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ABSTRACT Battery ensures power solutions for many necessary portable devices such as electric vehicles,
mobiles, and laptops. Owing to the rapid growth of Li-ion battery users, unwanted incidents involving Li-ion
batteries have also increased to some extent. In particular, the sudden breakdown of industrial and lightweight
machinery due to battery failure causes a substantial economic loss for the industry. Consequently, battery
state estimation, management system, and estimation of the remaining useful life (RUL) have become a topic
of interest for researchers. Considering this, appropriate battery data acquisition and proper information
on available battery data sets may require. This review paper is mainly focused on three parts. The first
one is battery data acquisitions with commercially and freely available Li-ion battery data set information.
The second is the estimation of the states of battery with the battery management system. And third is battery
RUL estimation. Various RUL prognostic methods applied for Li-ion batteries are classified, discussed,
and reviewed based on their essential performance parameters. Information on commercially and publicly
available data sets of many battery models under various conditions is also reviewed. Various battery states
are reviewed considering advanced battery management systems. To that end, a comparative study of Li-ion
battery RUL prediction is provided together with the investigation of various RUL prediction algorithms and
mathematical modelling.

INDEX TERMS Battery datasets, battery data repository, remaining useful life (RUL), battery management,
li-ion battery, RUL prediction methods.

I. INTRODUCTION
Energy storage has become one of the predominant sec-
tors as most of the consumer electronics are powered with
battery-like technologies and electricity generation is rapidly
growing from renewable energy sources [1]. As the genera-
tion of electricity is rapidly increasing from non-predictable
and variable sources, the energy scenario is changing sig-
nificantly. The increasing degradation of the energy market
in developing countries, changing in the transportation sec-
tor also responsible for the rapid awareness about energy
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storage [2]. The energy storage technology can be categorised
as:

1) Electrochemical storage for short storage time and high
efficiency, such as battery technology.

2) Mechanical storage for large capacity and power, such
as compressed air energy storage.

3) Chemical storage for low efficiency but long storage
periods, such as hydrogen and methane.

4) Thermal storage for high efficiency and long lifetimes,
such as storage of thermochemical energy, storage of
sensible heat, and storage of latent heat [3].

Among this rechargeable electrochemical storage or bat-
tery technology is most commonly seen for its application.
A battery converts electrochemical energy to electricity and

86166 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4511-0310
https://orcid.org/0000-0002-1795-2089
https://orcid.org/0000-0002-7373-0149
https://orcid.org/0000-0002-6335-3773
https://orcid.org/0000-0002-9772-4130
https://orcid.org/0000-0001-9389-2666
https://orcid.org/0000-0003-3701-9357
https://orcid.org/0000-0002-0596-4816
https://orcid.org/0000-0002-7463-7675
https://orcid.org/0000-0001-5153-0675


S. A. Hasib et al.: Comprehensive Review of Available Battery Datasets, RUL Prediction Approaches

TABLE 1. Accidents occurred due to faults in battery management.

serves as a portable power supply that is small in size and can
be placed anywhere. Mostly used battery cells are Lead Acid
cells, Redox Flow cells, SodiumSulfur cells, and Lithium-Ion
cells.

Lithium-ion batteries are preferred over other battery tech-
nologies in various application due to long lifetime, huge
potential density, lighter weights, and less self-discharge.
Such applications include aircraft, electric vehicles (EV),
satellites, marine systems, mobiles, laptops, and other con-
sumer electronics [4], [5]. This massive demand for Li-ion
battery cells has meant that it is essential to evaluate their
reliability. In this regard, comprehensive research is focused
on the management of charging and discharging, estimation
of remaining useful life (RUL), and characterisation of the
performance degradation of Li-ion batteries (LIB) [6]–[8].
The accidental failure of Li-ion cells due to performance
degradation and many unforeseen reasons may lead to catas-
trophic failure, operational impairment, exposure, and perfor-
mance degradation [8]–[10].

Although Li-ion batteries are preferred over other battery
technologies for their lightweight, high energy storage, low
charge loss, no requirements of complete discharge, and a
great amount of charge and discharge cycles. But it also has
various disadvantages. Themost considerably, li-ion batteries
have a short lifetime, fast degradation rate, ruined if they
are completely discharged, more costly, and risk of getting
busted to flames is more compared to other existing battery
technology [11]. Many accidents have occurred over the last
decade due to the failure of LIB. Table 1 shows the accidents
in chronological order. Such incidents emphasise the impor-
tance of RUL prediction and proper management for LIB.

To overcome the limitations of current LIB technology
advance battery management may be helpful. For better bat-
tery management and RUL prediction, it is important to
choose carefully the most appropriate datasets. As research
on Li-ion battery is one of the trending research topic, many

organizations have provided data sets for a variety of battery
models. Using these data-sets may provide better results in
the estimation of battery states and RUL prediction, and the
use of these data-sets will save the time of building new
data sets. Better knowledge of data sets may also improve
battery management by improving the accuracy of battery
state estimation. Figure 1 describes the process of data acqui-
sition for RUL prediction for LIB. First, the specific battery
cell is selected, and reliable parameter data is acquired with
the help of measuring elements. This data is used for the
construction of health indicators, which later facilitate the
estimation of RUL.

Performance state estimation and life prediction have
become a vital issue in battery management and it’s use [18].
Figures 2 and 3 illustrate the number of publications on
RUL estimation for LIB over the last decade. As reflected
in those figures, the number of publications increases grad-
ually (the highest percentage of publications is in the IEEE
journals, obviously due to the relevance of the subject),
which reinforces a need for a complete literature review.
Gu et al. [18] reviewed techniques for battery life model-
ing and provided a summary of the characteristics of each
model and their typical applications. Later, Xing et al. [19]
provided a contrasting review of reliable prediction-based
methods for LIB. They discussed some major issues in
battery reliability with the investigation of procedures in
health observation and life prediction of batteries and also
conducted a comparative study of many different methods
and measurements for LIB. Zhang and Lee [20] reviewed
LIB fitness developments, summarizing a few algorithms
that were applied for state-of-charge prediction, remaining-
useful-life estimation, and other battery reliability aspects
(voltage, capacitance, etc.). Watrin et al. [21], in their litera-
ture review, presented three adaptive systems: Kalman Filter,
the ANN (Artificial Neural Network), and the Fuzzy Logic
systems to State of Charge (SOC) and State of Health (SOH)
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FIGURE 1. Li-ion battery data acquisition to RUL prediction process.

FIGURE 2. Publications on Li-ion battery RUL estimation over the last
decade.

approximation for LIB. Meanwhile, [22] reviewed aspects of
development and research on LIB aging and prediction in
multiple fields. They also provided a synopsis of methods,
algorithms, and models used for battery RUL prognosis and
SOH approximation with a comprehensive electrochemical
approach to statistical methods dependent on data. The same
year, [23] published a review on applications and enhance-
ment algorithms of using a support vector machine (SVM)
to estimate RUL. Those reviews were comprehensive at
the time of publication, but the rapid extension of research
on LIB RUL prognosis in the past few years necessitates

FIGURE 3. Total number of publications in various journals, related to
Li-ion battery RUL estimation over the last decade.

further review. A literature review of generic prognostic
approaches was conducted by [24] in which the authors advo-
cated using hybrid prognostic approaches and determined
the advantages of related prognostic methods to estimate the
RUL of various engineered systems. Concerning EV cells,
Rezvanizaniani et al. [25] evaluated prediction strategies to
ensure EV safety and mobility. A review of LIB using SOH
estimation approaches was conducted by [26] who did not
consider RUL estimation. Lipu et al. [27] drew the infer-
ence of a simple analysis on the RUL and SOH prognosis
of Li-ion cells in EVs. The data-driven health estimation
and health prognosis of Li-ion cells were reviewed by [28].
Meng and Li [29] conducted a literature review on prediction
and health management (PHM) techniques of Li-ion cells
in 2019. In the following year, depending on the classification
framework Z. Zhao [15] reviewed the SOH of Li-ion batter-
ies and discussed the aging reasons LIB. They introduced
the SOH prediction method along with the analysis of the
main advantages and drawbacks of each technique. How-
ever, the review was confined to SOH and aging rather than
RUL estimation.

Figure 4 illustrates the summary of all current and past
reviews of RUL prediction for LIB. As illustrated by that
figure, it is quite evident that a more updated and com-
prehensive analysis of battery RUL prognosis is necessary
with more advanced battery data acquisition. Consequently,
the aim (and therefore the contribution) of this review is also
highlighted in Figure 4. There exist a few review articles
regarding battery state estimation and RUL prediction, and
mostly they are focused on a smaller field, e.g., only the
discussions of the state of health or RUL prediction.

This article merges the review of battery data sets with
battery state estimation and battery RUL prediction review.
For starting research in battery proper battery dataset selec-
tion is essential, one of the aims of this review is to review
publicly and commercially available battery data sets. This
may help to choose appropriate datasets for battery research
and the use of these data sets can save the time of generating
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FIGURE 4. A comparison of the current review issue and aim of this
review.

new. Simultaneous review of both battery management and
battery RUL prediction in a single article helps to diagnose
the correlation between BMS and RUL. This also helps to
understand the difference between various battery states and
RULwith the conjunction of actual commercial and industrial
conditions. At a time, review of battery data sets, battery
management, and RUL prediction feasibly helps to visualize
the causes of battery performance degradation and aging.

Consequently, the focal point of this review is to provide
a comparative study of battery RUL estimation procedures
including battery management and provide sufficient infor-
mation on commercially and freely available online battery
data sets.

The rest of this article is ordered as follows section 2 dis-
cusses data acquisition of commercially available online
data sets for LIB; their introduction, properties, and appli-
cation; and providing a comparison of the data sets. A sum-
mary of battery management systems is given in Section 3.
The principal RUL prediction approaches are discussed in
Sections 4 and 5; along with general RUL prediction tech-
niques and a comparison of terms. Section 6 proposes future
research on battery management and RUL prediction.

II. DATA ACQUISITION AND AVAILABLE LI-ION BATTERY
DATA SETS
Data plays an essential role in prognostic modeling. In the
data acquisition process, are range of monitoring data are
captured and stored from many sensors [30]. The internet
has dramatically increased the availability of data which
can also be used for software simulated data. However,
to acquire real-time data, a data acquisition system must be
built. Jamshidi et al. [31] used a data set provided by NASA
scientists (developed from a range of trials on 18650 Li-ion
batteries) to model a small satellite LIB using a neuro-fuzzy
based black-box technique.

Figure 5 highlights the basic information to generate sim-
ulated battery data–the battery should energize the electric

FIGURE 5. Generating experimental and simulating battery data.

motor that will move the drill, requiring the use of the current
and voltage of the batteries. Using the data acquisition card,
the data set can be generated in MATLAB. This data was
experimental but a data set can be simulated using a real-time
computer that contains an EV model for which the vehicle
network toolbox helps to communicate with the real-time
computer. The battery energizes the EV model and the volt-
age and current degradation are generated through the data
acquisition card.

Several data sets have been published over the years due to
increasing research in battery technology, especially in Li-ion
batteries. These data sets are available online, and most are
free to use in research under some conditions. These battery
data sets are built using a range of battery models and can be
useful for estimating many battery states for example State of
Health (SOH), State of Safety (SOS), State of Charge (SOC),
State of Temperature (SOT), State of Power (SPO), and State
of Energy (SOE) under a range of conditions. Determining
these states is necessary to support better battery manage-
ment and RUL prediction. The following are some available
online data sets, which are discussed with their properties and
applications.

A. TOYOTA RESEARCH INSTITUTE
1) INTRODUCTION TO THE DATA SET
Under fast charging conditions, this data set provides
124 commercial Lithium-ion batteries cycled to their failure.
The Lithium-ion phosphate/graphite cells were made using
the A123 System and cycled in a forced convection tempera-
ture chamber set to 30 degrees centigrade in horizontal cylin-
drical fixtures of battery testing potentiostat. These cells have
a professed electromotive force of 3.30 V and a professed
capacity of 1.1 Ah. The purpose of this data set is to optimize
fast charging for Li-ion batteries in which all battery cells are
charged with one or two steps of fast-charging. This policy
conforms to the ordination of ‘‘C1(Q1)-C2’’, where C1 and
C2 are the initial and following perpetual-current steps in
the given order. State of Charge is indicated in percentage
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by Q2 at which rate the currents change. The cells charge
at 1C CC-CV, and the second current step C2 finishes at
80 percent of the State of Charge. 3.6 V and 2.0 V are the
top and bottom cut-off voltage, and this is consistent with
the manufacturer’s specification. These cut-off voltages are
fixed for all current steps. The cells may exceed the above
cutoff voltage at the time of fast charging after some cycling,
which leads to a significant constant-voltage load. At 4C, all
batteries are discharged.

2) DATA SET PROPERTIES
1) The dataset is categorised into three ‘‘batches,’’ which

represent about 48 battery cells in every division, and
a ‘‘batch date’’ defines each batch. However, there are
some irregularities in each batch.

2) The data is given both in MATLAB and Python format.
AMATLAB struct is available for each data batch. The
information for each cycle is easily accessible by the
struct, which provides a convenient data container. This
struct can be accessed in both MATLAB and Python
format with the h5py package. Further, code is also
provided by which Pandas data frames can be gener-
ated. The provisional data for every cell is available in
a CSV file, however, in either experiment time or step
time in which the experiment time resets to zero mid-
cycle, the CSV files occasionally have errors, and these
errors are subdued.

3) Kapton was taped to the exposed cell using thermal
epoxy (OMEGATHERM 201), and after removing
a tiny portion of the plastic isolation, a T category
thermocouple was attached to measure the tempera-
ture. However, the thermal communication between the
thermocouple and the battery cell varied, and the ther-
mocouple sometimes failed to communicate during
cycling–consequently, the temperature measurements
are not entirely reliable.

4) The internal resistance measurements were obtained at
the time of 80 percent charging of SOC and around ten
pulses of ±3.6C having a pulse width of 30-33 ms.

3) DATA SET APPLICATIONS
The authors of this data set used the data in their publi-
cation on the data-driven prognostic of battery cycle life
ahead of capacity abasement [32]. Although the dataset was
only published in 2019, it has already been cited in about
116 research works. Ma et al. [33] used this data set in
their research in the RUL prognosis of Li-ion cells in which
they proposed a hybrid neural network with a false nearest
neighbour technique. Also using this data set, [34] proposed
the exact forecasting of the SOH of Li-ion cells which was
attained with a crossbreed model. The model was established
with the help of the Elman neural network (NN) and
the auto-regressive moving average (ARMA) model.
Lucu et al. [35], in a two-paper series, developed a data-driven
aging model for LIB under the Gaussian Process framework
using this data set.

B. MENDELEY
1) INTRODUCTION TO THE DATA SET
These data setsmay be applicable to examineNeural Network
and Kalman Filter based SOC methods or to build up battery
models. According to the publisher, the data sets are usable
as a reference so researchers can make a comparison of their
models and techniques role for a fixed data set. A series of
tests were performed, at five different operating temperatures,
on a 2.9Ah Panasonic 18650PF battery in an eight cu.ft.
temperature compartment having a 25A, 18VDigatron Firing
Circuits Universal Battery Tester channel.

2) DATA SET PROPERTIES
1) The experimental data is provided in MATLAB file

format.
2) Five pulse discharge HPPC tests (0.5, 1, 2, 4, 6C) were

performed at 100, 95, 90, 80, 70. . . , 30, 25, 20, 15,
10, 5, 0 % of the SOC and the logged data file only
includes the pulses (it does not include the subsequent
discharges between the pulses). However, if the latter
data is needed, the releases between pulses are included
in another file, ‘‘dis5_10p’’.

3) Electrochemical Impedance Spectroscope tests were
performed from 1mHz to 100, 95, 90, 80, 70. . . , 30,
25, 20, 15, 10, 5, 0 % SOC.

4) Series of nine drive cycles were performed in the fol-
lowing order: Cycle 1, 2, 3, 4, US06, HWFET, UDDS,
LA92, Neural Network (NN). A random mix of US06,
HWFET, UDDS, LA92, and Neural Network drive
cycles constituted Cycles 1-4. The Neural Network
drive cycle LA92 drive cycle was designed to have
some new dynamics which may be useful for training
neural networks and consists of a combination of por-
tions of the US06. An electric Ford F150 truck with a
35kWh battery pack scaled for a single 18650PF cell
was used to calculate the drive cycle power profile.

3) DATA SET APPLICATION
The experiment data, or the same type of data, has been
used for many publications. Chemali et al. [36], used the
data set for the exact SOC prognostic of LIB. An unified
approach was developed with a recurrent neural network
for exact modelling of Li-ion cell potential and SOC [37].
In [37], the authors analysed the Lithium-ion cell model
operation for automotive operating cycles with Electrochem-
ical Impedance Spectroscopy (EIS) parameterization and the
current pulse. Additionally, a Battery-Electric Light-Duty
category 2a Truck, with Crossbred Potential Reserve, was
developed and implemented in [38], [39] using these data
sets.

C. U.S. GOVERNMENTS OPEN DATA
1) INTRODUCTION TO THE DATA SET
This data set was acquired in NASA’s Ames Prognostics
Centre of Excellence (PCoE) and taken from a customized
battery auguring benchmark. LIB cells were run in a charge,
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discharge, and Electrochemical Impedance Spectroscopy
captured those three operational profiles at different tem-
peratures. The discharges were carried out in various cur-
rent load stages unless the battery potential was reduced
to pre-set potential thresholds. The recommended limit was
OEM (2.7 V) to bring about a strong discharge aging result,
but some of these thresholds were found to be lower. The
test results show that frequent discharge-charge orders cause
the fast ageing of cells. The experiments were stopped if
cells reached the extermination limit of 30 percent fails in
evaluated capacity relative to 2 Ah-1.4 Ah. The data-set can
be useful for many applications as the sets are primarily a
huge amount of Run-to-Failure time series, and the data can
be useful for the upgrade of predictionmethods. Additionally,
two cells do not have the identical state-of-life at the identical
cycle index due to the differences in parameters such as
the duration of rest periods, depth-of-discharge (DOD), and
intrinsic variability. The target was to capture this uncertainty,
which is symbolic of real-life utilization, and construct a
reliable estimation of RUL [40].

2) DATA SET PROPERTIES
1) The data was acquired from commercial Li-ion

18650 category rechargeable batteries and provided in
a MATLAB file.

2) The data cycle is a top-level construction array contain-
ing the charge, discharge, and impedance functioning,
and the data functioning category can be a charge,
discharge, or impedance.

3) Both the date and time of the starting cycle are in the
format of a MATLAB date vector.

4) For each charge-discharge fields, the electromotive
force is calculated in battery terminal voltage in volts,
the calculated current is in Battery output current in
amps, the calculated temperature is the battery tem-
perature in degree celsius, the current charge is the
calculated current at the charger in amps, the voltage
charge is the calculated voltage at the charger in volts
and time is a time vector for the cycle (secs).

3) DATA SET APPLICATION
Morello et al. [41] used this data set on their report in
Li-ion battery aging, providing a preliminary analysis of the
obtained results. Other work used this data for effective fault
classification for LIB employed in EVs [42].

D. IEEE DATA PORT
1) INTRODUCTION TO THE DATA SET
The data set provides a general and realistic use of electro-
chemical cells to examine and corroborate standard models
and the associated system recognition operation. The data
set was gathered automatically utilizing an auto-established
programmable battery cycler, that imitates the consumption
of electrochemical cells in the naturalistic surroundings of a
pure EV. The data was taken by simulating the application
of a Li-polymer cell model ePLB C020 in an electric car

standardized to the Nissan Leaf. Specifically, the particular
cell used for the generation campaign was characterized by an
adequate capacity of 15 Ah. To generate the Training Set and
the Test Set, two different trips were considered. Both trips
were compiled with a mixture of highway, extra-urban and
urban driving cycles to find a realistic environment with read-
justing and battery charging phases. The test driving cycles
were chosen from the Federal Test Procedure depository for
practical application of the cell. The Training Set contains a
trip of 277.64 km with an amount of about 12 hours of data
and the Test Set covers 163.24 kmwith approximately 7 hours
of data. The data was acquired with a sampling time of 1 sec,
and SOC succession was assessed employing the Coulomb
counting algorithm [43].

2) DATA SET PROPERTIES
1) The data is provided in a Zip file, which contains

two.mat files called ‘‘Training Set.mat’’ and ‘‘Test
Set.mat.’’

2) The data is collected by simulating the use of a
Li-polymer cell.

3) DATA SET APPLICATION
According to the author, this data set can apply to the SOC
calculation, battery health management, and other battery
prognostic modeling [43].

E. SCIENCE DIRECT
1) DATA SET 1

1) Introduction to the Data Set: The data set provides the
Maxwell ultracapacitor behavior and the LiFePO4 type
LIB behavior. The urban dynamometer driving sched-
ule rule and the dynamic stress trial state were carried
out. This test produced data that promises to clarify
the behavior of the ultracapacitors and Li-ion cells
and is useful for the assessment of SOC and SOE of
the Li-ion batteries and ultracapacitors. This data set
includes measured voltage, sampling time, and load
current. When discharging the load current is negative
and at the time of charging is positive [44].

2) Data Set Properties:
a) The data sets were gathered at room temperature.
b) The data was provided in MATLAB format and

acquired from the experiments of Maxwell ultra-
capacitor and LIFEPO4 type LIB behavior.

3) Data Set Application: Li et al. [45] used this data set in
their research to establish a cloud-based battery man-
agement system (C-BMS) and applied a data cleaning
approach depending on a ML algorithm towards big
data. A review was presented in [46], in which the
authors discussed the new SOC estimation methods
highlighting the model-dependent, data-driven
orderliness. A real-time model-dependent condition
monitoring algorithm depending in a 2nd-order RC
electrical circuit battery model was suggested by [47]
using this data set. [48] recommended an online model

VOLUME 9, 2021 86171



S. A. Hasib et al.: Comprehensive Review of Available Battery Datasets, RUL Prediction Approaches

for LIB based on condition monitoring. The proposal
was established on an electrical circuit battery model
with real-time 2nd order capacitor-resistor. The model
carries out an increased Kalman filter-based real-time
framework pinpointing with an even variable formation
filter-based state estimation. Wang et al. [49] use this
data set and solve the problem of fractional-order
modeling and also worked on the remaining discharge
time prognostic of the LIB and ultra-capacitor hybrid
potential repository scheme.

2) DATA SET 2
1) Introduction to the Data Set: This dataset is about the

operating conditions of battery behavior. The battery
charging and discharging features were analyzed by
dynamic stress test and constant current test. The data
set also includes every cell voltage, the total potential
of the cell package, and the load current. If the cell is
discharged, the load current is negative and is positive
at every other time. The data also includes the sampling
time. According to the contributors, the data can be
used to analyze the dynamic behavior of a battery and
also can estimate the battery SOC [44].

2) Data Set Properties:
a) The data was provided in MATLAB format.
b) The LiFePO4 battery was used for the data

acquisition.
c) To show the active actions of the cell pack and

state of charge, the capacity and battery properties
are provided separately.

3) Data Set Application: [46] used this data set in their
review of the SOC approximation for Li-ion cells in
which they mainly focused on model-dependent and
data-driven approaches.

F. NASA DATA REPOSITORY
1) DATA SET 1

1) Introduction to the Data Set: This data-set was pre-
sented by Prognostic CoE at NASA Ames and was
acquired by experimenting on LIB [50].

2) Data Set Properties:
a) The data set documents the impedance as

destruction indicator with charging-discharging
in various temperatures.

b) This data set is provided in MATLAB format
(.mat). The data is also in a zip file format.

3) Data Set Application:The data-set was applied inmany
research works. Hill et al. [51] used this data to verify
the remaining flying period approximation aimed at
little electric aircraft. Bole et al. [52], adapted an elec-
trochemistry dependent LIB model. The researchers
adapted the model for random use. Olivares et al. [53]
used this data for the SOH regeneration phenomenon
using particle filtering-based prognostics. Some other
applications of these data sets include prognos-
tic approaches, RUL estimation, health monitoring

of aeronautical batteries, and much other research
in [54]–[62]. All publicly and commercially available
data-sets are compiled and summarised in Table 2 for a
better understanding.

2) DATA SET 2
1) Introduction to the Data Set: This NASA repository

data was taken from tests aimed at the HIRF cabin of
Edge 540 Aircraft [50].

2) Data-Set Properties: This data is provided in.mat for-
mat. The data also in a zip file.

3) Data Set Application: Hill et al. [51] applied this data
to confirm the remaining flying period approximation
aimed at little electric aircraft.

G. CALCE BATTERY RESEARCH GROUP
Since LIB promise thousands of cycles, they are attracting
increasing research. However, there is limited data available
to support the considerable number of studies on this topic.
The difficulties of examining the battery cell life cycle are
complicated by the combinations of the various elements
that affect the life cycle. Those challenges may be overcome
with a brute-force approach to testing but, for a range of
types of batteries and application disciplines, that kind of
experiment requires large quantities of data. The CALCE
Battery Research Group tries to put all of those data into
one place by describing the kinds of experimentation and
battery to provide a better understanding of the compli-
cated relationships among cell design, chemistry, and usage
conditions [65].

1) BATTERY SAMPLE- INR 18650-20R
1) Data Set Description: The most essential elements

of the battery SOC estimation are low open-circuit
voltage (OCV) and incremental current OCV. In this
data acquisition, the researchers conducted those two
OCV tests for three types of thermal conditions. The
SOC approximation is contrasted in terms of accuracy
tracking, robustness, and time convergence. For estima-
tor parameter identification and estimator performance
evaluation, four dynamic tests were presented [65].

2) Test Conditions and Properties:
a) Low Current OCV: The Low Current OCV test

uses a lower current for charging and discharging
to keep the corresponding terminal potential in
the estimation of OCV. Two data samples are pro-
vided at three different temperatures, including
initial capacity data.

b) Incremental Current OCV: The incremental cur-
rent OCV comprises various SOC separations.
After that, the OCV with the related SOC was
recorder. Two data sets samples are given with
different operating conditions.

c) Dynamic Test Profile: The dynamic test pro-
file consist of a number of active current pat-
terns; Dynamic Stress Test (DST), Federal Urban
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TABLE 2. Publicly and commercially available data sets related to LIB.

Driving Schedule (FUDS), Highway Driving
Schedule (US06), and Beijing Dynamic Stress
Test (BJDST). For each active current parameter,
the data is provided at different temperatures for
80 percent battery charge and 50 percent battery
charge.

d) Data Format: the data is provided in.xls format.

3) Data Set Application: Zheng et al. [66] applied this
data set for online SOC approximation showing the
influence of different OCV [66]. A similar applica-
tion of this data set can be found in [67], where the
researchers estimated LIB SOC using OCV at different
temperatures. Xing et al. [67] used unscented Kalman
filter and neural network modelling by this data set for
SOC approximation of Li-ion cells.

2) BATTERY SAMPLE- A123
1) Data Set Description: Optimal charge/discharge con-

trol, SOC approximation, and critical left-over driving
grade approximation of EV significantly reliant on the
ambient temperature. OCV-SOC do not acts as impar-
tial of environment temperature and generates an error
in battery SOC estimation. Despite this, the CALCE
Battery Research Group experimented with A123 cells
to complete two dynamic tests; the FUDS test and
the DST. The data is publicly available on the CALCE
research group web page.

2) Test Conditions and Properties:

a) Low Current OCV: The data in low current OCV
is provided under various operating temperatures
from −10 degrees to 50 degrees celsius.

b) Dynamic Profile: Dynamic profile data is also
provided at various operating conditions from
−10 degrees to 50 degrees celsius.

c) Data Format: Data is provided in.xls format.
3) Data Set Application: Xing et al. [67] applied the

data-set to forecast SOC of Li-ion cells. He et al. [68]
also used this data set for unscented Kalman fil-
ter (UKF) and neural network modeling (NN) based
problem solving for LIB.

3) BATTERY SAMPLE- CS2
1) Dataset Description: For this data acquisition, all the

CS2 cells were in the same charging profile. The stan-
dard current and voltage protocol were applied pro-
vided a fixed current scale of 0.5A before the voltage
attains 4.2V. After that the 4.2V was kept before the
charging current falls down to 0.05A. The discharge
cut-off voltage was 2.7V. Each CS2 cell was cycled
many times.

2) Test Conditions and Properties:
a) Data Format: Each cell data file contains a col-

lection of files in.xls format, named according to
the testing dates.

b) Data Type: Six data types are provided under
various operating conditions of cycling.

3) Data Set Application: He et al. [69] used this
data set in their research on Li-ion battery prog-
nostics, applying the Bayesian Monte Carlo method
and Dempster-Shafer theory. In [70], the author pre-
dicted Li-ion cell RUL with the help of this dataset.
Williard et al. [5] also used this data in their analysis
of SOH estimation features.
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4) BATTERY SAMPLE- CX2
1) Data Set Description: As with the CS2 battery data

set, all CX2 cells also were under a similar charging
outline. The graded current and voltage properties were
applied provided a fixed current amount of 0.5A before
the electromotive force gains 4.2V. After that the 4.2V
was kept until the charging current drops under 0.05A.
2.7V was the discharge cut-off voltage. Each CS2 cell
was cycled many times.

2) Test Conditions and Properties:
a) Data Format: Each cell data file contains a col-

lection of files in.xls format, specified observing
the experiment dates.

b) Data Type: Six data types are provided under
various operating conditions of cycling.

3) Data Set Application:He et al. [69] used this data set in
their research on Li-ion battery prognostic, utilising the
Bayesian Monte Carlo procedure and Dempster-Shafer
theory. In [70], the author predicted LIBs RUL using
this dataset.

5) BATTERY SAMPLE- PL
1) Data Set Description: Li-ion batteries do not undergo

full charging and discharging cycles. The CALCE Bat-
tery Research Group performed a test that quantifies
the outcome of fragmentary charge-discharge cycling
on LIBs capacity dropping. They conducted a cycling
test on LiCoO2/ graphite battery with dissimilar SOC
scale and discharge currents. Based on the results,
they developed a capacity fade model accommodat-
ing total or incomplete cycling states. The test result
shows graphite/LiCoO2 battery degradation is affected
by the mean SOC and also by the improvement in
SOC throughout the cycling process. The data from the
experiment is available to download from the CALCE
web page [65].

2) Test Conditions and Properties:
a) The data is provided from eight samples of bat-

teries for different cycling conditions.
b) The data is provided in a zip file that contains.xls

files.
3) Data Set Application: This data set was used to

test cycle life experimentation, and prototyping of
LiCoO2/Graphite batteries in various SOC grades
by [71].

6) BATTERY SAMPLE- K2
1) Data Set Description: For the data acquisition,

the tested model was K2-016 and K2-039 battery [65].
2) Test Conditions and Properties:

a) The cell was discharged in a fixed current of 2.6A.
b) The unit voltage during discharge was 4.2V.
c) Charge at constant voltage unit current was less

than 0.08A, and the rest duration was 2 minutes
before measuring the resistance.

d) The data was provided in a zip file containing
a.xls file format.

III. BATTERY MANAGEMENT
The large-scale use of Li-ion batteries (LIB) in recent years
has encouraged updated algorithms to be developed for the
estimation of RUL of LIBs. Many data sets of LIBs for
capacity and thermalmanagement [72], SOC calibration [73],
detecting fault mechanism [74], neutron imaging [75], volt-
age [76], and current calibration are being used in research
work [77]. Trovò [78] described a battery management sys-
tem (BMS) both in terms of hardware and software for a
9kW/27 kWh Industrial Scale VanadiumRedox FlowBattery.
These are, however, directly or indirectly related to battery
RUL estimation. Figure 6 illustrates the entire procedure
of the battery management process. Various sensors can be
used to read the data of battery cells which can be used
in data acquisition. These data are used for battery state
estimation and controlling of charge and discharge. Based on
this information, capacitive and thermal management can be
undertaken with various fault diagnoses and cell monitoring.
Some BMS (especially for LIB) are discussed below:

FIGURE 6. Illustration of battery management process.

Li et al. in [28], reviewed the data-driven health estimation
methods and RUL prediction approaches. They showed a
distinction among ML algorithms applied for SOH assess-
ment of cells and compared the health prediction methods
as well. However, their review was mainly focused on bat-
tery factors and SOH estimation. In [79], machine learning
approaches on BSM were comprehensively studied and pro-
vided an overview of machine learning approaches. Though
they provided a comparison amongML approaches, the study
was mainly focused on BMS.

A. BATTERY THERMAL MANAGEMENT (BTM)
Li-ion BTM is essential to power diligence and is also
concerned with thermal protection, improvement of per-
formance, and extending the life cycle. Additionally,
proper thermal management also minimizes the temperature
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gradients between battery cells [80]. Khateeb et al. [81]
used testing ground solutions of a LIB planned for electric
scooter diligence. They compared the experimental results
of the LIB module (utilizing different heat dissipation sys-
tems) between the charge cycle and the discharge cycle.
Sun et al. [82] used numerical simulation and experimental
setup data for heat transfer enhancement, which was designed
to compare the thermal functioning of different BTM Sys-
tems. A simulation-based statistical dataset was used to
develop a novel BTM system for a tube–shell LIB bundle
based on water evaporation (WE) and air-cooling (AC) [83].
Samimi et al. [84] used experimental data to compare the
simulating result of the thermal functioning of a LIB cell
in the comportment of carbon-fiber phase-change materials
composites. Similar work on cylindrical LIB thermal man-
agement employing phase transform material composites can
also be found in [84].

B. CAPACITY MANAGEMENT
Battery capacity management is essential for SOC, SOH, and
RUL prognosis. The use of a battery in EVs requires reliabil-
ity in cell capacity [73]. Sartini et al. [85] provided a basis
for battery capacitymeasurements and estimated the potential
of electrochemical impedance spectroscopy as a diagnostic
tool. The research work was completed on a Li-Tec40 Ah
li-ion battery presenting AC impedance measurements and
measurements in a climate chamber at different temperatures.
Yu et al. [86] showed an online capacity estimation method
through joint estimation for LIB. The RUL of li-ion bat-
tery and degradation process are commonly quantified with
capacity or internal resistance. However, duet to complex
operational conditions and high costs, these two indicators
are not easy to acquire. An innovative health indicator (HI)
is imposed from battery current profiles which can be mea-
sured directly in online. Based on the extracted HI a rele-
vance vector machine (RVM) algorithm is utilized to make
a probabilistic prediction for battery RUL [87]. A novel pre-
dicting method for circulating capacity of LIB is suggested
considering the effect of random variable current (RVC) on
battery capacity degradation. The minimum battery capacity
RMSE predicted is 0.010294 and cycle capacity error range
is −3mAh to 3mAh [88].

C. BATTERY NEUTRON IMAGING
In the field of engineering for non-destructive testing poly-
chromatic radiation beam applications, Neutron Imaging is
used widely [85]. Battery management requires precise pre-
diction of the bulk and the spatiotemporal lithium (Li) con-
centrations, which is where neutron imaging comes into
play. The battery cycle life of more than 1000 cycles would
require renewable energy storage. For this, detailed knowl-
edge of the aging and degradation of batteries is required.
As demonstrated by [74] during the discharge of an intact
industrial battery, a primary anodic reaction and depletion of
Lic6 degradation can be observed by neutron imaging. They
represented the first attempt in establishing neutron imaging

as an insight diagnostic tool for analyzing LIB. Visualizing
the migration of Li ions helps to identify areas of reduced
activity that are responsible for capacity fading [89]

D. VOLTAGE AND CURRENT CALIBRATION
For better battery management, voltage and current cali-
bration are required. References [90] measured the Li-ion
battery voltage with a analog to digital transformation. The
transformation was power effective. In [91], the parameters
influencing battery lifetime were showed for better battery
management, and the battery state was calculated. Voltage
and current calibration are important for different battery
state assessment and this helps in battery management. Those
states can be SOC, SOH or others.

E. PARAMETER ESTIMATION FOR BMS
The battery is not a linear system and it has various complex-
ities, and for this, the BMS depends on various parameters.
precise monitoring and estimation of those BMS param-
eters are cumbersome from a computational perspective.
To that end, Figure 7 illustrates different advanced research
directions to estimate parameters for BMS. Inarguably, for
advance and futuristic BMS, precise monitoring and esti-
mation are required for some important terminologies such
as SOC, SOH, SOT, and RUL. In this part of the review,
the workings of various battery state estimations have been
reviewed.

FIGURE 7. Advanced battery management systems.

1) REVIEW OF SOC AND SOH ESTIMATION
The way of determining the SOC of batteries can be
divided into six processes: 1. Look-up tables process,
2. Coulomb counting process [92], 3. Artificial neural net-
work process [66], 4. Support vector regression process [93],
5. Electro-chemical process [94], and 6. Equivalent circuit
process [95]. Like the SOC estimation process, the SOH
can be categorized into four categories: 1. Physics-dependent
models, 2. Empirical process, 3. Models depending on
(a) Differential Voltage Analysis (DVA), (b) Incremental
Current Analysis (ICA), and 4. Data-driven method [96].
However, various approaches have been proposed for SOC
and SOH estimation and much research has been done in

VOLUME 9, 2021 86175



S. A. Hasib et al.: Comprehensive Review of Available Battery Datasets, RUL Prediction Approaches

this field. Using acoustic-ultrasonic stress wave, precisemon-
itoring of SOH and SOC was introduced in [97]. For the
up-gradation of the BMS, advance sensing technology is
essential. In [98], an intrinsic co-relation of battery SOH and
SOC with waveform signal terminologies was determined
using a built-in piezoelectric sensor in the time-domain analy-
sis. Battery cells expand at the time of charging as an outcome
of the bumping of battery electrode dynamic material, a strain
gauge type extremely precise displacement sensor was used
to calculate the generated force of battery cell expansion [99].
Figure 8 illustrates a basic SOH and SOC joint estimation
procedure. Firstly, SOH and SOC estimation time update is
determined, then this result is feed into an adjustable con-
troller. The update of SOC and SOH is observed.

FIGURE 8. Illustration of SOC and SOH joint estimation for BMS.

The ageing of electrode reduces the ability to store
energy of batteries and decreases the their lifetime [100].
SOH comprises the ability of a battery to reserve electric
energy [101]. Any attributes that defines cell health perhaps
usable to characterize SOH as the range explaining battery
health condition is so much enlarged. esearch related to char-
acterization of parameters for example power, capacitance,
and internal resistance may falsify the true notation of bat-
tery health [15]. Battery health depends not only on char-
acterization parameters but internal parameters also. These
internal battery health components primarily concern to three
influencing apparatus [15]: and these are (i) the loss of
active material (LAM), (ii) the loss of conductivity (CL), and
(iii) the lithium inventory loss (LLI) [102]. The loss of lithium
inventory includes the constitution of lithium dendrites [103],
the generation of a solid electrolyte inter-phase layer [104],
and the self-discharge of a battery [105]. Active material
loss consists of the breakdown of anode material [104], the
breakdown of the electrolyte [106], and the breakdown of
cathode material [107]. The conductivity loss mainly refers
to the battery adhesive to desquamate and degrade. It also
consults to the aging apparatus that is responsible for the
cell’s current collector to collapse and decompose.

To understand cell degradation status in detail, estima-
tion of electrode state of health (eSOH) is essential. The
electrode state of health is achieved by utilization range
as an eSOH parameter and considering electrode capacity.
However, the electrode-specific state of health inside a cell

has been given less attention [108]. Electrode-specific state
of health gives elaborated information on the degradation
status of the battery. Regarding this, it could prevent dan-
gerous battery failure. The existing approaches for eSOH
estimation can be categorized in voltage fitting and differ-
ential analysis. Voltage fitting finds a parameter set with
optimized algorithms. The parameter set gives the best fit
between measured data and model prediction for the voltage
curve [108]. Using a genetic algorithm, a battery model was
proposed with electrode parameters by Han et al. [109],
and that was identified by fitting the voltage curve. The
categorized degradation models for example active mate-
rial loss and lithium inventory loss [110], were used by
Birkl et al. [111] to create a model framework. The frame-
work was applied to perform degradation diagnostics by fit-
ting the model to measured pseudo-OCV data. Both SOC and
SOH were estimated using a reduced order electrochemical
model, but only the changes in the utilization range were
considered [112]. The thermodynamic information from elec-
trode materials is focused on differential analysis focuses.
Tracking the changes of distinguishable parameters in dif-
ferential curves such as differential capacity and voltage
curves, degradation diagnosis is performed in differential
analysis. The most common type of differential analysis is
incremental current analysis [113] and differential voltage
analysis [114]. In the differential analysis, the valuable elec-
trochemical parameters become recognizable in the differen-
tial data. Lu et al. [115] determined the relationship between
electrode aging and the fractional order. They have used
the fractional-order as an indicator for electrode aging and
a non-destructive way for judging the degradation level of
the electrodes of LIBs. A comprehensive study was done by
Wang [116], on the mechanical behavior of the electrodes.
The study was based on electrochemical conditions and the
mechanical loading conditions of batteries.

Future advanced BMS technology can be based on
improving and using some upgraded advanced sensing tech-
nology, such as holistic state of safety, multi-state joint
approximation, scalability, artificial intelligence techniques,
and comparative evaluation of various metrics. Multi-state
joint estimation is one of the most promising research direc-
tions for BMS [96]. Until now, only a few researchers
have addressed multi-state joint estimation (two-state). Most
notable is the joint approximation of SOH and SOC. Recently
published research papers suggest that the capacity or
resistance-based SOH estimation process is important to
update the estimation of SOC. Many algorithms such as par-
ticle filtering, Kalman filtering, adaptive filtering, non-linear
predictive filtering, and extended Kalman filtering have been
used to estimate SOH [117]–[120]. These approaches are also
important for the two-state joint approximation of the SOH
and SOC.

2) REVIEW OF SOP, SOE, AND SOT ESTIMATION
SOP, SOE, and SOT are the other key parameter estimations
required in a BMS. SOP is defined as the usable supply of
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power by a battery or the engaging power from the system
power train in a horizontal period [121]. SOE is another key
BMS parameter and several proposals were made for SOE
estimation. The most utilized applications are the reliable
assumption of the driving mileage in electric vehicles [122],
[123]. The estimation of the SOT is still a new concept in
BMS, while only a few studies can be found in the literature.
[124], [125] provided the internal battery temperature with
temperature distribution, from which SOT can be estimated.
In [126], both SOC and SOP were used for dual-state joint
estimation. Another research shows the hybrid state estima-
tion for SOE and SOP [122]. A co-estimation of state also
proposed considering SOP and SOE in [127], [128]. The
possibility of multi-state estimations is promising but it still
has its limitations [96]. In a real application, more multi-state
estimation relationships can be found. However, the current
research level only provides three battery state estimation
workings [129], [130]. There is considerable scope for further
research possibilities in multi-state joint estimation for BMS.

3) REVIEW OF SOS ESTIMATION
Previously safety was considered as a system attribute but
now it is one of the key issues in system state estimation [96].
SOS is perhaps the most anticipating issue in the field of
research on BMS and battery state prognosis [96]. However,
the implementation of SOS estimation is changing gradually.
Like other common battery states, SOS also provides the bat-
tery state information considering safety measurements [96].
In 2020, the thermal runaway phenomena of LIB with com-
putational identification, and safety regimewas introduced by
internal short circuit test. This made a computational recogni-
tion of the safety arrangement of LIB thermal runway [131].
For future work, SOS with other state estimations
(SOT, SOE, SOH, SOP, SOC) can be joint and the result of
this multi-state joint estimation may provide more accurate
and reliable BMS.

Lithium-ion batteries comprises of ignitable components
and may go to unpredictable catastrophic failures (CF),
together with the release of electrolyte vapors, explosion,
fire, and related let out of smoke [132]. During the mechani-
cal loading process, Li-ion batteries experience mechanical
deformation leading to an internal short circuit (ISC) that
evolves into a thermal runaway (TR). This process involves a
transient series of mechanical, thermal, and electrochemical
events that evolve with time in a complex manner that has
prevented deeper understanding of LIB failure modes [133].
Again, some accidents are caused because of external short
circuit (ESC) of batteries. ESC faults can be triggered under
any circumstances, for example, deformation of a battery
pack during EV collision and water or oil leakage in a bat-
tery pack. Once an ESC fault occurs, it may cause a dra-
matic increase in battery temperature, which would result
in thermal runaway [134], [135]. For this, it is necessary
to study the thermal behavior of batteries under ESC faults
for battery safety management [136]. Li3V2(PO4)3 (LVP)
and Li4Ti5O12 (LTO) were chosen as the cathode and the

anode to build a full battery in [137] owing to their robust
structures. The paper reported that no visible degradation
was perceived in both electrodes over 500 cycles. In addi-
tion, the relatively high voltage of LTO anode ensures the
safe rapid charge and discharge (no dendrite growth) and
the minimal or no initial loss of lithium ions as there is no
formation of SEI layer. A lot of variables are used to describe
the safety of a battery. Cabrera-Castillo et al. [138] presented
some variables which are more relevant for a LIB consists
of a carbon-based material as negative electrical conductor,
and a lithium-metal-oxide material as positive electrical con-
ductor. The listing may differ for different types of energy
storage.

1) Temperature: Due to over temperature, the dynamic
material and the SEI layer will start to break down.
This will result in chances of thermal runaway and
exothermic reactions [139], which may cause fire and
explosion [12]. And due to low temperature, the reac-
tion rate is significantly reduced. On the negative elec-
trode, the attempt of charge or discharge may cause
metallic lithium depositing. This may lead to dan-
ger of internal short circuits and permanent loss of
capacity [140], [141].

2) Current: Joule heat production is a part of
current [142]. In case heat is not discharged faster
then the heat generation by a battery. It may cause
thermal runway. Another reason of lithium plating is
high current charge in the negative electrode and this
may cause danger [143].

3) Voltage: Due to over-voltage (over-charge), decompo-
sition is introduced both in electrolyte and the positive
electric conductor. This results in the generation of
gas and heat [144], [145]. In the negative electrode,
the under voltage (over discharge or deep discharge)
causes the lithium plating. This also results in dissipa-
tion of the copper current gatherer. This can eventually
produce copper dendrites, enhancing the probability of
internal short circuits [138].

4) SOC: For the increased amount of SOC, a high amount
of energy possibly freed as fire or heat at the time of a
disastrous situation [146]. Therefore, it can be said that
SOC and safety are inversely proportional.

5) SOH: In this case two incidents can be noticed. Firstly,
an older battery having low SOH won’t hold the same
amount of charge like a new device. So, it will contain
lower SOCwhich will lower the factor of risk. The sec-
ond one is an old batterymay have signs of lithium plat-
ing and swelling or may already contain damage on the
separator and the electrodes [138], [143]. As a result,
an old battery may be more prone to accidents [143],
[147]. Further, the SOH is a significant aspect that must
be admitted to thought when thinking about the chances
of storage devices 2nd life. The danger demonstrated by
the irregular nature of internal short circuits and in the
negative carbonaceous electric conductor the metallic
lithium plating is significantly risky for second life uses
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of LIBs. Regarding this, if a sufficient level of safety is
assured by the carried-out tests and the aging history
is adequately given the aged batteries then only be
allowed for further use.

6) Mechanical Distortion: Mechanical distortion is
obtained by the strain of the battery, by comparing its
original dimension to a distorted dimension. It can also
be obtained by calculating the stress that could develop
such strain. However, the reasons of strain is because
of compression or external impacts [138], or may be
for ageing and lithium plating [143], or perhaps natural
expansion during intercalation [148].

7) Internal Impedance: The increase of the SEI layer
is typically pointed by a heavy resistance in the
negative electric conductor. This increase of SEI
section inevitably consumes electrolyte and lithium-
ions, which brings down the capacity, this eventually
increases the impedance [138]. After manufacturing
the cell, when the increase in impedance occurs primar-
ily during the first cycles, SEI layers can be considered
stable. The growth of SEI layer remains at the lifespan
of system with a shortened rate. The access of the
electrode surface for ion intercalation also decreases
by the increase in the SEI section. Hereby, it bounds
the doing of fast ionic transport while not necessarily
decreasing capacity. This results in a power capabil-
ity reduce. The erosion of electronic and mechani-
cal connection of the electric conductor particles is
another source for impedance increase. It works as
catalyst in the regular increase and shortening of the
carbon framework at the time of intercalation and
deintercalation. However, it can also occur because
of the binder material decay [149]. Positive electrode
may contribute to ageing and increase in impedance
because of passivation layer development upon its sur-
face which will reduce the active materials availability.
On the other hand, positive electric conductor incre-
ments impedance up to 2 to 5 times while compared
to the negative electrode [150]. Therefore, impedance
changes often demonstrate battery aging by decreasing
the battery effectiveness and current capacity each in
charge-discharge. Thus, SOC, current rate, and temper-
ature effects and changes the impedance result. There-
fore, these conditions should be considered in which
the measurements are done.

Overheating, external short circuit, and internal short cir-
cuit are the three most common triggers of safety concerns in
the operation of Li-ion battery [151]. Any of them can lead to
failure of a battery or even an entire battery pack. To ensure
the best battery safety and optimal performance SOH calcula-
tion and diagnostics is verymuch crucial. However, the listing
above is not final and more variables has to be considered for
better evaluation.

Table-3 represent the comparative advantages and disad-
vantages of various methods used in estimating battery states
of LIB.

IV. RUL PREDICTION APPROACHES
RUL is determined as the period when a function of an
apparatus decreases to the failure doorstep for the first earliest
time [15]. The prognostic method provides information about
a system that provides a warning of future failure of the
system [176] and is used for the approximation of RUL
in various engineered systems such as batteries, EV, and
industrial equipment. The RUL of a system or an asset is
explained as the extent from the present period to the period
at the expiration of useful life [177]. The major job of RUL
estimation is to prognosis the period left prior to the system
drops below its functioning ability depending on the condi-
tion monitoring particulars. The RUL prognostics methods
can be categorized into four classifications in proportion to
their fundamental approaches and procedure, i.e., physics
model-based techniques, statistical model-based techniques,
AI techniques, and hybrid techniques [176]. Figure 9 shows
the categories of RUL prediction approaches. A prognostic
procedure for bearing failure and comparison of various RUL
prognostic methods can be found in [178]. In general, the pri-
mary elements of the RUL prognostic procedure can be cate-
gorised into three steps- feature selection, health assessment,
detection and prediction triggering [179]. Several types of
sensors can be utilized for collecting data from the observed
equipment. Depending on this data, the actual fitness states
can be traced by selected criteria. A degradation replica is
usually connected to failure time by joining historical data
with the failure occurrence. To link monitoring information
with RUL, Bayesian-based models are useful with the maxi-
mum likelihood estimation process to get unknown param-
eters [179]. The degradation process and RUL are closely
related. Because most degradation processes can be reflected
by vibration features, and the importance of vibration analysis
is articulatedi.n [180]. The 1st action in RUL prediction is
to analyze the decaying procedure. To process monitoring
data, filtering procedures are commonly used. A conventional
approach to process observing information is Kalman filter-
ing [179], which is a numerically periodic digital processing
approach for the prediction of the condition of a dynamic
system [181]. An extended Kalman filtering method was
proposed in [182]. To set up a conditional prognostic density
operation for RUL of a system part, the Kalman filtering
method was merged with condition monitoring particulars.
In [182], the establishment of a model for RUL prediction
was also introduced.

A. STATISTICAL MODEL-BASED APPROACHES
Statistical models predict the initial impairment and devel-
opment according to the preceding observation findings on
the same systems. The approach does not require data for
the system aging but needs a considerable amount of the
effectual data set [183]. Statistical modeling methods are
widely used in RUL prediction to analyze data that has been
gathered previously and for observational studies of existing
data. The statistical models can describe the predictability of
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TABLE 3. Comparison of various methods to estimate different states of LIB.

the degradation approach and its impact on RUL estimation.
This prediction approach is the most used approach of the
four approaches shown in Figure 9.

B. ARTIFICIAL INTELLIGENCE (AI) BASED APPROACHES
AI-based approaches develop the system degradation models
by applying AI techniques to available observations [30]
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FIGURE 9. RUL prediction approaches.

to fit the variable degradation pattern. By generaliz-
ing the parameters to the failure threshold, the RUL is
determined [184].

C. PHYSICS-BASED APPROACHES
Physics-based approaches are focused on the specific chem-
ical and physical phenomenon that impacts battery function-
ing and finds the details of performance evaluation [22]. Even
so, this is not possible to build a perfect model for battery
simulation as many components interact with each other and
affect the degradation of battery function, particularly since
degradation of the battery is active and non-linear. Since it
is hard to observe a battery’s inner conditions in real time,
an exact physical model is difficult to obtain [185].

D. HYBRID APPROACHES
The hybrid approach is a combination ofmore than onemodel
in order to accumulate their superiority and overcome indi-
vidual restrictions to update the RUL prediction output. The
hybrid approach usually has two categories: the hybridization
of both data-driven plus model-dependent procedures; on
top of the integration of various data-driven process [186].
A hybrid randomized learning-based ensemble data-driven
SOH assessment and RUL prognosis method is suggested
in [187] to accurately predict the RUL and SOH of LIBs.
The extreme learning machine (ELM) and Random Vec-
tor Functional Link Neural Network RVFL are applied for
hybrid learning. A health indicator is selected as featured
inputs to predict the degradation trend of input. The nonlinear
autoregressive (NAR) structure is designed to decrease the
RUL prediction error of each learning model. Here, the RUL
prediction accuracy result is provided with 99% confidence.

The Table-4 represents a comparative study of the basic
advantages and disadvantages of various RUL prediction
models.

V. RUL ESTIMATION METHODS FOR LIB
RUL estimation predicts the ineffective period of a battery
and minimizes the danger for batteries by evaluating the
cell condition [202], which is the main factor in planning
proper maintenance and decreasing mishap risks [203]. RUL
estimation accuracy is not always sufficient because of a
lack of data availability, model complication, and system
limitations. Consequently, different models are applied with
various methods to predict the RUL to the most accurate
level possible. Even though the aging level of a battery can-
not be measured directly, the remaining battery life can be
estimated, which can then be used to calculate the ageing
level of battery [204]. As shown in Figure 10, RUL method-
ologies can be categorize into four classes: adaptive filter
methods, intelligent methods, stochastic methods, and other
methods [27]. These classifications are discussed later in this
section.

FIGURE 10. RUL estimation methods for LIB.

The procedure for RUL estimation is given in Figure 11.
In figure 12, a general LIB RUL estimation procedure is
shown. The individual cell of a LIB reliability test data is
given to a model which verifies the data to estimate the RUL.
Several steps, called filtering, are performed for the data
validation.

A. ADAPTIVE FILTER TECHNIQUES
In image processing, adaptive filters are generally applied to
restore or enhance data by separating noise. The following are
some adaptive filter techniques applied in the RUL prognosis
of Li-ion cells.
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TABLE 4. Comparison of RUL prediction models.

FIGURE 11. Basic RUL prediction procedure.

FIGURE 12. Li-ion battery RUL estimation procedure.

1) UNSCENTED KALMAN FILTER
In 2015, a method was introduced in [205] using Rele-
vance Vector Regression (RVR) with Unscented Kalman
Filter (UKF) and this was implemented to RUL progno-
sis with short-term capacity approximation of battery cells.

The suggested model promises greater accuracy and assur-
ance than Extended Kalman Filter (EKF). Xue et al. [206]
suggested a combined algorithm in 2019, which inte-
grates genetic algorithm optimized support vector regres-
sion (GASVR) and adaptive unscented Kalman filter (AUKF)
to improve the accuracy in RUL approximation for Li-ion
cells. The suggested model was demonstrated to attain better
approximation accuracy than available techniques such as
the unscented Kalman filter, extended Kalman filter, adaptive
unscented Kalman filter, adaptive extended Kalman filter
(AEKF), and relevance vector regression. Again in 2019,
the UKF method has been hybridized with a back propa-
gation (BP) neural network to improve the approximation
accuracy of RUL of LIBs in [207]. The BP neural network
approximates the residual of UKF by auto-regressive form.
The UKF uses the estimated residual to update the degrada-
tion model framework recurrently. The simulation shows that
the suggestedmethod gains far better approximation accuracy
and is more adaptive to the degradation features of various
approximation start points of several individual batteries. The
paper describes the battery capacity attenuation equation as:

Q = aebk + cedk (1)

Here, battery capacity is Q, the d, c, b, a contains noise and,
k is the cycle.

2) UNSCENTED PARTICLE FILTER
In 2013, an improved unscented particle filter (UPF) algo-
rithm was developed to predict battery RUL [208]. The paper
described the UPF algorithm and PF algorithm individually
and then built a degradation model depending on the under-
standing of Li-ion cells. The estimation result was obtained
through the UPF algorithms and degradation model. After
analyzing the outcomes, it was observed that UPF predicted
the actual RUL with 5 percent less error. In 2014, another
improved UPF method was developed in [209] for analyzing
the RUL of storage cells. Sigma specimens of unscented
changes in conventional UPFs were produced by remarkable
value decomposition. The sigma points were generated by
the standard unscented Kalman filter to produce a convo-
luted suggesting allocation. Studies show that the perfor-
mance of this method was more promising than the UPF.
Zhang et al. [210] suggested an improved UPF approach
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dependent on linear optimizing combination re-sampling to
upgrade the result exactness. It was observed that the sug-
gested method promises greater accuracy in the RUL prog-
nosis of LIBs, contrasted besides the available PF-dependent
and UPF-dependent methodologies. A comparison of differ-
ent particle filtering methods is shown in Table-5 accord-
ing to their errors during 100 independent runs. A better
unscented particle filter (IUPF) method was suggested in [17]
for LIB RUL estimation depending on Markov chain Monte
Carlo (MCMC). Themethod applied theMCMC to overcome
the issue of specimen destitution inside the UPF process.
Additionally, the IUPF method is suggested on the basis of
UPF, so it can also restrain the particle degradation being
in the standard PF algorithm. In 2020, [211] presented a
novel hybrid method using UPF with optimized multiple
kernel relevance vector machine (OMKRVM) for making
up the deficiencies of single methods in LIBs RUL estima-
tion. When the UPF-OMKRVM method is compared with
the traditional methods, the test outcome ensures that it has
great prediction accuracy in li-ion battery SOH and RUL
estimation. A novel PF framework based on conditional vari-
ational autoencoder (CVAE) and a re-weighting strategy was
proposed in [212] RUL estimation of batteries. From the test
results the paper claims that the method has achieved more
accurate prediction results compared with some traditional
methods.

TABLE 5. MSE of different particle filtering methods for 100 independent
runs.

3) SPHERICAL CUBATURE PARTICLE FILTER
In 2016, [213] proposed a technique to estimate the RUL of
LIBs. For cell capacity, the state-space model was initially
built to compute cell charge degradation. A spherical cuba-
ture particle filter (SCPF) was then applied to identify the
solution to the state-space model. The study showed that the
suggested model was more effective in RUL prediction than
the available PF-based prediction algorithms.

The equation for spherical cubature integration and the
standard PF represents the mean and variance of the trans-
formed variable.∫

f (ε)N (ε|0, 1) dε ≈
1
2n

∑
k

f
(√

nuk
)
;

k = 1, 2, 3 . . . 2n. (2)

Here, ε is the multidimensional unit Gaussian distribution
having a unit covariance matrix and zero mean, and uk is the
unit vector generated from a symmetric set.

B. INTELLIGENT TECHNIQUES
Artificial intelligence techniques are now utilized in the pro-
cedure of inspecting data-rich and complex data in semantics
as well as for modeling intelligent information models. The
RUL of batteries is also estimated using various intelligent
techniques. A few of the techniques are discussed in the
following.

1) ARTIFICIAL NEURAL NETWORK (ANN)
ANN is a well-recognised machine-learning algorithm which
are widely used due to their ability to discover non-linear
relationships between variables [214]. [215] proposed a way
of approximating the RUL of Li-ion cells depending on
the long short-term memory model, empirical mode decom-
position, and deep neural network (DNN). The suggested
approach yielded a more exact prognostic outcome than the
hybrid model of auto-regressive integrated empirical mode
decomposition. Mao et al. [216] developed a Sliding Time
Window (LSTM-STW), Long Short-Term Memory Net-
work, and Sine or Gaussian function, Levenberg-Marquardt
algorithm (GS-LM) hybridization battery cells RUL esti-
mation process depending on ensemble empirical mode
decomposition (EEMD) in 2020 to calculate inaccuracy
in RUL prognosis. The outcome showed that the method
promises high accuracy predictions. The suggested process
was more efficient than any other battery RUL prediction
process. Qu et al. [217] presented a neural network-dependent
method in 2019, which hybridize particle swarm optimiza-
tion acompanied by long short-term memory (LSTM) net-
work with an attention procedure for RUL prognosis and
SOH observation of the LIBs. A data set of Lithium-ion
cells offered by NASA was applied to judge the suggested
method and the test showed that the proposed process has
greater accuracy than the traditional process. In 2018, [202]
investigated a deep-learning-enabled battery RUL estimation.
The LSTM recurrent neural network (RNN) was engaged to
study the long-term reliances amid the degraded capacities of
Li-ion cells. The established process was able to approximate
the RUL of cells and does not require any offline training
data. If any offline data is available, the RUL can be esti-
mated faster than in conventional processes. Earlier in 2016,
the relation between the charge curve and RUL was pro-
duced by the feed-forward neural network (FFNN) because
of its clarity and efficiency [218]. However, the FFNN with
importance sampling was shown to be an accurate predic-
tion method for RUL estimation. A multi-factor optimization
process for RUL prediction of LIBs is proposed using a
novel data driven process. The method applies the technique
for order preference by similarity to ideal solution (TOP-
SIS) method. This process is dependent on improved particle
swarm optimization (PSO), information entropy, and moving
average filter (MAF) for multi-parameter optimization. This
method gives a great estimation accuracy under the both
low and high temperature condition and use less training
data [219]. A prediction-based test optimization method was
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shown in [220] for decreasing cycle test with estimated lifes-
pan for Li-ion batteries. A hybrid transfer-learning method
automatically selects historical test data and trained model of
other formulations to help construct models of the target bat-
teries. It can improve prediction accuracy despite short-term
test data containing insufficient global degradation informa-
tion. A new RUL prediction process dependent on LSTM
was proposed in [221] to predict RUL in the comportment
of capacity regeneration phenomenon. Multiple measurable
data from BMS such as temperature charging profiles, volt-
age, and current were accounted for whose forms is changed
by aging. In contrast to the conventional LSTMmethodwhich
equalizes output section accompanied by input section like
one-to-one configuration, the paper supports many-to-one
configuration to be adaptable towards different input cate-
gories along with considerably decrease the amount of vari-
ables for finer generalization. In 2020, Auto-CNNLSTM
method for RUL estimation was suggested in [222]. The
model is developed depending on deep convolution neural
network (CNN) and LSTM to mine deeper information in
finite data. An auto encoder utilizes to augment the dimen-
sions of data for increased effectiveness in the training of
CNN and LSTM.

The Figure 13 represents the output as a outcome of the
transmission of given data through layers and neurons. This
is a sort of distributed representation. Single artificial neu-
ron has the meaning of local representation. As a result of
transformation across layers and neurons, the entire network
has a meaning of distributed representation. In a training
process, ANN models are regulated to limit the fault within
the actual output and the model outputs. This is dependent
on the training data set including the outputs of the set of
corresponding input vectors. The performance function can
be expressed as:

MSE =
1
N

N∑
k=1

(yk − dk)2 (3)

where N represents the amount of training output and input
pairs, dk the actual output, and yk the model output.

2) SUPPORT VECTOR MACHINE
In 2019, a process for RUL prediction of Li-ion cells which
employed a support vector regression (SVR) and an artificial
bee colony (ABC) was suggested to better the estimation
result [225]. A simulation with test data was run with the help
of NASA Ames Prognostics Center of Battery Excellence
data sets to validate the suggested process. Results showed
that framework enhancement with the ABC algorithm was
robust compared to that with the PSO process. Moreover,
the ABC-SVR process has greater accuracy than PSO-SVR
as well as over and above available processes. Again in 2019,
a perfect partial discharge data (PDD)-dependent SVM pro-
cess was suggested through to RUL estimation [224]. This
suggested method performed the task of extracting the criti-
cal characteristics from the electromotive force and thermal

FIGURE 13. The artificial neural network structure for RUL prediction.

change of PDD for instructing the SVM method which was
then used to predict RUL. In electric vehicles, this process can
be used for online RUL prediction. A perfect SVR dependent
cell SOH state-spacemethodwas built for cell RUL prognosis
and SOH assessment was proposed in [237]. The results
showed that the suggested SOH approximation method had
an exact and robust outcome. The paper used the following
equations to create a state space method to predict cell degra-
dation factor:

λR(i) = λR(i− 1)+ w1(i) (4)

xR(i) = xR(i− 1)exp(λR(i− 1).1i)+ w2(i) (5)

R(i) = xR(i)+ v(i) (6)

where i represents the cycle number, λR(i) is degradation
factor at cycle amount, smoothed impedance value is x(R),
and w1(i), w2(i), and v(i) is output noises and system.
The first two equations are considered as state equations,

and the equation number three is output equation.
A novel method was suggested for RUL prediction of

LIB in [230] which combined regression and classification
of support vector machine. The process for RUL predic-
tion was established dependent on the critical characteris-
tics using SVM. In 2014, [102] used the Support Vector
Regression-Particle Filter (SVR-PF) to predict RUL of bat-
teries. The suggested RUL prediction method obtained better
outcomes and the SVR-PF had better prognostic capability
whan compared with the good quality particle filter (PF)
method.

3) RELEVANCE VECTOR MACHINE
By applying the gray model (GM) and the relevance vector
machine (RVM) alternately, [226] estimated battery RUL
and SOH. The RVM and GM corrected each other’s prog-
nostic outcomes continuously, which helped in reducing the
final prediction error. Test outcomes along the NASA data
set showed that the suggested process might exactly build
the degradation model and obtain a finer outcome for RUL
prediction when contrasted with using only RVM or only
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the GM process. Liu et al. [229], implemented an online
training model in the RVM algorithm to improve the esti-
mation result and introduced an increasing enriched RVM
algorithm to the model with the help of a well-organized
online training process. The suggested online trainingmethod
achieved an enriched prognostic result and also improved
the operating efficiency for battery RUL prediction. In 2017,
an RUL prognosis process dependent on the Relevance Vec-
tor Machine (RVM) and Deep Belief Network (DBN) was
suggested in [228]. This hybrid approach usedDBN to extract
characteristics from the capacity decadence of LIBs andRVM
to utilize the retrieved characteristics to estimate RUL from
the CALCE cell data sets. Wang and Feng [87] extracted a
novel health indicator (HI) from the battery current profiles
that can be directly measured online. Furthermore, the indica-
tor is optimized by Box-Cox transformation. This was eval-
uated by correlation investigation for degradation modeling
accurately. The RVM formula is used to make a prognosis
for battery RUL based on the extracted HI.

For a considered data set the outcome of a regression
formula is given by:

t = y (x)+ ε (7)

whereN is the data sample number, nonlinear function is y(x),
and noise term subject is ε which is independent additive.

4) DEEP NEURAL NETWORK
Ren et al. [238], proposed a deep learning approach inte-
grating with autoencoder (Alternating Deep Neural Network-
ADNN) for multiple lithium-ion battery RUL predictions.
To constitute battery health degradation, the authors proposed
21- dimensional feature extraction method accompanying the
autoencoder model. The method was applied to a dataset
provided by NASA. Using deep neural networks (DNN)
data-driven model was presented to estimate both SOH and
RUL of LIBs [239]. The result of the work was tested in
the LIB dataset provided by the NASA Ames Prognostics
Center of Excellence (PCoE). This result was also contrasted
with variousML-based formula results. However, their model
was in the preliminary stage and only used a deep neu-
ral network to build the deep learning model. Fractional
Brownian Motion (FBM) which is a non-Markovian method,
was suggested to prognosis the RUL of Li-ion cells [240].
The parameters of the model were predicted applying max-
imum likelihood prediction. The Hurst exponent was esti-
mated using the fly optimization algorithm. Chen et al. [241]
investigated the RUL prediction of LIBs using hybrid
data-driven method employment based on error compen-
sation (EC) and Support vector regression (SVR). They
implemented the idea of EC by combining the predictions
of RUL prediction with phase-space reconstruction SVR
(PSR-SVR) and forecast error. The key parameters were uti-
lized with a generic algorithm (GA) for better accuracy. They
also verified the effectiveness of their work using a dataset
of LIBs provided by NASA. Zhang et al. [242], showed that
the gaussian process regression (GPR) can predict the RUL

and estimate the capacity of LIBs utilizing electrochemical
impedance spectroscopy (EIS). They generated the largest
dataset totaling over 20,000 EIS spectra with a wide range
of frequencies at various states of capacity and temperature.
The model was more accurate than conventional methods.

C. STOCHASTIC TECHNIQUES
1) GAUSSIAN
In 2020, short-term SOH estimationwas completed by adding
the Gaussian process regression (GPR) approach with prob-
ability prognostics [232]. The SOH value along with three
Indirect Health Indicators (IHI) was applied to forecast the
RUL of Li-ion cells using the GPR method. Earlier in 2019,
a perfect process combined secondary health indicator (HI)
and many Gaussian process regression (GPR) processes to
predict RUL for batteries [178]. The HIs were used to extract
features in the constant-voltage and constant-current chang-
ing method and the GPR model was utilized alongside the
merged kernel functions for better prediction of capacity
regeneration. The estimated capacity was used to contrast
with the threshold to achieve the RUL estimation outcome.

2) WIENNER
Tang et al. [234] suggested a perfect RUL prognosis approach
for Li-ion cells depending upon Wiener process alongside
measurement error (WPME). The truncated normal dis-
tribution (TND) dependent modeling method for the pre-
dicted degradation level was used to gain a closed-form and
accurate RUL distribution by considering the allocation of
the predicted drift factor and the measurement uncertainty.
The maximum likelihood estimation (MLE) approach for
population dependent parameter prediction was used for the
better RUL estimation accuracy. The model is stated by:

Y (t) = X (t)+ ε = λt + σBB(t)+ ε (8)

Here, Y(t) is the degradation phase containing
the measurement error, X(t) the is degradation step absent
of measurement error, λ represents drift parameters, ε is the
measurement error, σB(t) is the diffusion factors, and standard
Brownian motion is expressed as B(t).

D. OTHER TECHNIQUES
1) ARIMA
ARIMA or autoregressive integrated moving average mod-
els are loaded with time series data for estimating future
points in the series or to characterize the data better than
ARMA [243]. In 2016, a perfect method that combined the
autoregressive integrated moving average (ARIMA) model
and empirical mode decomposition (EMD) was suggested
in [235] for the RUL prognosis of Li-ion cells. First, EMD
and then the ARIMA model was applied to estimate the
capacity regeneration and global deterioration trend. This
prediction was used to achieve a SOH estimation from which
the RUL was predicted. This model performed better and
achieved more accurate results than monotonic echo sate net-
works, relevance vector machines, and ARIMA-only models.
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The ARIMA model general form is expressed as:

φ (B) . (1− B)d .x (t) = θ (B) .ε (t) (9)

here, ε (t) is the arbitrary error series which is imagined to
be a white noise containing an equal variance and zero mean,
backward shift operator is B, x (t) is the SOH series, and d is
the order of the distinct computation operator respectively.

2) BAYESIAN
A naive Bayes (NB) based method was suggested for the cell
degradation approach to estimate RUL considering various
current rates and ambient temperatures [236]. When in con-
stant discharge environments, the RUL can be estimated with
the NB approach without the accurate values of the function-
ing parameters. Comparative Studies between various meth-
ods show that the prognosis results outperformed SVM in
terms of robustness and accuracy. A probabilistic method for
battery degradation modelling and health prognosis based on
the features extracted from the charging process is presented
using the dynamic Bayesian network in [244].

The Bayesian learning for a new recognized data sample,
can be denoted as:

p
(
tN+1|t

)
=

∫ ∫ ∫
p
(
tN+1|w,α,σ 2

)
× p

(
w, α, σ 2

|t
)
dwdαdσ 2 (10)

where, α is a vector of N + 1 hyper-parameters, w is the
corresponding weight vector, and σ 2 is variance.

E. EVALUATION MATRICES
Some traditional matrices are applied to evaluate and assess
the estimation performance and accuracy of a model. Exam-
ples include RMSE, ERMSE, mean absolute percentage
error, EMAPE, mean absolute error, EMAE, prediction error,
ERUL, and relative error ERA are used to indicate the perfor-
mance and accuracy of RUL estimation [206]. The equation
form of these matrices can be denoted as:

ERMSE =

√√√√1
n

n∑
k=1

(yk − ŷk )2 (11)

EMAE =
1
n

n∑
k=1

∣∣∣∣ (ŷk − yk )yk

∣∣∣∣ (12)

EMAPE =
100%
n

n∑
k=1

∣∣∣∣ (ŷk − yk )yk

∣∣∣∣ (13)

R2 = 1−

∑n
k=1(yk − ŷk )

2∑n
k=1(yk − ȳk )2

(14)

ERUL =
∣∣∣Rt − Rp∣∣∣ (15)

ERA = 1−

∣∣∣∣Rt − RpRt

∣∣∣∣ (16)

Here yk indicates the actual battery capacity, ŷk indicates
predicted battery capacity, Rt is the true RUL result,and
Rp describes the RUL prediction value.

For the ERMSE, EMAE and ERUL indicators, the closer the
value gets to 0, the higher is the prediction accuracy. And for
R2 and ERA, when the value is close to 1, the prediction result
is more accurate.

VI. DISCUSSION AND SCOPE FOR FUTURE WORK
The main goal of this review is to review various battery RUL
prediction approaches and battery management systems, and
to provide sufficient information about commercially or pub-
licly available battery data sets. Initially, a overview of the
LIB data acquisition system was provide; figure 2 will help
understand the overall data acquisition and RUL estimation
process. In section 2, various commercially and publicly
available battery data information was given, from which
the required information about the data set of batteries may
be extracted. Table 1 provides various information about
those data sets. A brief discussion about battery manage-
ment can be found in section 3. The process of generating
a battery data set was generalized for both simulating and
experimental data sets using a data acquisition card. Various
RUL predictionmethods with related terms andmathematical
modelling are given in section 4. Different RUL prediction
approaches considering LIB RUL estimation, is discussed
in section 5. Table 2 compares different RUL prognostics
techniques. The main goal of this review was to give a com-
prehensive overview of data acquisition and RUL prognostics
of Li-ion batteries. Miscellaneous RUL prediction methods
are classified into a statistically-based model, hybrid model,
Artificial intelligence-based model, and physics-based model
and compared with advantages, limitations, and applications
from several research papers. Many RUL prediction methods
are not yet applied to prognosis the RUL of LIBs. Conse-
quently, there is considerable future work scopes:

1) A fusion of data-drivenmethods alongwith other meth-
ods may achieve more reliable RUL prognostics for
Li-ion cells.

2) The more reliable data source may be obtained to gain
high accuracy in RUL estimation.

3) Advance battery management can be investigated
using multi-state joint estimation of various states
(SOC, SOE, SOP, SOH, SOP, SOT, SOS).

4) Battery management future research trends could con-
sider the use of artificial intelligence, big data, and
machine learning algorithms.

The literature review shows that hybrid RUL estimation
methods have gained better accuracy and less errors in the
estimation process. Fusion of various estimation methods can
further develop the accuracy and play a role in the providing
better RUL estimation.

VII. CONCLUSION
The battery is the power source for many consumer elec-
tronics, mobile phones, laptop computers, electric vehi-
cles, spacesuits, submarines, rovers, and other devices that
require with stored power. Research in this area is attracting
greater attention from scientists, engineers, and researchers.
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TABLE 6. Comparison studies of various RUL prediction methods.

The review was conducted on the detailed aspects of battery
functioning, data sets, battery management, and RUL predic-
tion approaches. The most notable parts of this review are:

1) Battery data acquisition and available datasets: Data
is the most vital and basic element in carrying out
any research and there are very little good informa-
tion available for commercially and freely available
data sets of batteries. None-the-less, this review has
detailed those battery data sets that are available pub-
licly and commercially, to assist researchers searching
for suitable battery data sets. A process of generating
simulation-based and experimental data sets can be
found in figure 2. Moreover, in table 1, a comparison of
various data sets is also given which also includes data
category, format, and other parameters information.

2) Battery Management System and future research
trends: The development of a proper battery manage-
ment system is a research topic currently attracting
considerable attention. In this part of the review,
many battery management terminologies with related
research work were reviewed. A basic battery manage-
ment system concept was illustrated in figure 6, and
future research trends were discussed.

3) RUL prediction approaches and comparison among
various RUL prediction techniques with over
150 research reviews: Considering the importance
of RUL prediction of battery and other systems,
many RUL prediction techniques were reviewed
including future research directions. Table 6 provides
a comparison of RUL prediction techniques with their
operating condition and accuracy.

4) Battery RUL prediction algorithm review: RUL esti-
mation techniques used for battery RUL estimation
were reviewed, including techniques such as: adap-
tive filter techniques, intelligent techniques, stochastic
techniques, and other techniques.

RUL prediction is one of the prime concerns in the BMS.
This paper summarizes the important RUL prediction
methods and available data sets of LIB. RUL prediction
approaches and algorithms for LIB are reviewed. Some online
and offline available data sets for battery RUL prediction
are described in the data acquisition section. A quantitative
comparison of RUL prediction methods is provided to bet-
ter understand the processes and the prediction results. The
progress and successes during the last decade of various
RUL prediction methods and algorithms are discussed in the
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RUL estimation methods section. Still, there are many types
of research ongoing to improve the battery management sys-
tem. However, various uncertain factors create amajor impact
on the accuracy of the RUL prognostics and uncertainty
has become a critical concern in the LIB RUL prognostic
research. Further research is required in this field.
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