi-path coverage, genetic algorithm,
coverage balance.

I. INTRODUCTION
Software testing is an important verification method in soft-
ware development. Its goal is to use the least test data to
find as many faults as possible on the premise of satisfy-
ing the test criteria, thereby reducing the cost of software
development [1], [2]. Software testing is divided into white
box testing, black box testing, and gray box testing between
the two according to the degree of visibility of software
code [3], [4]. In white box testing, compared with statement
coverage and branch coverage, the path coverage criterion
is more effective, which means that each distinct path in
the program is executed at least once [4]. It is very difficult
to search the test data that traverse each path, because the
paths in the program may be infinite in the case of loops,
or infeasible in the case of nested branches. As a result,

The associate editor coordinating the review of this manuscript and

approving it for publication was Giuseppe Destefanis .

different techniques have been proposed to search for test data
that can achieve high path coverage [5], [6].

As software becomes more and more complex, software
testing becomes more and more challenging. Search-based
technology is used to search for data automatically. For exam-
ple, Particle Swarm Optimization (PSO) [7], [8], Difference
Evolutionary algorithm (DE) [9]–[11], Artificial Bee Colony
algorithm (ABC) [12], [13], Firework Algorithm (FA) [14]
are applied by scholars. They convert test data genera-
tion problems into combinatorial optimization problems and
evolve to generate test data that meet the requirements.
In recent years, genetic algorithm (GA) has also been proven
to be effective to generate test data. Up to now, GA is not only
used for target-oriented software test data generation [15] but
also object-oriented test data generation [16]. It can also be
applied to embedded systems [17]. Besides, GA is also the
preferred algorithm for solving new problems in software
engineering [18].

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 86759

https://orcid.org/0000-0001-9705-6649
https://orcid.org/0000-0002-7369-9559
https://orcid.org/0000-0003-3982-6355


S. Fan et al.: Evolutionary Generation Method of Test Data for Multiple Paths

In the generation of test data for path coverage, it is
often concerned with data generation covering multiple target
paths, that is, to achieve a higher path coverage. However,
the times the true and false branches of branch statements
traversed by data are not considered. As a result, some
branches are traversed many times, while other ones are not
traversed by data or traversed by few data, which will lead
to unbalanced coverage of program branches, and if these
branches containing many faults are traversed by less data,
generated data is difficult to detect the faults.

Therefore, we have proposed an evolutionary method of
generating test data for path coverage based on balance
optimization theory in the previous work [19]. Employing
the method in [19], test data can be generated effectively.
However, this method is only suitable for the case of one
target path. Besides, the algorithm needs to be run multiple
times to generate test data covering multiple target paths,
so the cost is large. In this paper, we focus on the problem of
generating test data for covering multiple paths. The goal of
the research presented here is to generate test data traversing
multiple target paths to reduce the cost. To achieve this goal,
first, we present a test data generation model for multi-target
paths, and the constraint requires that the traversed path is just
one of the target paths. Then, we give the process to generate
test data by using GA. Finally, we apply our method to some
typical programs, and the experimental results confirm that
our method can efficiently generate test data that cover target
paths. The main contributions of this study are as follows:
1) we establish a mathematical model for multi-path test
data generation problem; 2) we introduce an evolutionary
optimization algorithm to generate test data for multiple paths
effectively and present a function to get the fitness of each
individual; 3) we apply the proposed method in different
programs to confirm its effectiveness.

The rest of this paper is organized as follows:
Section 2 reviews related work; Section 3 introduces a math-
ematical model for the problem of generating test data for
multiple paths; Section 4 describes how to calculate the
fitness of each individual to generate test data using GA; The
applications of our method in benchmark programs and some
programs of SIR are given in Section 5; Section 6 concludes
our work and give the future research.

II. RELATED WORK
A. GENERATING TEST DATA FOR ONE TARGET PATH
With the rapid growth of software, a large amount of data
needs to be generated during testing. The effectiveness of
testing methods depends on the standards considered in the
generation of test data. In fact, many software testing prob-
lems can be attributed to path coverage test data generation
problems [20], [21].

In recent years, there have been many research results
for test data generation. Liao et al. combined the automatic
path segmentation method and artificial fish school algo-
rithm, and proposed a test data generation method for path
coverage [22]. Arcuri presented a novel search algorithm

for generating a test suite, in particular for system testing.
They carried out an empirical study to compare the proposed
method with other ones. The results show that the proposed
method has the best overall performance, but not the best on
all problems [18]. Mohammad et al. applied the competitive
algorithm to generate test data and evaluated the effectiveness
of the proposed method according to path coverage, discov-
ered failures as well as cost function [21]. Nikravan et al.
introduced a new standard for white box testing-domain cov-
erage. The method uses an incremental method to detect sub-
regions, which cover the longest sub-path from the beginning
of a given path. The detected sub-domains are further sub-
divided, and this process is repeated until the generated test
data completely cover the path [23]. Dang et al. investi-
gated the correlation between the true branches of the vari-
ant sentence and proposed a method for executable path
generation for weak mutation testing. It enables test data
covering these paths to kill all variants [24]. Mao et al.
applied dynamic program slicing in test data generation and
calculated dynamic slicing of points of interest variables in
the program to obtain the current values for them. Besides,
the minimization method is used to adjust the input of the
program in the branch function [25]. Ding et al. proposed
a complete model for rapid generation of test data from the
perspective of software testing engineering practice, which
gave the representation of key point paths and improved the
efficiency for test data generation [26]. Bidgoli et al. pre-
sented a newmethod based on swarm intelligence to cover the
program path. In the method, ant colony algorithm and parti-
cle swarm algorithm are applied, and the test data covering the
prime path are generated by designing a normalized fitness
function [27].

Currently, there are also some works on the application of
heuristic optimization algorithms to automatically generate
test data, amongwhichGA is themost popular [28]. Cao et al.
aimed to solve the premature and easy to fall into the local
optimal solution problem of GA in the automatic generation
of test data, and introduced intelligent mutation in GA to
optimize the execution strategy of the traditional genetic
operator [29]. Xue also improved the GA, and analyzed
the fuzzy test data generation method from three aspects:
fuzzy test input variable adjustment, test data initial popula-
tion formation, and test data mutation rate position control.
Experimental results show that the improved GA has higher
efficiency [30]. Gao et al. improved the traditional genetic
algorithm. In the automatic generation of test data, adaptive
crossover operator, mutation operator and simulated anneal-
ing mechanism are applied to accelerate the optimization
process of test data [31]. The calculation of the individuals’
fitness is the key to GA. However, most of the fitness func-
tions in the methods above are designed for one single target
path, which will cause test data that only traverse one path
are generated by GA for running one time. For many paths to
be covered, if the methods for one target path are followed,
the GA must be run one by one to generate test data covering
each path in turn. As a result, the efficiency of these methods

86760 VOLUME 9, 2021



S. Fan et al.: Evolutionary Generation Method of Test Data for Multiple Paths

will be greatly reduced. It is necessary to further improve the
efficiency of test data generation.

B. GENERATING TEST DATA FOR MULTIPLE PATHS
To solve the problem of test data generation for multi-target
paths, Ahmed et al. proposed to convert the test data gen-
eration problem into a multi-objective optimization one and
verified that the proposed method is superior to the methods
of test data generation for the one path by experiments [32].
However, the fitness function used to evaluate individu-
als includes two parts: branch distance and layer proxim-
ity. When faced with complex programs, the calculation of
branch distance will be too complicated to accept. Chen et al.
proposed a multi-group GA called MPGA for path testing.
In the method, the fitness function is the sum of branch
predicate distance between the target path and the actual
path. The triangle classification program is used to verify
the efficiency of the method. Experimental results show that
MPGA is more effective than the ordinary single population
method [33]. Zhang et al. introduced the concept of mul-
tiple groups based on the low search efficiency of single
population GA, and a parallel evolutionary algorithm named
IPEA based on GA is presented. Besides, the search time,
coverage and test case scale of the algorithm are all verified
by experiments [34]. Considering the fault detection ability
by generated test data, Zhang et al. proposed a fault-oriented
method for multi-path coverage [28]. In the method, the path
that an individual traverses must be one of the target paths
is taken as a constraint. The number of faults and the risk
degree of the faults found by an individual are considered as
two evolutionary goals. So the problem of test data generation
is transformed into a multi-objective optimization one with
constraints, and the effectiveness of the proposed method is
verified by experiments. Tian et al. studied the problem of
multi-path coverage for uncertain execution of parallel pro-
grams [35]. Based on each given path and its equivalent path,
the test data generation problem for multi-path coverage was
modeled as an optimization one containing multiple goals.
Zhang et al. proposed a method to generate test data covering
multiple paths using GA combined with a method of reduc-
ing the input domain of a program [36]. Using the method,
independent sub-paths of target paths are first extracted. Then
the input variables corresponding to these traversed sub-paths
are kept fixed, and the scope of crossover and mutation
operations is reduced to ensure that these sub-populations are
searched in a reduced input field. As a result, the efficiency
of test data generation is improved. Gong et al. used the
Huffman coding to encode the target paths and studied a
method of test data generation based on it [37]. The fit-
ness function considers the matching degree and the num-
ber of consecutive identical nodes between the path that
an individual traverses and each target path. The method
effectively guides the evolution process of GA and improves
the efficiency of test data generation. However, when the
target path is complex, generating test data will require
a large amount of calculation and it is time-consuming.

Besides, the efficiency of the algorithm needs to be further
improved.

C. STATEMENT OF THE PROBLEM
Generating some test data that satisfied the required adequacy
criterion is one of the main tasks of software testing. When
generating test data evolutionarily, existing methods often
design individual fitness by comparing the similarity between
the test data traversal path and the target path [32], [37],
without considering the fact that the true and false branches
of the program branch nodes are traversed by the data. As a
result, the number of generated test data that traverses some
branch nodes is too much, and the number traversing other
branch nodes is small or even no data traverses. Although
test data that cover the target paths can be generated, it may
cause the test data to cover the program branches unevenly.
If the branch with less data traverse contains a large number
of faults, it may fail to detect some of the faults. Software
testing aims to find and modify faults in the program under
test [28]. So it is very important to generate test data that can
expose the faults of a program.

The following example illustrates the necessity of intro-
ducing coverage balance in the evolutionary generation of
multi-target test data. According to the control flow dia-
gram in Figure 1(b), assuming p1 = {s, 1, 7, e} and p2 =
{s, 1, 2, 3, e} are not target paths, p3 = {s, 1, 2, 4, 5, e} and
p4 = {s, 1, 2, 4, 6, e} are, and the initial population size of
the GA is m = 10, where the i th individual is xi(1 ≤ i ≤ m).

FIGURE 1. Sample program.

Using themethods in [32] and [37], in the generation of test
data, an individual will be retained according to the matching
degree between the individual’s traversal path and the target
path. The more similar these two paths are, the greater the
probability that the individual will be retained. Therefore,
in the generation of test data, a large amount of data will cover
the nodes on the target path, and a small amount of data or no
data will cover the nodes on the non-target path. That is to say,
in Figure 1(b), there will be a large amount of data covering
n2 and n4, and a small number of data covering n3 and n7.
Therefore, suppose we may get the number of individuals
traversing different nodes in Table 1.

VOLUME 9, 2021 86761



S. Fan et al.: Evolutionary Generation Method of Test Data for Multiple Paths

TABLE 1. Test data traversing branch nodes.

It can be seen from Table 1 that the true and false branches
of n2 are covered unevenly by 8 individuals of the population,
the result is that 8 individuals are traversing the branch where
n4 is located, that is, test data may cover the target paths
including n4. The number of data covering n3 is zero, that is,
no data is traversing the node, whichwill result in the inability
to generate test data covering p2. In addition, there are only
two data traverse p1. It can be seen that if these two paths
contain multiple faults, the imbalance of test data covering
the program is more prominent, which will greatly reduce the
efficiency of fault detection.

If the balance of individuals covering different paths is
considered when generating test data for multiple paths,
it will undoubtedly accelerate the evolutionary generation
of test data. So we have proposed an evolutionary method
of generating test data for path coverage based on balance
optimization theory in the previous work [19]. Employing the
method in [19], test data covering one target path can be gen-
erated effectively. However, this method is only suitable for
the case of one target path. As various real-world programs
often contain lots of target paths, we have to run the method
many times to generate data for them, resulting in a waste of
time and resources. So it is necessary to propose an effective
method to generate data for multiple paths.

III. THE PROBLEM MODEL OF TEST DATA GENERATION
FOR MULTI-PATH COVERAGE
When GA is used to generate test data that traverse multiple
target paths, existing works usually convert this problem into
one of minimizing function, thereby converting a complex
multi-objective optimization problem into multiple relatively
simple sub-problems. Reference [28] considered the num-
ber of faults detected and the severity of these faults and
presented a model of test data generating for multi-target
paths. Reference [36] grouped target paths according to the
same independent sub-paths in the target path. Reference [38]
formulated the model of test case generation and its goal is to
minimize the number of generated test cases after considering
complete path coverage. In our method, we convert the prob-
lem into a maximum problem. Assuming that the target paths
of the program under test are p1, p2, · · · pN , where N is the
number of target paths. The input of the program is selected
as the decision variable, that is, x = x1, x2, · · · xm, wherem is
the number of input data required when running the program,

that is, the initial population size of GA. xi(i = 1, 2, · · · ,m)
is the component of the input data, and these variables are
all set to integers. Supposing that the path traversed by the
decision variable x is p(x),

∣∣pj∣∣ represents the number of
branch nodes on pj. Starting from the first node of p(x),
compare whether the nodes of p(x) and pj are the same, and
calculate the number of identical nodes, denoted as Sam(x).
The mathematical model of test data generation problem for
multi-path coverage can be expressed as:

max f (x, t) =

 N∑
j=1

CB′j (x, t)−
N∑
j=1

CBj (t)

 ∗Wetj
/N

s.t. ∨Nj=1
Sam(x)∣∣pj∣∣ = 1 (1)

where
N∑
j=1

CB′j (x, t) and
N∑
j=1

CBj (t) represent the coverage

balance before and after adding the decision variable x
respectively.Wetj indicates the ratio of the number of branch
nodes on the target path pj to all target paths, as is shown
in (6) - (8), and∨means the maximum value.∨Nj=1

Sam(x)
|pj|
= 1

is the constraint condition, which means that the path that
x traverses is close to the target path pj. As the goal of our
method is to find test data that traverse target paths, when
the constraint condition takes its maximum value of 1. That
is, when the individual xi traverses pj,

Sam(xi)
|pj|

= 1, and

∨
N
j=1

Sam(x)
|pj|
= 1.

It can be observed from (1) that the constraint of (1)
requires that the traversed path by x is equal to one of the
target paths. Previous studies have not considered the cov-
erage balance. Therefore, test data generation efficiency is
not high. On the contrary, our mathematical model given here
takes the coverage balance and the number of branch nodes
on the target path into account to generate test data rapidly.
We say from this point that a balanced coverage of our model
is more evident.

IV. EVOLUTIONARY GENERATION PROCESS OF TEST
DATA FOR MULTIPLE PATHS
We use GA to solve (1). The fitness of an individual is
determined to compare the quality of different individuals.
So we will first give a method of calculating the fitness of an
individual when solving (1).

A. DIFFERENCE BETWEEN THE PROPOSED METHOD AND
THE PREVIOUS WORK
To generate test data that cover the target path rapidly,
the method in [19] makes good use of the balance by individ-
uals traversing the program to adjust the evolutionary process
of GA. In the method, the program balance is proposed and
designed to realize coverage balance. Besides, each individ-
ual’s fitness is calculated according to the influence on the
balance of the test cases covering the program before and after
the individual joining, and an individual with high influence
has a bigger fitness to have a greater chance to participate

86762 VOLUME 9, 2021



S. Fan et al.: Evolutionary Generation Method of Test Data for Multiple Paths

in subsequent evolution. The method of test data generation
in [19] is shown in Algorithm 1. Although it improves the
efficiency of test data generation, there are still some limita-
tions. Our proposed method further studies the limitations of
the previous work in [19]. Different from the method in [19],
the innovation of the proposed method is as follows.

(1) We proposed a method of test data generation based on
GA suitable for coverage of multiple target paths.

(2) The weight of different target paths is considered to
accelerate the evolutionary generation of test data.

(3) The results verified by experiments show that the pro-
posed method not only improves the efficiency of test data
generation for multi-target paths but also effectively reduces
the test cost.

The proposed method is shown in algorithm 2. First, all
values of control parameters are assigned, target paths are
selected randomly and initial data corresponding to different
individuals are generated randomly.

By comparison of algorithm 1 and algorithm 2, it can be
seen that test data covering N target paths can both be gener-
ated by using the two methods. We can see from algorithm 1
that GA needs to be run N times to generate test data for
covering these paths since only test data covering one path
can be obtained by running one time.

B. THE FITNESS OF INDIVIDUALS
1) CALCULATION OF BRANCH BALANCE FOR EACH TARGET
PATH
After running the program by all individuals corresponding to
the data, the branch balance is used to indicate the difference
between the number of individuals traversing the true and
false branches of a branch node [19]. Then the coverage
balance is calculated before and after an individual joins
basing on branch balance.

To calculate branch balance, the coverage of different pro-
gram branches is obtained after all test data run the program.
Since the loop structure and the switch statement can both
be expressed as a double-branch selection structure [39],
we study the situation where each branch node has two
branches in the paper. When GA runs to the t th generation,
denote xi and pj as the i th individual and j th target path
respectively, and CovjkT (xi, t) represents whether xi covers
the true branch of the k th branch node on pj, and it can be
described as follows:

CovjkT (xi, t) =


1, xi covers the true branch of

the kth branch node on pj
0, else

(2)

The same, assuming CovjkF (xi, t) indicates whether xi
covers the false branch of the k th branch node on pj, and
it can be expressed as follows:

CovjkF (xi, t) =


1, xi covers the false branch of

the kth branch node on pj
0, else

(3)

Assuming currently that the number of data in initial popu-
lation is m, after all the data run the program, we can express
the branch balance as follows:

BLjk (t) =



0,
m∑
i=1

CovjkT (xi, t) =
m∑
i=1

CovjkF (xi, t) = 0∣∣∣∣ m∑
i=1

CovjkT (xi, t)−
m∑
i=1

CovjkF (xi, t)

∣∣∣∣(
m∑
i=1

CovjkT (xi, t)+
m∑
i=1

CovjkF (xi, t)
) , else

(4)

The same, after all the data except xw(1 ≤ w ≤ m) run the
program, we can express the branch balance as follows:

BL ′jk (xw, t)

=



0,
m∑

i=1,i 6=w

CovjkT (xi, t) =
m∑

i=1,i 6=w

CovjkF (xi, t)∣∣∣∣∣ m∑
i=1,i6=w

CovjkT (xi, t)−
m∑

i=1,i 6=w
CovjkF (xi, t)

∣∣∣∣∣(
m∑

i=1,i 6=w
CovjkT (xi, t)+

m∑
i=1,i 6=w

CovjkF (xi, t)

) , else

(5)

2) CALCULATION OF COVERAGE BALANCE FOR EACH
TARGET PATH
Denote

∣∣pj∣∣ as the number of branch nodes on pj. Calculate
the branch balance for each branch node on pj, and use the
sum of the branch balance of all branch nodes on pj as
the coverage balance of t th generation population of GA
traversing pj. When all data run the program, the coverage
balance is denoted as CBj (t), as is shown in (6):

CBj (t) =
|pj|∑
k=1

BLjk (t) (6)

We can see that CBj (t) reflects the overall balance of
different branches on pj when all the data join. According to
the definition of branch balance in (4), it is not difficult to
conclude that the smaller the coverage balance, the better the
balance of the individual covering different branches of the
program. The same, after all the data except xw(1 ≤ w ≤ m)
run the program, the coverage balance can be described as
follows:

CB′j (xw, t) =
|pj|∑
k=1

BL ′jk (xw, t) (7)

3) CALCULATION OF THE WEIGHT FOR EACH TARGET PATH
Considering that the more branch nodes on pj, the more
difficult it is to generate test data for the path. The reason
is that the input data at this time have a greater chance
of traversing other program branches that deviate from pj.
Therefore, we set that themore branch nodes on pj, the greater

VOLUME 9, 2021 86763



S. Fan et al.: Evolutionary Generation Method of Test Data for Multiple Paths

the weight of the individual’s fitness to the path, to generate
data covering pj rapidly. The weight of pj is described as
follows:

Wetj =
∣∣pj∣∣ / |br| (8)

where |br| is the total number of branch nodes on all target
paths.

4) CALCULATION OF THE FITNESS OF INDIVIDUALS
According to (6)∼(8), the fitness of the w th individual for
path pj can be expressed as:

fj (xw, t) =

{
CB′j (xw, t)− CBj (t) , CB′j (xw, t) ≥ CBj (t)
0, else

(9)

when the number of target paths N is not zero, the fitness of
the w th individual can be expressed as:

f (xw, t) =
N∑
j=1

(
fj (xw, t)∗Wetj

)/
N (10)

whereWetj indicates the weight of the fitness obtained by xw
to pj. It can be seen that f (xw, t) is used to represent the
weighted average of the fitness of xw for all target paths.

We can also see that when
N∑
j=1

CB′j (xw, t) is greater than

N∑
j=1

CBj (t), positive data will be obtained. In other words,

when xw is deleted, the coverage balance will increase, and
such individuals as xw should be retained in the evolutionary
process.

After all test data in individuals execute the program under
test, each individual’s fitness is calculated according to (10).
Then, selection, crossover and mutation operations will be
executed until one of the terminal conditions is obtained.
Finally, output the desired test data, their traversed paths.

C. CASE STUDY
To describe the proposed method in detail, the sample pro-
gram in Fig. 1(a) is taken as the program under test. Accord-
ing to its control flow diagram shown in Fig. 1(b), four
target paths are selected randomly: p1 = {s, 1, 7, e} , p2 =
{s, 1, 2, 3, e} , p3 = {s, 1, 2, 4, 5, e} , p4 = {s, 1, 2, 4, 6, e}.
Assuming that the population size is 10, and GA runs to the

t th generation. After the data corresponding to individuals
run the program, we can get that whether xi covers the true
branch and false branch of the k th branch node on p3, denoted
as Cov3kT (xi, t) and Cov3kF (xi, t) respectively. So the num-
ber of data covering the true and false branches of each branch
node can be obtained according to it. Assuming the number
of individuals traversing the true branch and false branch

of n1 are
10∑
i=1

Cov31T (xi, t) = 6 and
10∑
i=1

Cov31F (xi, t) = 4

respectively, and the values of n2 and n4 are shown in Table 2.
Then the branch balance of p3 represented as BL3k (t) can

TABLE 2. The case of branch nodes traversed by individuals.

be calculated. BL31 (t) = (6− 4) /6 + 4 = 0.2. The same,
we can get: BL32 (t) ≈ 0.67,BL32 (t) ≈ 1, as is shown
in Table 2.

Algorithm 1 Test Data Generation Method in [19]
Input: Algorithm parameters.
Individuals: x1, x2, · · · xm, maximum generation G,
the target path p
Output: Test data covering p
BEGIN
Settings();

// Set each parameter value
Initialize(xw);

// Generate the data of GA
generation← 0

Do WHILE(generation ≤ G||path(xw) 6= p)
//If the maximum number of iterations is not exceeded or
test data covering p is not generated, then execute the loop
body
generation = generation+ 1;

Fitness(xw); // Calculate individuals’ fitness
Select(xw);
Cross(xw);
Mutate(xw);

IF(path(xw) == p)) THEN
xw→ DataSet();
END IF

END WHILE
END

Finally, the coverage balance after all individuals joining
can be obtained according to (6). Since there are three branch
nodes on p3, so we can get:

CB3 (t) =
|pj|∑
k=1

BLjk (t) =
3∑

k=1

BL3k (t) = (0.2+ 0.67+ 1)

= 1.87

In the same way, we can get:

CB1 (t) = BL31 (t) = 0.2, CB2 (t) = 0.87,

CB4 (t) = 1.87.

After all the data except xw(1 ≤ w ≤ m) run the program,
we can calculate the BL ′3k (xw, t) (1 ≤ k ≤ 3), as is shown
in Table 3. So the coverage balance can be calculated as

86764 VOLUME 9, 2021



S. Fan et al.: Evolutionary Generation Method of Test Data for Multiple Paths

Algorithm 2 Test Data Generation of the Proposed Method
Input: Individuals: x1, x2, · · · xm, the number
of target paths N , maximum generation G
Output: Test data covering multiple target paths:
p = {p1, p2, · · · , pN }
BEGIN
DataSet = ∅
Initialize(x1, x2, · · · xm); //Initialize the population
Execute the program, get
p(xk ) (k = 1, 2, · · · ,m)
Do WHILE(generation ≤ G||p 6= ∅)

generation← generation+ 1;
Do WHILE(k ≤ m)

IF(p(xk ) ∈ p)
DataSet = DataSet ∪ xk
p = p− p (xk) ;
k = k + 1;

END IF
Evaluate(xw);
Select(xw);
Cross(xw);
Mutate(xw);
END WHILE
END WHILE

END

TABLE 3. The case of branch nodes traversed by individuals.

follows:

CB′3 (xw, t) =
|pj|∑
k=1

BL ′jk (xw, t) =
3∑

k=1

BL ′3k (xw, t)

= (0.33+ 0.67+ 1) = 2.

In the same way, we can get:

CB′1 (xw, t) = BL ′31 (xw, t) = 0.33, CB′2 (xw, t) = 1,

CB′4 (xw, t) = 2.

According to the number of branch nodes on different
paths, the weight of pj is calculated as follows.
Wet3 =

∣∣pj∣∣ / |br| = 3/3 = 1. The same, we can get:
Wet1 = 1/3,Wet2 = 2/3,Wet4 = 1. Then we can calculate
the fitness of xw:

f (xw, t) =
N∑
j=1

(
fj (xw, t) ∗Wetj

)
/N

=
(
(0.33− 0.2) ∗1/3+ (1− 0.87) ∗2/3

+ (2− 1.87) ∗1∗2
)
/4

= 0.0975

Since f (xw, t) > 0, this shows that the addition of xw can
improve the coverage balance, and it will be selected first
during the evolution process of GA.

V. EXPERIMENTS
To validate the effectiveness of our method, three benchmark
programs and three industrial test cases are selected, all of
which are C language programs, and the simulation environ-
ment is VC++ 6.0.

A. COMPARISON METHODS SELECTED
Given the proposed method is an improvement of [19]
(mentioned in Section IV), the method of single-target path
(referred to as SIPA) is first selected as a comparison to
confirm that the proposed method can improve the efficiency
of test data generation for covering multiple paths and faults
detection. In themethod, genetic algorithm is used to generate
test data covering one target path at a time. Therefore, it
is necessary to run the algorithm N times to generate the
test data covering N target paths. Since the proposed method
(referred to as MTPA) is a test data generation method for
multi-target paths. The other two comparison methods for
multi-target paths are selected: the method described in [32]
(referred to as AMED), using branch distance and layer prox-
imity as the individuals’ fitness. It is a typical method and is
often used as a comparison method in experiments [28], [37].
Therefore, the proposed method compares with it in the same
way as other methods. The method in [37] (referred to as
HUFF) designs the fitness function based on the method of
AMED. It calculates the fitness of test data by comparing the
matching degree of the path code traversed by the test data
with each target path code. Besides, test data are all generated
by setting individual’ fitness of GA when using these four
methods.

The termination conditions of these four algorithms are
to generate test data covering all target paths or reach the
maximum generation. To compare the four methods under
the same experimental conditions, the common experimental
parameters and population size are the same, and the initial
population data are randomly generated in the experiment.

B. PROBLEMS TO BE VERIFIED
By experiments, the running time, evaluation times, suc-
cess rate and coverage balance finding test data covering
multiple target paths of the four methods are compared.
Besides, the branch coverage and fault detection are also
compared. Problems to be verified and the evaluation criteria
are described as follows:

RQ1: Can the proposed method effectively generate test
data covering multiple target paths?

Suc =

(
Num∑
i=1

Total ′i
Total

/
Num

)
∗100% (11)

It is verified by the success rate in (11), where Num
indicates the number of experiments, Total represents the

VOLUME 9, 2021 86765



S. Fan et al.: Evolutionary Generation Method of Test Data for Multiple Paths

number of target paths of the program under test, while Total ′i
indicates the number of target paths covered by the generated
data in the i th (1 ≤ i ≤ Num) experiment. It is not difficult to
conclude that the higher the success rate Suc, the higher the
efficiency of the proposed method to generate test data.

RQ2: What is the time validity of the proposed method for
generating test data?

TT =
Num∑
i=1

Ti

/
Num (12)

It is measured by the average running time TT , as shown
in (12), where Ti (1 ≤ i ≤ Num) represents the running time
of the algorithm in i th experiment. It can be seen that the
smaller the average running time, the better the time effec-
tiveness of the algorithm.

RQ3: How efficient is the GAwhen generating test data by
the proposed method?

EN =
Num∑
i=1

m∗Gi

/
Num (13)

It is measured by the average number of individuals eval-
uation EN (in (13)), where m and Gi respectively represent
population size and the running generation of GA in the
i th experiment. It can be seen from (13) that when the
population size remains the same, the more generations GA
runs, the more evaluation times, which will cause the GA
to run inefficiently. Therefore, the smaller the value of EN ,
the better.

RQ4: Can test data generated by the proposed method
evenly cover the program under test?

After running the program with data corresponding to all
individuals, the balance of data covering program branches
can be obtained [19]. We record the balance obtained in the
last generation of GA, as is shown in (14).

PB (t) =
|br|∑
k=1

BBk (t) (14)

where |br| represents the total number of branch nodes on
the multi-target paths, and BBk (t) indicates the branch bal-
ance of the k th branch node. We can see that the smaller
the PB (t), the more balanced the generated data covering
program branches.

RQ5: Can the proposed method effectively generate test
data for code coverage and fault detection?

We use the branch coverage to measure the effectiveness of
code coverage, and use the fault detection rate FD to verify
the fault detection capability of different methods.

FD =

(
Num∑
i=1

Fa′i
Fa

/
Num

)
∗100% (15)

where Fa represents the number of faults of the program
under test, and Fa′i indicates the number of faults detected in
the i th (1 ≤ i ≤ Num) experiment.

C. EXPERIMENTAL PROGRAMS AND PARAMETER
SETTINGS
To answer the five questions raised and verify the effec-
tiveness of the proposed method, we select a set of pro-
grams that are often used in the field of software testing.
We compare experimental results to verify the performance
of different methods. The benchmark programs include Tri-
angle, Bubble and Maxmin. In terms of program structure,
the three programs include sequence statements, selection
statements, and loop statements. In particular, the triangle
classification program and bubble sorting are more typical
benchmark programs for experiments in software testing and
are often used in various verification experiments. Besides,
three widely used industrial programs Replace, Space and
Grep are selected for experiments. Sub-functions of each
industrial program are selected for experiments.

Experimental settings of these programs are shown
in Table 4 [19], [37]. Target paths for each program are
randomly selected. The lines of code (#LOC), the selected
functions, the population size and the maximum generations
(referred to as Gen) of GA are all given in the table. Besides,
the number of target paths and faults are also given.

TABLE 4. Description of the programs.

As programs with real faults are difficult to find, one
common solution is to seed faults by mutation testing.We use
the method in [40] to transform the mutant killing problem
into a branch coverage problem based on weak mutation test-
ing. Considering the characteristics of the selected programs,
we apply the types of Method-Level mutation operators in
MuClipse to construct mutation branches [40].

In order to better illustrate the effectiveness of the proposed
method in the experiments, the common parameter settings
of the proposed method are the same as those of the other
three methods. Since the proposed method and the three
comparison methods both use genetic algorithm to generate
test data. To ensure that the initial experimental conditions
of the four methods are the same, Table 5 lists the parameter
settings of genetic algorithm in the experiments [37].

Under the same experimental conditions, each algorithm
in experiments was run many times to get more accurate
experimental results, and the average values are listed, as are
shown in Table 6 to Table 9 and Fig. 2 to Fig. 7.

86766 VOLUME 9, 2021



S. Fan et al.: Evolutionary Generation Method of Test Data for Multiple Paths

TABLE 5. Parameter settings of genetic algorithm.

TABLE 6. Experimental results of programs.

TABLE 7. Experimental results of programs.

D. EXPERIMENTAL RESULTS
Answers to RQ1: Can the proposed method effectively gen-
erate test data covering multiple target paths?

It can be seen from Table 6 that for the proposed method,
the success rates of T1-T7 are all 100%, that is to say, the
seven programs have successfully generated data covering
the target paths by employing it. Using the single-target path
method SIPA, the success rate of T1 and T4-T6 is 100%, but
the success rate of T2, T3 and T7 is 99.83%, 99.88% and
98.17% respectively, which is less than the proposed method.
Similarly, it can be seen from the table that the success rate
of HUFF for T1 and T4-T5, the success rate of AMED for T1
and T4 is all 100%, and the success rate of these two methods
for other programs is all less than 100%. This is because that
fitness function calculated by our method is more reasonable
and it can generate test data covering multiple target paths
quickly, which also shows our method in this paper is more
effective.

By comparison, it can be seen that the proposedmethod has
a higher success rate than the other three ones on the whole,
that is, under the same initial parameters, test data covering
multiple target paths can be generated more effectively by
employing the proposed method. This is because the balance
of test data covering different target paths and the weight of
different target paths are considered, and individuals which
promote the generation of test data covering target paths
will be retained in the evolutionary process. So the RQ1 is
verified. It can also be seen from Table 6 that the success rate
of the SIPAmethod is better than the other two methods. This
also illustrates the feasibility of applying the idea of balance
in the generation of test data.

Answers to RQ2:What is the time validity of the proposed
method for generating test data?

For the average running time of different programs, except
for T7 (Grep), the time of our method is 159.42ms, which is
slightly more than 142.78ms of SIPA. For other conditions,
the time used by our method is less than the other three
methods.

The reason why the proposed method has less running
time than the other three methods is: compared with SIPA,
the number of branch nodes on different target paths is
taken into account in the calculation for individuals’ fitness,
which ensures that the more branch nodes on the target path,
the greater the fitness is. In addition, when the GA is run once,
test data covering multiple target paths can be generated by
employing MTPA. While test data only covering one target
path can be generated by SIPA, so it is necessary to run GA
multiple times to generate data covering multiple target paths
for the method. As a result, less time will be taken for the
proposed method. When calculating the individual fitness,
we calculate the coverage balance and the weights of different
targets, which is easy to get after running the program with
test data. When calculating the fitness for AMED and HUFF,
AMED needs to calculate the branch distance and layer
proximity according to the branch predicate of individuals
traversing each branch node, while the HUFF method needs
to compare the execution path of an individual with each
target path and calculate the fitness according to the path
matching degree and the number of consecutive same nodes
on the two paths.When the number of individuals is large, the
calculation amount of these two methods is large. Therefore,
the running time of these two methods is also longer than the

VOLUME 9, 2021 86767



S. Fan et al.: Evolutionary Generation Method of Test Data for Multiple Paths

FIGURE 2. Generations to generate target paths (T1).

FIGURE 3. Generations to generate target paths (T2).

FIGURE 4. Generations to generate target paths (T3).

proposed method. This also answers RQ2: compared with the
other three methods, the time effectiveness of the proposed
method to generate test data is better.

Although for T4-T6, except for the AMED method,
the running time of the other three methods has little dif-
ference. Our method has a slight advantage. Combining the
success rate, it is not difficult to conclude that compared
with the other three methods, our method can improve the
success rate of test data generation while ensuring time
validity.
Answers to RQ3:How efficient is the GA when generating

test data by the proposed method?
Denote the coverage balance and evaluation times as CB

and ET respectively in Table 7. In the table, the average
evaluation times and coverage balance of the four methods
are compared.

FIGURE 5. Generations to generate target paths (T4).

FIGURE 6. Generations to generate target paths (T5).

FIGURE 7. Generations to generate target paths (T6).

1) COMPARISON OF EVALUATION TIMES
It can be seen from Table 7 that from T1 to T7, the average
evaluation times of the proposedmethod are significantly less
than those of other methods, which means that the GA of our
method is more efficient. As under the same conditions, our
fitness is more reasonable. Individuals that are conducive to
generate test data covering the target paths are more likely
to be retained. Therefore, fewer evolution generations are
needed for GA to achieve one of the termination conditions.
It can also be seen from Table 7 that AMED needs more
evaluation times than the other three methods. This is because
it requires more generations to generate test data covering the
target paths.

2) COMPARISON OF RUNNING GENERATIONS OF GA
To further verify the cost of the four methods, the experi-
ment recorded the running generations of GA required for

86768 VOLUME 9, 2021



S. Fan et al.: Evolutionary Generation Method of Test Data for Multiple Paths

different paths for the programs. Experimental results are
shown in Fig. 2 to Fig. 4. The horizontal axis of each fig-
ure represents the evolutionary generations of GA for differ-
ent paths, and the vertical axis represents the path coverage.

It can be seen from Fig. 2 that for the easy-to-find target
paths, compared with other methods, the evolutionary gener-
ations of MTPA are significantly less than that of SIPA, but
it is more than that of HUFF and AMED. This is because
the fitness is computed according to the comparison between
each path traversing by an individual and the target path for
HUFF. The branch distance and layer proximity are calcu-
lated according to the predicate of each branch node that
an individual traverses for AMED. For the path that is easy
to generate test data, it often contains fewer branch nodes,
and the calculation of the fitness of these two methods is
small. Therefore, these two methods can generate test data
required faster. For paths that are difficult to generate test
data, more branch nodes are often included, and these two
methods require a lot of calculation. The method in this paper
calculates the individuals’ fitness according to the changes
in the coverage balance before and after the individual’s
corresponding test data traversing the program branches. That
is, the goal of the proposed method is to make test data evenly
cover the branches of the program. Therefore, it is possible
to generate test data that cover complex target paths, and the
more branch nodes the target path contains, the better the
effectiveness of the method in generating test data. Therefore,
the advantages of our method are more obvious for target
paths that are difficult to generate test data.

TABLE 8. Generations to generate target paths (T7).

The evolutionary generations required for each method to
generate test data covering each target path are compared
in Fig. 2 to Fig. 7. For T7, the evolutionary generations of
various methods for target paths are quite different. There-
fore, the experimental results are shown in Table 8, where
PC means the path coverage. It is not difficult to see that
for T5-T7, the advantages of our method are more obvious.
As the target paths increases, test data of the target paths that
are easy to cover are generated at the beginning with fewer
generations. Therefore, the difference of generations among
these methods is small, but for complex target paths, com-
pared with the other three methods, evolutionary generations
of the proposed method are less. This also answers RQ3,
the proposed method is more efficient when generating test
data covering the target paths.

Answers to RQ4: Can test data generated by the proposed
method evenly cover the program under test?

Except for program T2 in Table 7, the coverage balance
of SIPA is less than the proposed method. In other cases,
the coverage balance of our method is more obvious. In other
words, test data generated by the proposed method can cover
the programs more evenly. The reason is that coverage bal-
ance of test data covering the program in the calculation of
fitness function is considered, and the weights of different
target paths are set according to the number of branch nodes
contained in target paths. This also answers question 4, test
data generated byMTPA canmore evenly cover the programs
under test.

From the coverage balance of industrial programs, except
for T4, the coverage balance of our method is slightly higher
than that of SIPA method. For other situations, the coverage
balance of our method is less than other methods. It is not
difficult to see from Table 7 that both the proposed method
and SIPA are both better than the other two methods on the
whole. Since these two methods both consider the problem
of balanced coverage in the generation of test data. So the
RQ4 is verified.

Answers to RQ5: Can the proposed method effectively
generate test data for code coverage and fault detection?

Experimental results are shown in Table 9. In the table,
denote BC and FD as branch coverage and fault detection rate.
Answers to RQ5: Can the proposed method effectively

generate test data for code coverage and fault detection?
We can see from Table 9 that for the proposed method,

the branch coverage for T1 to T5 are all 100%, while the
values are different for other programs. We can also see that
the methods of MTPA and SIPA can both achieve higher
branch coverage for all programs than the other two methods,
the reason is that they consider branch balance and test data
cover the programs evenly in the process. In addition, as in
the proposed method, we set that the more branch nodes on
target path pj, the greater the weight of the individual’s fitness
to the path. As a result, test data are generated to cover pj
with more branch nodes rapidly. Compared with the other
three methods, MTPA not only guarantees balanced coverage
of program branches, but also ensures more data traverse
branches that are difficult to cover. Therefore, the fault detec-
tion rate of the proposed method is higher than that of other
methods. So the RQ5 is verified.

Experimental results of benchmark and industrial pro-
grams show that comparing with the other three methods,
the method proposed shows good performance in terms of
evaluation times, running time, success rate and coverage
balance. That is, it is verified that the proposed method can
improve the efficiency of test data generation for multi-target
paths.

E. STATISTICAL ANALYSIS OF EXPERIMENTAL RESULTS
To verify the reliability of experimental results, we use statis-
tical analysis to test the significance of the results. Hypothesis
testing is an important branch of statistical inference. In this

VOLUME 9, 2021 86769



S. Fan et al.: Evolutionary Generation Method of Test Data for Multiple Paths

TABLE 9. Experimental results of branch coverage and fault detection rate.

paper, the Z test method of hypothesis testing is used to pre-
dict the actual performance of the algorithm by experimental
results [41], [42].

Assuming that the significance level α is set to 0.01, then
−Za = −2.325. The test hypothesizes is that there is no
significant difference in the number of average evaluation
times compared with different methods. Let the random vari-
able X denote the average number of evaluations. In practical
problems, these random variables are formed by the com-
prehensive influence of a large number of mutually indepen-
dent random factors. Therefore, X approximately follows the
normal distribution Xi ∼ N (µi, δ2i ), the mean µ of random
variables corresponding to each method is compared. The
smaller the value, the lower the expected value of evaluation
times required for the method to generate test data, and
the higher the efficiency of the method for generating test
data. Assuming that the evaluation times for each run of the
proposed methodMIPA, SIPA, HUFF and AMED are X1, X2,
X3 and X4 respectively.
Taking the triangle classification program as an example,

the comparison process of the four methods is given. Con-
sidering that the sample variance is an unbiased estimate of
the population variance, therefore, the value of the sample
variance is used as an estimate of the population variance.
According to experimental results of the triangle classifica-
tion program, the following data are obtained: the sample
size: n1 = n2 = 50, the sample mean: X1 = 4400,
X2 = 8392, the sample standard deviation: δ1 = 3049.7,
δ2 = 5875.

Step 1. Establish the original hypothesisH0 : µ1 ≥ µ2 and
the opposite hypothesis H1 : µ1 < µ2;
Step 2. Construct the statistic U1 =

X1−X2√
δ21
n1
+
δ22
n2

.

Step 3. Give the exclusion domain U1 =
X1−X2√
δ21
n1
+
δ22
n2

≤ −Za.

Step 4. Calculate the value of the statistic:

U1 =
X1 − X2√
δ21
n1
+

δ22
n2

=
4400− 8392√
3049.72

50 +
58752
50

≈ −4.26.

Step 5. Give the conclusion:
BecauseU1 = −4.26 ≤ −Za = −2.325, it falls within the

rejection domain. Therefore, reject H0 : µ1 ≥ µ2 and accept
H1 : µ1 < µ2, which means that the expected value of the

TABLE 10. Hypothesis test results.

evaluation times of our method is significantly smaller than
that of the single-path method SIPA. The results show that
compared with SIPA, our method requires significantly less
evaluation times to generate test data.

At the same significance level α = 0.01, δ1 =

3049.7, δ3 = 4338.3, the sample size n1 = n3 = 50, and
X3 = 6452. Establish the original hypothesis and the opposite
hypothesis respectively: H0 : µ1 ≥ µ3; H1 : µ1 < µ3.
Construct the statistic and calculate:

U2 =
X1 − X3√
δ21
n1
+

δ23
n3

=
4400− 6452√
3049.72

50 +
4338.32

50

≈ −2.74 ≤ Za

= −2.325

86770 VOLUME 9, 2021



S. Fan et al.: Evolutionary Generation Method of Test Data for Multiple Paths

Therefore, reject H0 : µ1 ≥ µ3 and accept H1 : µ1 < µ3.
In the same way, when α = 0.01, δ1 = 3049.7, δ4 =

9238.7, the sample size n1 = n3 = 50, and X4 = 13176.
Establish the original hypothesis and the opposite hypothesis
respectively: H0 : µ1 ≥ µ4; H1 : µ1 < µ4. Construct the
statistic and calculate:

U3 =
X1 − X4√
δ21
n1
+

δ24
n4

=
4400− 13176√
3049.72

50 +
9238.72

50

≈ −6.38 ≤ Za

= −2.325

Therefore, reject H0 : µ1 ≥ µ4 and accept H1 : µ1 < µ4.
The results show that the evaluation times required to gener-
ate test data by our method is significantly less than that of
HUFF or that of AMED.

Using the comparison method of the above experimental
results to test the experimental results of other programs,
the test results are shown in Table 10. For program T2,
the scale of sorting data selected is small, so our method has
little difference from the result of SIPA and HUFF. It can be
seen from Table 10 that in addition to T2, for other programs,
the results of MIPA are significantly different from those of
other comparison methods. Experimental results show that
the evaluation times required by the proposed method is
significantly less than those of the other three methods.

VI. CONCLUSION
Although there are various studies related to generating test
data for multiple path coverage, the proposed method is
different from other ones. The purpose of this study is to
generate test data that traverse target paths as rapidly as
possible. We apply the coverage balance as well as the weight
of different target paths, and the constraint is that the traversed
path is one of the target paths.

We apply the proposed method in some benchmark and
industrial programs, and compare it with the single path
method (SIPA) [19], the Huffman method (HUFF) [37],
the Ahmed’s method [32] in several aspects.

The experimental results show that our method can gener-
ate test data that traverse target paths rapidly. However, there
are some limitations in our work. The programs under test
considered here are limited. Therefore, our future work will
focus on investigating and verifying the performance of our
method in more complex industrial programs.

REFERENCES
[1] S. Jiang, J. Shi, Y. Zhang, and H. Han, ‘‘Automatic test data generation

based on reduced adaptive particle swarm optimization algorithm,’’ Neu-
rocomputing, vol. 158, pp. 109–116, Jun. 2015.

[2] W. Zheng, R. M. Hierons, M. Li, X. Liu, and V. Vinciotti, ‘‘Multi-objective
optimization for regression testing,’’ Inf. Sci., vols. 334–335, pp. 1–16,
Mar. 2016.

[3] A. Shahbazi and J. Miller, ‘‘Black-box string test case generation through
a multi-objective optimization,’’ IEEE Trans. Softw. Eng., vol. 42, no. 4,
pp. 361–378, Apr. 2016.

[4] I. Hermadi, C. Lokan, and R. Sarker, ‘‘Dynamic stopping criteria for
search-based test data generation for path testing,’’ Inf. Softw. Technol.,
vol. 56, no. 4, pp. 395–407, Apr. 2014.

[5] A. S. Ghiduk, ‘‘Automatic generation of basis test paths using variable
length genetic algorithm,’’ Inf. Process. Lett., vol. 114, no. 6, pp. 304–316,
Jun. 2014.

[6] S. M. Mohi-Aldeen, R. Mohamad, and S. Deris, ‘‘Application of negative
selection algorithm (NSA) for test data generation of path testing,’’ Appl.
Soft Comput., vol. 49, pp. 1118–1128, Dec. 2016.

[7] S. S. Dahiya, J. K. Chhabra, and S. Kumar, ‘‘PSO based pseudo dynamic
method for automated test case generation using interpreter,’’ in Proc. 2nd
Int. Conf. Adv. Swarm Intell., 2011, pp. 147–156.

[8] P. Chawla, I. Chana, and A. Rana, ‘‘A novel strategy for automatic test
data generation using soft computing technique,’’ Frontiers Comput. Sci.,
vol. 9, no. 3, pp. 346–363, Jun. 2015.

[9] R. L. Becerra, R. Sagarna, and X. Yao, ‘‘An evaluation of differential
evolution in software test data generation,’’ in Proc. IEEE Congr. Evol.
Comput., May 2009, pp. 2850–2857.

[10] W. Jianfeng, W. Changan, and J. Shouda, ‘‘Test data generation algo-
rithm of combinatorial testing based on differential evolution,’’ in Proc.
3rd Int. Conf. Instrum., Meas., Comput., Commun. Control, Sep. 2013,
pp. 544–548.

[11] X. Liang, S. Guo, M. Huang, and X. Jiao, ‘‘Combinatorial test case suite
generation based on differential evolution algorithm,’’ J. Softw., vol. 9,
no. 6, pp. 1479–1484, Jun. 2014.

[12] N. J. Kulkarni, K. V. Naveen, P. Singh, and P. R. Srivastava, ‘‘Test case
optimization using artificial bee colony algorithm,’’ in Advances in Com-
puting and Communications. Kochi, India: Springer, 2011, pp. 570–579.

[13] D. Suri and P. Kaur, ‘‘Path based test suite augmentation using artificial
bee colony algorithm,’’ Int. J. Res. Appl. Sci. Eng. Technol., vol. 2, no. 9,
pp. 156–164, 2014.

[14] P. R. Srivatsava, B. Mallikarjun, and X.-S. Yang, ‘‘Optimal test sequence
generation using firefly algorithm,’’ Swarm Evol. Comput., vol. 8,
pp. 44–53, Feb. 2013.

[15] M. Xiao, M. El-Attar, M. Reformat, and J. Miller, ‘‘Empirical evaluation
of optimization algorithms when used in goal-oriented automated test data
generation techniques,’’ Empirical Softw. Eng., vol. 12, no. 2, pp. 183–239,
Mar. 2007.

[16] A. Arcuri and X. Yao, ‘‘Search based software testing of object-oriented
containers,’’ Inf. Sci., vol. 178, no. 15, pp. 3075–3095, Aug. 2008.

[17] O. Bühler and J. Wegener, ‘‘Evolutionary functional testing,’’ Comput.
Oper. Res., vol. 35, no. 10, pp. 3144–3160, Oct. 2008.

[18] A. Arcuri, ‘‘Test suite generation with the many independent objective
(MIO) algorithm,’’ Inf. Softw. Technol., vol. 104, pp. 195–206, Dec. 2018.

[19] S. Fan, Y. Zhang, and B. Ma, ‘‘Evolutionary generation of path coverage
test data based on equilibrium optimization theory,’’ Acta Electronica
Sinic, vol. 48, no. 7, pp. 1303–1310, 2020.

[20] S. Jinhui, J. Ying, and S. Ping, ‘‘Research progress in software testing,’’
Acta Scientiarum Naturalium Universitatis Pekinensis, vol. 41, no. 1,
pp. 134–145, 2005.

[21] M. A. Saadatjoo and S. M. Babamir, ‘‘Test-data generation directed by
program path coverage through imperialist competitive algorithm,’’ Sci.
Comput. Program., vol. 184, pp. 1–19, Dec. 2019.

[22] L. Weizhi, ‘‘Test data generation based on automatic division of path,’’
Acta Electronica Sinica, vol. 44, no. 9, pp. 2254–2261, 2016.

[23] E. Nikravan and S. Parsa, ‘‘A reasoning-based approach to dynamic
domain reduction in test data generation,’’ Int. J. Softw. Tools Technol.
Transf., vol. 21, no. 3, pp. 351–364, Jun. 2019.

[24] D. Xiang-Ying, G. Dun-Wei, and Y. Xiang-Juan, ‘‘Feasible path generation
of weak mutation testing based on statistical analysis,’’ Chin. J. Comput.,
vol. 39, no. 11, pp. 197–213, 2016.

[25] M. Y. Hong and L. R. Qin, ‘‘Application of dynamic program slicing
technique in test data generation,’’ Procedia Comput. Sci., vol. 111,
pp. 355–360, Jan. 2017.

[26] D. Rui, D. Hongbin, and Z. Yan, ‘‘Fast automatic generation method for
software testing data based on key-point path,’’ J. Softw.,vol. 27, no. 4,
pp. 814–827, 2016.

[27] A. M. Bidgoli, H. Haghighi, T. Z. Nasab, and H. Sabouri, ‘‘Using
swarm intelligence to generate test data for covering prime paths,’’ in
Proc. Int. Conf. Fundam. Softw. Eng. Cham, Switzerland: Springer, 2017,
pp. 132–147.

[28] Y. Zhang and D. Gong, ‘‘Generating test data for both paths coverage
and faults detection using genetic algorithms: Multi-path case,’’ Frontiers
Comput. Sci., vol. 8, no. 5, pp. 726–740, Oct. 2014.

[29] C. Xun and F. Huixing, ‘‘Research on automatic generation of test data
based on improvedGA,’’ Inf. RecordingMater., vol. 21, no. 8, pp. 164–165,
2020.

VOLUME 9, 2021 86771



S. Fan et al.: Evolutionary Generation Method of Test Data for Multiple Paths

[30] X. Feng, ‘‘Research on fuzzy test data generation method based on
improved genetic algorithm,’’ Inf. Comput. Theor. Ed., vol. 12, no. 5,
pp. 52–54, 2020.

[31] G. Xuedi, Z. Lijuan, Z. Shudong, and L. Haoming, ‘‘Research on test data
automatic generation based on improved genetic algorithm,’’Comput. Sci.,
vol. 44, no. 3, pp. 209–213, 2017.

[32] M. A. Ahmed and I. Hermadi, ‘‘GA-based multiple paths test data gener-
ator,’’ Comput. Oper. Res., vol. 35, no. 10, pp. 3107–3124, 2008.

[33] Y. Chen and Y. Zhong, ‘‘Automatic path-oriented test data generation using
a multi-population genetic algorithm,’’ in Proc. 4th Int. Conf. Natural
Comput., 2008, pp. 566–570.

[34] N. Zhang, B.Wu, andX. Bao, ‘‘Automatic generation of test cases based on
multi-population genetic algorithm,’’ Int. J. Multimedia Ubiquitous Eng.,
vol. 10, no. 6, pp. 113–122, Jun. 2015.

[35] T. Tian and D. Gong, ‘‘Evolutionary generation approach of test data for
multiple paths coverage of message-passing parallel programs,’’ Chin. J.
Electron., vol. 23, no. 2, pp. 291–296, 2014.

[36] Y. Zhang, D. Gong, X. Yao, and Q. Lu, ‘‘Generating test data covering
multiple paths using genetic algorithm incorporating with reducing input
domain,’’ in Proc. Chin. Intell. Syst. Conf., 2018, pp. 739–747.

[37] D.W. Gong and Y. Zhang, ‘‘Novel evolutionary generation approach to test
data for multiple paths coverage,’’ Acta Electronica Sinica, vol. 38, no. 6,
pp. 1299–1304, 2010.

[38] H. Huang, F. Liu, X. Zhuo, and Z. Hao, ‘‘Differential evolution based on
self-adaptive fitness function for automated test case generation,’’ IEEE
Comput. Intell. Mag., vol. 12, no. 2, pp. 46–55, May 2017.

[39] H. Xia, X. Song, and L. Wang, ‘‘Research of test case auto-generating
based on Z path coverage,’’ Modem Electron. Techn., vol. 6, pp. 92–94,
Mar. 2006.

[40] G. J. Zhang, D. W. Gong, and X. J. Yao, ‘‘Test case generation based on
mutation analysis and set evolution,’’ Chin. J. Comput., vol. 38, no. 11,
pp. 2318–2331, 2015.

[41] C. Y. Xia, Y. Zhang, L.Wan, Y. Song, N. Xiao, and B. Guo, ‘‘Test data gen-
eration of path coverage based on negative selection genetic algorithm,’’
Acta Electronica Sinica, vol. 47, no. 12, pp. 2630–2638, 2019.

[42] Y. Zhang and D.-W. Gong, ‘‘Evolutionary generation of test data for paths
coverage based on scarce data capturing,’’Chin. J. Comput., vol. 36, no. 12,
pp. 2429–2440, Mar. 2014.

SHUPING FAN received the B.S. degree in math-
ematics education from Mudanjiang Normal Uni-
versity, China. He is an Associate Professor with
the School of Computer and Information Tech-
nology, Mudanjiang Normal University. He is a
Teacher of computer science. His research inter-
ests include test data generation for complex soft-
ware and evolutionary computation.

NIANMIN YAO received the B.S., M.S., and
Ph.D. degrees from Jilin University, China,
in 1997, 2000, and 2003, respectively. From
2003 to 2005, he did his postdoctoral research with
the Department of Computer Science, Tsinghua
University. From 2010 to 2011, he visited the Uni-
versity of Connecticut as a Visiting Scholar. He is
a Professor with the School of Computer Science
and Technology, Dalian University of Technology.
His research interests include search-based soft-

ware engineering and network security.

LI WAN received the B.S. degree in com-
puter science and technology from Mudanjiang
Normal University and the M.S. degree from
the Department of Intelligence and Computing,
Tianjin University, China, in 2020. His inter-
ests include software testing and voice signal
processing.

BAOYING MA received the B.S. degree in com-
puter application technology from Mudanjiang
Normal University, China, in 2007, and the M.S.
degree in computer application technology from
Harbin Engineering University, China, in 2010.
She is a Lecturer with Mudanjiang Medical Uni-
versity. Her interest includes test data generation
for complex software.

YAN ZHANG received the B.S. degree in math-
ematical coefficients education (computer soft-
ware) from the China University of Mining and
Technology, China, in 1994, the M.S. degree in
teaching theory (computer) from Liaoning Normal
University, China, in 2000, and the Ph.D. degree
in control theory and control engineering from the
University ofMining and Technology. She is a Pro-
fessor and the Director of the School of Computer
and Information Technology, Mudanjiang Normal

University, China. Her research interests include search-based software engi-
neering and evolutionary computation.

86772 VOLUME 9, 2021


