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ABSTRACT State-of-the-art software technologies have enabled Higher Education Institutions to record and
store large amounts of student data. Analyzing this large amount of data can facilitate the decision-making
process. Decisions made in higher education institutions affect policies, strategies and actions that improve
education quality. It can be argued that machine learning algorithms demonstrate a remarkable ability to
recognize models and predict results based on data. However, machine learning outcomes were subject to
bias and erroneous labelling. Consequently, to mitigate the impact of such errors in decision making, it is
necessary to put in place mechanisms to correct decision rules. This article presents an approach to learn
decision rules through supervisedmachine learning and proves the correctness of these ruleswith hierarchical
Coloured Petri Nets. The use of formalism in the proposed methodology ensures that the decision rules are
correct and comprehensible. Empirical results show that we improved correctness with 98.68% accuracy on
decision rules. This research work contributes to the improvement of the decision-making process for the
academic administration of Higher Education Institutes.

INDEX TERMS Decision making, supervised machine learning, decision trees, formal verification, formal
methods, formal modeling, model checking, coloured petri nets.

I. INTRODUCTION
Modern software technologies have leveraged Higher Educa-
tional Institutions (HEIs) to store and process large amounts
of educational data to even at the smallest granularity like
student daily attendance records. Data storage is not sufficient
for administrators and managers to make decisions. Educa-
tion data, both systematically and manually stored, should
be analysed to provide an adequate presentation of relevant
information to support these complex processes [1]–[3].

The analysis of this large amount of stored data is crucial to
support academic decision-making at institutes. The Informa-
tion andCommunication Technologies (ICT) at institutes pro-
cess the data to support the decision-making process. Some
notable examples include Accounting Systems [4], Enter-
prise Resource Planning [5], and academic management [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Shagufta Henna .

The decisions of HEIs include administrative or academic
nature. Although there is significant progress in modern algo-
rithms’ speed and efficiency for information processing,more
efficient and user-friendly information processing systems
are needed to enable modern-day decision-making processes.

Machine learning (ML) algorithms, specifically Decision
Trees (DT), leverage the power of extracting decision rules
from large amounts of available data. Notably, machine learn-
ing algorithms show outstanding capacity for pattern recog-
nition and predicting outcomes from data. The ability to
produce models that can incorporate decision-making is their
biggest strength [7].

Decision trees, a supervised machine learning algorithm,
is among the best candidates to apply on educational data sets
for student activities and outcomes classification. A decision
tree [8], [9] is a mathematical decision support tool that rep-
resents the decisions in a tree structure. In literature, the deci-
sion tree is investigated in educational data analyses [1], [10],
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medical [11], protein secondary structure prediction [12],
internet of things [13], electrical systems monitoring [14],
and sentiment analysis [15], [16]. In many cases, it has been
extended to deal with data uncertainty [17].

Arguably, the machine learning algorithms have been
prone to bias, mislabelling, and technical debt [18]–[22].
Therefore, to mitigate such errors, there is a need for mecha-
nisms to prove the correctness of decision outcomes. Formal
verification is the process of establishing the correctness,
safety, and liveness properties of complex software and hard-
ware systems. Hence, formalism is a good candidate to verify
and validate machine learning outcomes [23]. Therefore,
formal verification can mitigate classification errors and pro-
vide a correctness guarantee of these classification outcomes
[24]. The formalism allows more rigorous decision-making
rules since formal models have a solid mathematical back-
ground to guarantee the correctness and comprehensibility of
these rules.

Coloured Petri Nets (CP-Nets) [25] is a type of Petri-
Nets [26] used in the modelling of systems that contain dis-
crete, concurrent, and scattered events. Specifically, CP-Nets
have strong mathematical logic associated with Standard
ML [27] programming language. They help model both
non-deterministic and stochastic processes and allow an
exhaustive systematic exploration of mathematical models
to prove, disprove, and guarantee correctness. These charac-
teristics make Petri-Nets a suitable formalism to model and
analyse machine learning outcomes.

Many studies have used supervised machine learning algo-
rithms to analyse educational data; our research differs from
the existing literature. (1) The data come from the academic
and demographic details of the students. (2) More diverse
and numerous features of data collection are included in the
analysis to achieve higher overall accuracy. (3) The use of
formalism has not been exploited before for guaranteeing the
correctness of machine learning outcomes.

This article addressed improved academic decision-
making in higher education institutes to facilitate HEIs
administrators and managers. The decision-making is aided
with decision rules which are derived using supervised
machine learning. The correctness of decision rules is ver-
ified using Coloured-Petri-Net formalism for mitigating the
classification errors and biasing. The proposed approach’s
effectiveness is measured using specificity, sensitivity, and
accuracy analysis of decision trees and CP-Nets simulation
outcomes.

The current study leverages the HEIs decision-making
authorities to analyse the admission application data
department-wise. The decision-maker can analyse decision
rules to make effective strategic decisions for increasing or
reducing student intakes to meet a particular department’s
capacity. It will provide insights for creating new pro-
gram offerings as well as resource optimizations for depart-
ments. The decision-making rules can improve the financial
resources by maximizing the use of available resources.

These decision rules are beneficial to HEI decision-makers
for the betterment of education policies. These research
results will help society by improving educational decision-
making to maximize the education facilitation to students.
In order to better generalize the findings, a data set was
analysed for six different departments of a higher education
institution.

The main contributions of this research work are:

1) We use supervised machine learning, specifically deci-
sion trees, for analyzing educational data sets to lever-
age improved decision making for Higher Educational
Institutes.

2) We propose the use of CP-Nets formalism to mitigate
classification errors and to prove the correctness of
decision rules.

3) We perform extensive experiments on the student data
set to illustrate the effectiveness of CP-Net formal-
ism implementation for guaranteeing the correctness of
derived decision rules.

The paper is organized as follows. First section II presents the
background and mathematical preliminaries. Then, the litera-
ture review is discussed in section III. Afterwards, section IV
discusses the materials and methods, and finally the conclu-
sion is presented in section V.

II. BACKGROUND AND MATHEMATICAL
PRELIMINARIES
A. HEI DECISION MAKING PROCESS
Higher Educational Institutes, autonomous in nature, are a
kind of tertiary sector who are responsible for the governance
and management of their finances, activities, and personnel.
They autonomously own the responsibility of decisions about
institutional priorities, strategies, goals, resource allocation,
and accountability for these decisions [28]. Specifically, HEIs
have three types of governance to manage the operational and
managerial behaviors, including academic, bureaucratic, and
corporate [29].

1) ACADEMIC
Faculty members hold the authority and decision making
powers in academic activities like teaching, curriculum, aca-
demics, and administration.

2) BUREAUCRATIC
They have management layers with divisions of work-
force characterized by procedures, fixed administration, and
directly ordered by higher leaders.

3) CORPORATE
Students are considered the core customers of HEIs. The
marketing activities required for retaining and acquiring
students [30]. Decision making for marketing activities as
required by other business enterprises to meet customer needs
and market competition needed for HEIs.
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B. COLOURED PETRI NETS
Petri nets originated from the dissertation by C. A Petri
in 1962 [26]. It is a bipartite directed graph populated
of places, transitions, and directed arcs. In Petri nets,
places and transitions are connected with directed arcs. Petri
nets provide an excellent modeling formalism for systems
that are concurrent, asynchronous, distributed, parallel, or
non-deterministic.
Definition 1: Formally Petri nets can be defined as a tuple

Pn = (Pl,Tr, In,Ot,M0), where

(i) Pl = {pl1, pl2, . . . , plm} is a finite set of places;
(ii) Tr = {tr1, tr2, . . . , trn} is a finite set of transitions;
(iii) In : Pl×Tr → Pn is an input function to denote directed

arcs from places to transitions;
(iv) Ot : Tr × Pl → Pn is an output function to denote

directed arcs from transition to places; and;
(v) M0 : Pl → Pn is the initial marking.

Coloured Petri Nets (CP-Nets) [25] are colored extension of
standard Petri nets. In CP-Nets, colours are introduced to
manage data types. CP-Nets have the expressive power of
programming languages combined with standard Petri nets
to leverage a powerful discrete event modeling formalism.
Definition 2: A Colored Petri Net is a tuple N =

(P,T ,F, 6,C, g, f ,M0), where:

(i) P is a finite set of places,
(ii) T is a finite set of non-empty transitions,
(iii) F is a finite set of arcs,
(iv) 6 is a finite set of non-empty colour sets,
(v) C is a colour function that assigns to each place. It is

defined from P into 6.
(vi) g : T → EXP is a guard function. It is an expression

of Boolean type and assigned to each transition t ∈ T .
(vii) f : F → EXP is an arc expression function that is

assigned to each arc a ∈ F
(viii) M0 : P→ EXP is an initialization function that assigns

to each place p ∈ P.

Coloured Petri Nets are based on strong mathematical logic
having roots in set theory, relations, and predicate calcu-
lus. They are useful in modeling both non-deterministic and
stochastic processes. They construct a mathematical model
and allow systematic exhaustive exploration of the model
to analyze and prove the correctness of the system under
consideration. OnCP-Net, untimedmodels aremostly used to
reveal logical errors while timed nets are used for concurrent
systems.

Hierarchical Coloured Petri Nets (HCP-Net) are extensions
of CP-Net to leverage the power of modular representation.
It introduces the concept of hyper-transitions in the abstract
model to hold in the Sub-models. The CP-Net comes with
a user-friendly graphical interface. The CPN-tools [31] has a
large community and is used in industrial projects aswell as in
research projects, has extensive documentation and support.
Definition 3: A hierarchical CP-Net is a finite set of nets

HCPN = S1, S2, S3, . . .. Each net S in HCPN is a tuple S =
(P,T ,F, 6,C, g, f ,M0, h), where:

(i) F, 6,C, g, f ,M0: are defined as in CP-Nets,
(ii) P = ODP∪INP, where:ODP is a set of ordinary places

as defined in CP-Nets, and INP is a set of interface
places.

(iii) T = ODT ∪ HPT , where: ODT is a set of ordinary
transitions as defined in CP-nets, and HPT : a set of
hyper-transitions.

(iv) G: is a guard function.
(v) h: is a function that maps each hyper-transition to a net.

The dynamic behavior of the CP-Nets are observed by firing
the transitions. A transition is fired only when it is in the
enabled mode. To enable a transition, some preconditions
need to be satisfied. The preconditions are defined as label
expressions on an arc or as a guard on transition.When a tran-
sition is fired, it updates the marking of the net. To understand
the transition firing preconditions and marking operations,
we need to discuss the following concepts.

We use a function Var(Tran) to present set of variables
used in guards for a transition trans or used in arcs expression
labels on input or output arcs of trans.
Definition 4: Binding of a transition tran is defined as

function bn on Var(Tran), such that:

(i) For every vertex ∈ Var(Tran) : bn(vertex) ∈
Type(vertex),

(ii) The binding of Tran satisfies the guard function of Tran.

Definition 5: A binding element is defined as a pair
(Tran, bn), such that tran is a transition and bn is a binding of
tran.
Definition 6: Firing a hyper-transition htran defined in a

net HCPN are the same as well as for an ordinary transition.

C. DECISION TREES
Adecision tree, which is amathematical decision support tool
that represents the decisions in a tree structure. It builds a
top-down model to classify instances of the given data set.
A decision tree model trained on the data set is used to predict
classification labels and categorize the objects present in the
data set [32].

There is a root node in the decision tree at the top and
leaf nodes at the bottom. The outgoing edges from the root,
represent different possibilities and outcomes. The internal
nodes represent the test attributes while the edges represent
the result of the test. In the last stage, leaf nodes represent the
predicted outcome of the internal node selection [33].

There are two stages in the decision tree construction pro-
cess. The first stage of the process consists of decision tree
training. In the second stage, the trained decision tree from
the previous step is pruned. The decision tree building process
is performed in top-down order. During the tree building
process, the recursion method is used to partition the tree to
put object instances of a similar nature to a single class label.

D. MODEL CHECKING
Model checking [34] is a formal verification technique based
on formal methods for software and hardware verification.
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The system, behavioral properties are modelled mathemat-
ically in the form of a state-transition system to guarantee
the correctness of the system. A model of the system under
consideration is developed using tools and techniques having
a soundmathematical foundation for a comprehensive review.
The model checking of the system requirement and design
specifications ensure the correctness properties and increase
the quality of the system. In the process of model checking,
all execution paths and states are inspected automatically
and exhaustively to ensure that there is no error state or
deadlock-state.

E. DECISION TABLES
Decision Table [35] is a tool that supports solving complex
computational problems. The decision tables represent prob-
lems composed of conditions, rules, and actions. In these
tables, conditions are variables that need evaluation to per-
form specific actions. These can be a single step or a set of
multiple situations that need to be chosen to depend upon the
data in conditional variables.

III. LITERATURE REVIEW
A. MACHINE LEARNING IN EDUCATIONAL
DATA ANALYSIS
Supervised Machine Learning algorithm applications in
the educational field include prediction of grades, course
selection, course recommendations, and students’ drop-out
chances. It has received tremendous attention from the
research community [36]–[41]. The extraction of rules for
decision-making based on machine learning was investigated
in [42]–[44]. When a rule-based system makes errors, a key
question is how to identify and correct the rules that cause
these errors. An error can be defined as the discrepancy
between the belief value generated by the system and that
indicated by a presumed correct knowledge source [45].
Our proposed approach uses supervised machine learning,
in particular decision trees, to produce decision rules and also
applies the CP-Nets formalism to guarantee the correctness of
decision rules.

Onan [15] proposed a recurrent neural network (RNN)
based model for opinion mining on instructor evaluation
reviews to aid the administrative decision-making process.
The study indicated that deep learning-based architectures
outperform the conventional machine learning classifiers for
instructor reviews classification. Nieto et al. [1] discussed the
management decision structure of higher educational insti-
tutes to support better governance using supervised machine
learning classification algorithms. The decision tree, logistic
regression, and random forest supervised applied classifica-
tion algorithms to undergraduate engineering data sets. The
results of the research were compared using the ROC curve
to demonstrate outcomes. A novel model is proposed to
address student’s efforts and learnability from a generative
perspective by exploiting temporal variations [46]. Francis
and Babu [47] have proposed a hybrid predictive algorithm

that uses both classification and clustering techniques to
mine educational data sets to evaluate student performance
in academia for higher educational institutes.

Miguéis et al. [48] proposed a two-stage predictive model
for predicting students’ career path at the end of the final
year. We analysed the dataset of 2459 students from 2003 to
2015 to confirm that random forest outperforms other super-
vised classification algorithms. Jia et al. [49] proposed the
SM-Naive-Bayes model to overcome the problem of low
accuracy faced by classification techniques to predict student
results. The developed model used previous stage course
performance to predict future performance. Roy et al. [50]
discussed student academics and courses to identify their
interested career areas. The research motive is to identify
primer career paths for computer science students.

B. CLASSIFICATION ERRORS
Intuitively, it is assumed that the classification labels are
perfectly correct. However, in modern-day applications, it is
observed that class labels have errors leading to a reduction
in classification accuracy [20], [51].

In the literature, approaches have been discussed to miti-
gate classification errors caused by human mislabeling using
genetic programming. In [52], binary classification is studied
in the presence of erroneous labels. The authors proposed an
approach to suitably modify any given surrogate loss function
and the use of a simple weighted surrogate loss to obtain
strong empirical risk bounds. Other applied theoretical works
are presented in [53], [54], where the authors developed and
analysed an improved logistic regression classifier that is
robust to label noise.

Scott et al. [55] discussed conditions for consistent clas-
sification for data with label noise. In [21], weighting is
discussed to train a classifier for noisy label data set, and [56]
discussed loss factorization for learning with mislabelled
data.

C. FORMAL VERIFICATION OF NEURAL NETWORKS
The formal verification of artificial neural networks (ANN),
which has been explored extensively by the research commu-
nity. In the literature, the majority of the work discussed the
usage of theorem proving for formal verification of neural
networks [57], [58]. Ivanov et al. [59] trained a nonlinear
neural network for formal verification of the safety proper-
ties. They transformed a sigmoid based neural network into
an equivalent hybrid system. Their proposed method works
on many practical examples. In [60] Huang et al. proposed
a formal verification methodology for the robustness of clas-
sification models. They used polyhedrons for capturing the
intermediate perturbation present in neural network model.

In [57] Pulina and Tacchella used SMT solver for inves-
tigating the mis-classification in the output layer. They
discussed several adversarial examples with the proposed
methodology. Katz et al. [61] integrated the simplex method
and SAT solver for formal verification of deep neural
networks. They verified the safety properties of airborne
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FIGURE 1. The proposed research methodology to formally verify decision rules using Coloured Petri-Nets.

collision avoidance systems. Ehlers [62] used an LP solver
with a modified SAT solver used to verify neural network
correctness. The method used a technique to approximate the
network behavior to limit the search space. The methodology
was implemented using two case studies having collision
detection and digit recognition problems. In this research
work, a similar verification problem is studied to formally
verify the classification rules using CP-Nets as discussed
above for neural networks.

D. FORMAL VERIFICATION OF DECISION TREES
There is little significant work present in the litera-
ture on decision tree formal verification. Törnblom and
Nadjm-Tehrani [63] proposed a methodology to verify deci-
sion tree ensemble models’ safety property. The input and
output patterns were analysed using the VoTE tool by dis-
cussing two case studies. In [64] safety-critical properties
of random forests are formally verified by partitioning the
input space into disjoint sets for decision trees. The equiva-
lence classes are computed from a random forest and verified
against requirements.

In [65], Bastani et al. trained a neural network to play the
game named Pong. An equivalent decision tree is extracted
from the trained neural network as decision tree model verifi-
cation is much easier than neural networks. The decision tree
policies were formally verified by using an SMT solver. Our
method uses CPN formalism to guarantee the correctness of
decision rules extracted from the decision tree. The CP-Nets
colour tokens simulate through model transition paths to
verify decision rules’ correctness to mitigate biasing and
mislabelling errors.

IV. MATERIALS AND METHODS
The proposed approach used a supervised machine learning
algorithm, a decision tree, to extract decision rules from the

teaching data set. Secondly, it used CP-Nets formalism to
ensure the correctness of decision rules as shown in Figure 1.
In the first step, the decision tree is induced. Secondly, deci-
sion rules are extracted from generated trees, and, finally,
CP-Nets formalism is applied to ensure the correctness of
decision rules. Hence, the approach has three steps, first
induce a decision tree, the second step is to extract decision
rules from generated trees, and in the final stage, ensure
the decision rule correctness and comprehensibility using
CP-Nets formalism. The decision rule extraction is performed
by traversing decision tree paths from the root node to leaf
nodes. The CP-Nets model transformation from decision
rules was carried out by applying Algorithm 1.

A. DATA COLLECTION
The data set consists of candidates’ academic details for
spring semester 2018 of a higher educational institute and
available at the link1. The data set contains academic details
of applicants seeking admission in six departments. The data
is exported in comma-separated values (CSV) format from
the admission system of the institute. The data set con-
tained 4621 records with 108 features. The data set contains
555 instances labeled as ‘‘Yes’’ and 4066 labeled as ‘‘No’’.
The goal is to find decision rules that classify an appli-
cant’s admission status as a ‘‘Yes’’ or ‘‘No’’ label. The label
‘‘Yes’’ represents labels for students offered admission in a
particular department; while the label ‘‘No’’ shows that the
applicant was not offered admission. These decision rules are
exploited to monitor and evaluate the admission process for
specific departments. These decision rules leverage the HEIs
decision-makers to analyse the applicant admission process
effectively. It leverages improved decision-making powers
to academic administration for maximizing student intakes

1https://github.com/mhmmd-nauman/DataSets/raw/master/spring18/data
set/department_wise_csv_data.rar
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FIGURE 2. Decision tree showing the binary classification results for the Computer Science department.

TABLE 1. Data set selected features using Pearson correlation coefficient.

and maximizing the use of available resources in a specific
department. The decision tree is induced to extract decision
rules. The decision tree is chosen because of the organized
structure and better rule visualization for data split points. The
decision tree in Fig. 2 trained on the academic data set of the
candidate in the computer science department. It should be
noted that the decision tree model consists of nine leaf nodes
that can be considered decision rules.

B. FEATURE SELECTION
Finding the most correlated attributes to the final class label
and how much they affect the classification is crucial. Signif-
icantly, this stage shows the average correlation of the promi-
nent features of the predicted class. Therefore, to extract more
comprehensible rules, irrelevant features need to be filtered
out. Data fields with high correlation were considered as
recommendation points for students and academic staff. The
Pearson correlation coefficient algorithm was used to select
the related features.

After comparing the selected features with each other
for correlation, the top 5 high related features were chosen

including Document Verified, Terminal Degree, Admission
Test, SSC. For two quantitative features X and Y, the cor-
relation is measured using Pearson’s correlation coefficient,
which is defined as

rxy =
6(xi − x)(yi − y)

(n− 1)SxSy
(1)

where x and y are sample means for X and Y respectively, Sx
and Sy are sample standard deviations forX and Y, and n is the
size of the sample used to compute the correlation coefficient.
Table 1 shows the highly correlated features selected using
the Pearson correlation coefficient algorithm. Table 2 shows
the sample rows from the data set used to train the tree model.

C. DECISION TREE MODEL
J48 algorithm is applied to induce the classification models
with a ten-fold cross-validation procedure. J48 is an enhance-
ment to the ID3 algorithm [66] and open-source implementa-
tion of C4.5 algorithm [67]. C4.5 uses the gain ratio criterion,
which is based on information theory and produces subopti-
mal trees heuristically.
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TABLE 2. Sample data set used for training decision tree classification
models for Computer Science department.

The WEKA [68] graphical interface is used to visualize
decision trees. It is selected because it has a graphical inter-
face and is very easy to use, and convenient to load and
process data sets. It’s easy to apply classification algorithms
to train a predictive model and visualize it.

It also offers stability among precision, speed, and result
interpretation. Table 3 shows a set of decision rules extracted
from induced decision trees. The decision rules are extracted
using path traversing from the root node to leaf nodes. In the
decision, tree each leaf node represents a decision rule. The
usefulness of a decision rule is usually summarized in two
factors: support and accuracy. The support of a decision rule
is the number of instances that satisfy a rule. The accuracy of
a rule is a measure of how accurate the rule is in predicting
the correct class for the instances to which the condition of
the rule applies. The threshold value for support to consider
a leaf node for a valid decision rule was set to five intuitively
which reduced the number of decision rules to six for nine leaf
nodes. The decision tree in Fig. 2 exhibits decision points for
the computer science department data set in the tree structure.

D. CP-NETS MODEL FOR DECISION RULES
Petri-nets are used to model a system with discrete events,
concurrency, and non-determinism. Hence, the first step
towards modelling the system under consideration is to
observe a set of events that cause a change in the system state.
Therefore, to construct a CP-Nets model, decision choices
in a system needed to be identified. These decision choices
split the process into branches. The split choices are called
decision points and define the basis for the decision rules
in the system. Based on the data set under consideration,
our primary goal is to guarantee the correctness of decision
points for ‘‘Yes’’ or ‘‘No’’ labels. Therefore, CP-Nets are
constructed for modelling decision rules. In the Petri Nets
model, decision rules are modelled by transitions. The rule
conditions are modelled by some input places, some expres-
sions on input arcs, and some associated guards. All CPN
models are accessible on the2.

E. FORMAL VERIFICATION OF DECISION RULES
Decision rules are transformed into an equivalent CP-Net
model for proving formal correctness guarantees by imple-
menting algorithm 1. The CP-Net model consists of

2https://github.com/mhmmd-nauman/DataSets/raw/master/spring18/data
set/cp-nets-models.rar

Algorithm 1 Decision Rules to CP-Nets
Input: Rule Set and Class Label
Output: CP-Net Submodule

1 for decision rule in Rule Set do
2 Create CP-Net Transition
3 for rule.attributes in rule do
4 Add transition guard for rule.attribute
5 end
6 end

transition places and a set of colour tokens constructed using
the extracted rules from the decision tree model. The rule
conditions are transformed as guards on rule transitions (refer
to algorithm 1).

The abstract Hierarchical CP-Nets model of the pro-
posed approach is illustrated in Fig. 3. The Hier-
archical CP-Net model consists of three sub-models,
namely Classifier_Yes_Label, Classifier_No_Label, and
Merge_Actual_Predicted_Labels. The interaction between
these sub modules is modelled through interface places.
This model gives us an overview of the decision rules
and the formal verification process, where all events
are defined. It should be noted that in Fig. 3 the
transitions Classifier_Yes_Label, Classifier_No_Label, and
Merge_Actual_Predicted_Labels are hyper-transitions. Each
transition represents one of the sub-model. The decision rule
correctness is proven by simulating the colour token through
the equivalent CP-Net model by implementing algorithm 2.

In sub-modules, decision rules are grouped hierarchically
for better understanding and model visualization. Fig. 4
(a) shows ‘‘Yes’’ decision rules CP-Net sub-module before
simulating colour tokens. The correctness of sub-modules
is proved by simulating colour tokens through the CP-Nets
model. The paths taken by colour tokens are observed and
exploited to correct labeling and bias errors present in the
data as discussed in the algorithm 2. The simulation of
color tokens depends on the sequence of decisions within
the model. Fig. 4 (b) illustrates the corrected model. Fig. 5
shows ‘‘No’’ label decision rules before and after simulating
colour tokens, respectively. Notably, Fig. 5 (b) illustrates
CP-Net model after simulation with correctness implementa-
tion using Algorithm 2. Intuitively, the decision rule correct-
ness algorithm can modify, add, or remove the CP-Net model
rules under consideration.

The color tokens created to represent the candidate’s aca-
demic details in the CP-Nets are presented in table 4. The
table 5 shows the definitions of the color sets used to model
the decision rules into a CP-Net.

F. CORRECTNESS ALGORITHM DESCRIPTION
The correctness algorithm starts with input and output
descriptions. The algorithm’s input consists of CP-Nets and
colour tokens. The variable CP-Nets represents the derived
decision rules in terms of CP-Nets. The variable CPN token
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FIGURE 3. Hierarchical Coloured Petri nets abstract model for decision rule verification.

TABLE 3. Decision table showing the classification rules extracted from the trained decision tree model (shown in Fig. 2) for computer science
department.

FIGURE 4. Hierarchical CP-Nets model for decision rules for class label ‘‘Yes’’ (a) Before formal verification rules (b) After formal
verification rules.

contains the structure of the colour tokens used for formally
verifying the CP-Nets model. This algorithm includes two
loops that iterate through to simulate all tokens through all
6 rule transitions present in the CP-Netmodel (see lines 1-17).
The transitions in the CP-Nets model abstractly decision

rules. In the loop body, the first IF Else statement checks if
a token is simulated through transition states for classifica-
tion labels ‘‘Yes’’ or ‘‘No’’ in the model. First IF statement
checks if the actual and predicted labels are comparatively the
same, i.e. ‘‘Yes’’ token simulates to a transition state ‘‘Yes’’,
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FIGURE 5. Hierarchical CP-Nets model for decision rules for class label ‘‘No’’ (a) CP-Nets model of decision rules before formal verification
(b) CP-Nets model of decision rules after formal verification.

TABLE 4. Computer science department colour tokens classification
labels before and after simulations.

marking the decision rule as correct. If the token actual and
predicted labels are comparatively not the same, then the
decision rule needs revision (see line 7). In that case, the rou-
tine ReviseRule is called to perform revision operations on
equivalent transition for modification of CP-Net model.

The ReviseRule subroutine receives a ruleset variable and
a colour token is simulated for correction verification. The
colour token is again simulated through a model with revised
rules to validate the actual and predicted labels. The rule
set contains all rules in the CP-Nets model, and the token
contains academic details. All rules are revised sequentially
to simulate the token through the model to reach a transition
state with a desired predictive token label (see lines 18-32).
The ReviseRule subroutine contains two loops to mathemat-
ically adjust the classification decision rules attributes in the
CP-Nets model. The ReviseRule subroutine performs mathe-
matical operations to adjust rule attributes by incrementing or
decrementing a value by 10 (see lines 22 and 24). The integer
value 10 is chosen because the rule revising routine should
not go out of bounds for other tokens.

In the case of ReviseRule subroutine call, a new version of
the CP-Nets model is constructed to pass all colour tokens
from the model to execute the formal verification algorithm
again. This process continues until all rules are adjusted
to pass the maximum number of tokens from the CP-Nets
model. The final version of the CP-Nets model represents
formally correct classification decision rules.

G. DECISION RULES CORRECTNESS VERIFICATION
CPN tools provide a simulation mechanism to walk through
Petri net models’ reachability graphs to verify the model

Algorithm 2 Decision Rule Correctness Process
Input: CP-Nets Model and Colour Tokens
Output: Formally Verified CP-Nets Model

1 for Token in Token Set do
2 for Rules in CP-Nets do
3 if States.Yes← Token then
4 if Token.label = Yes then
5 Rules← Verified
6 else
7 Rules← ReviseRule(Rules,Token)
8 end
9 else
10 if Token.label = No then
11 Rule← Verified
12 else
13 Rule← ReviseRule(Rules,Token)
14 end
15 end
16 end
17 end
18 Function ReviseRule(RuleSet ,Token)
19 for Rule in RuleSet do
20 for Attributes in Rule do
21 if Rule.attributes > Token.attribute then
22 Rule.attributes← Rule.attributes − 10
23 else
24 Rule.attributes← Rule.attributes + 10
25 end
26 end
27 if Token is simulated successfully then
28 return true
29 else
30 Add new rule into the RuleSet
31 end
32 end

formally. A strong point of simulation is its flexibility as
an analysis technique. Simulation is helpful in almost every
situation. We assume that such a walk is representative of
the behaviour of the modelled system. The disadvantages
of simulation are that it can be time-consuming; sometimes,
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TABLE 5. Definition of color sets for CP-Nets models shown in Fig.3.

long simulation runs are necessary to get reliable results. The
simulation does not provide formal proof; that is, the sim-
ulation can only analyse an error’s presence but never its
absence. The absence of error in the model is verified using
state-space analysis.

The model was simulated using a simulation tool available
in the CPN tool graphical user interface. The simulation tools
can simulate 50 colour tokens at a time. The transition places
represent the applicant’s status in the CP-Net model. The
model simulation begins at the first transition state called
initial marking. The single transitions in the model repre-
sent a single decision rule. The formal verification using
simulation is performed in three steps. First, the model is
loaded for execution with all colour tokens at initial marking.
Second, colour tokens simulate through transition places.
The transition places pass only colour tokens that verify
the rule condition in the CP-Net model. In the third and
final step, colour tokens are analysed that are simulated
to Compare_Actual_Predicted_Labels places representing
the applicant’s predicted and actual labels. The sub-module
Merge_Actual_Predicted_Labels shown in Fig. 6 (b) is used
to analyse and compare the actual and predicted labels. The
transition place Compare_Actual_Predicted_Labels in the
model is reached by satisfying the classification decision rule.

The correctness of the classification decision rule is ver-
ified by simulating all colour tokens having the applicant’s

academic details. Table 6 shows revised comprehensible deci-
sion rules with remarks after performing simulations. The
remarks column shows the rule revision status in the model.
In Fig. 4 (b) & Fig. 5 (b), the transition place represents the
revised rules obtained from the simulation process.

H. STATE APACE ANALYSIS
A state space, which represents all possible executions in
the system under consideration, can be used for formally
verifying the correctness guarantees and proving the absence
of error mathematically. It is used to explore the dynamic
properties of CP-Nets and formally verify a specific system
property. Therefore, a state space is a directed graph repre-
senting each reachable marking and an arc for each occurring
binding element.

In CPN Tools, standard state-space reports facilitate initial
information about the properties of the model analysis. The
state-space report includes statistics, boundedness property,
home property, liveness property, and the CP-Net model’s
fairness properties.

The statistical information on a state-space shows the num-
ber of nodes and arcs of state space, construction time, and
Scc graph. The boundedness property specifies how many
and which tokens a place may hold when all reachable
markings are considered. The home property shows us home
markings. A home marking is a marking that can be reached
from any reachable marking.

The liveness property provides information about dead
markings, dead transitions, and live transition. In dead mark-
ings, there is no transition enabled. A transition is dead if
there are no reachable markings from that transition. There
is always an occurrence of a sequence containing a transition
from any reachable marking in live transitions.

The fairness property provides information about transi-
tions with infinite occurrence sequences. This part of the
state space report lists those transitions that have infinite
occurrence sequences.

Fig. 6 (a) shows a partial section of the entire model’s state
space report with 50 tokens from theDepartment of Computer
Science data set. The analysis report has 21620 markings and
92565 arcs. This report is generated automatically by a state
space tool in 300 seconds. The exact number of markings and
arcs in the Scc graph shows the absence of cycles in the state
space. There are no homemarkings under the home properties
section. The liveness properties section has a list of 6 dead
markings, a single dead transition, and no live transitions.
Notably, there are no infinite occurrence sequences as defined
by the fairness properties in the report. Accordingly, home
properties, number of live transitions, and fairness property
are desirable. The reachability graph computed by the CPN -
tool is analysed for formal verification of specific properties
and discussed in the below section.

1) LABEL ‘‘YES’’ VERIFICATION SUB-MODULE
Property 1 (‘‘Yes’’ Classifier Always Predicts the Cor-

rect Label): The property states that if a token meets the
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FIGURE 6. Part of the state space report in (a) with CP-Nets model for Actual and Predicted labels module in (b).

TABLE 6. Decision Table showing the revised decision rules after performing formal verification of decision rules in the computer science department.

conditions for the ‘‘Yes’’ class, then the model should
put a predicted label ‘‘Yes’’ on it and send it to Can-
didate_Predicted_Label place. The marking of the place
Candidate_Predicted_Label proves that all colour tokens
are labelled as ‘‘Yes’’ that flows through transitions having
guards as rule logic in Classifier_Yes_Labels sub-modules
(R1, R2, R4).
Property 2 (Classifiers Put ‘‘Yes’’ Labels on Colour Tokens

for Labeling Them According to Decision Rules): The mark-
ing of the place Label_Yes on transition Label_Cand_Yes
proves that colour tokens are always labelled as ‘‘Yes’’ on
the place Candidate_Predicted_Label.

2) LABEL ‘‘NO’’ VERIFICATION SUB-MODULE
Property 1 (‘‘No’’ Classifier Always Predicts Correct

Labels): The property states that if a token meets the
conditions for the ‘‘No’’ class, then the model should
put a predicted label ‘‘No’’ on it and send it to Candi-
date_Predicted_Label place. The marking of place Can-
didate_Predicted_Label proves that all colour tokens are
labelled as ‘‘No’’ that flows through transitions having
guards as rule logic in Classifier_No_Labels sub-modules
(R3, R5, R6).
Property 2 (Classifiers Put ‘‘No’’ Label on Colour Tokens

for Labeling Them According to Classification Rules): The
marking of the place Label_No on transition Label_Cand_No
proves that colour tokens are always labeled as ‘‘No’’with the
place Candidate_Predicted_Label.

TABLE 7. Confusion matrix.

3) ACTUAL AND PREDICTED LABELS VERIFICATION
SUB-MODULE
Property 1 (The Actual and Predicted Label Token Reaches

Compare_Actual_Predicted_Labels Place): The property
states that colour tokens after passing through classification
rule transitions should reach Compare_Actual_Predicted_
Labels place to comparison of actual and predicted labels.
It should be noted that at this place the labels are compared
for guaranteeing the correctness of decision rules.

The marking of place Compare_Actual_Predicted_Labels
place proves that a token with actual and predicted labels
always reaches the specified place.

I. PERFORMANCE METRICS
Decision tree classification model utilized to label appli-
cants either as ‘‘Yes’’ and ‘‘No’’. It should be noted that the
classification label ‘‘Yes’’ represents the candidate offered
admission in a particular department, and ‘‘No’’ shows an
applicant not offered admission. For classifying instances,
the confusion matrix was calculated as shown in Table 7.
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TABLE 8. Decision tree classification models performance analysis before and after performing formal verification.

For evaluating and comparing the classification model’s
precision before and after applying CP-Nets formalism,
we have chosen different parameters. Including the number
of True Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN), Accuracy (ACC), Precision
(P), Recall (R), Sensitivity (TPR), Specificity (TNR) and
Area under ROC curve (AUC) as designated quantitative
metric. Here the total number of instances is represented as
N and computed such as:

N = TP+ TN + FP+ FN (2)

Accuracy (ACC): ACC specifies the accuracy of the clas-
sification model such that:

ACC = (TP+ TN )/N (3)

Precision (P): P specifies the number of positive instances
correctly identified from all positively predicted instances
such as:

P = TP/(TP+ FP) (4)

Recall(R): R specifies the number of positive instances
identified from all positive instances such as:

R = TP/(TP+ FN ) (5)

Sensitivity (TPR): TPR specifies the correct classification
rate of positive instances

such as:

TNR = TP/(TP+ FN ) (6)

Specificity (TNR): TNR specifies the correct classifica-
tion rate of negative instances

such as:

TNR = TN/(TN + FP) (7)

Area under the ROC curve (AUC): ROC curve graph-
ically displays the performance of the predictive model by
plotting the true positive and false negative rates for all
possible values. The area under the curve shows the overall
performance of a classification model. The perfect prediction
value for AUC is 1.0 and 0.5 corresponds to the diagonal on
the ROC curve.

TABLE 9. Comparisons with other supervised machine learning methods
on computer science department data set.

TABLE 10. Comparisons with other rule extraction methods on computer
science department data set.

J. WHAT-IF ANALYSIS
What-if-analysis is used to structure the scenario case as
‘‘what will happen to the solution if an input value is
changed?’’ As discussed in [69]. In the current data set
analysis, the prominent variables for what-if-analysis are
shown in Table 1. It is observed from the first decision rule
in Table 6 that applicants who havemarks greater than 802 out
of 1100 in the terminal degree with an admission test mark
greater than 55 are classified to the label ‘‘Yes’’ for the
computer science department. The second decision rule states
that an applicant needed 842 marks in the terminal degree
with admission test marks greater than 44 out of 100. The
third rule states that if an applicant has less than 801 marks
they are not offered admission. The fourth rule states that
if they have scored greater than 50 marks in the admission
test, then they need greater than 830 marks in the terminal
degree to have a strong chance to be selected by the computer
science department. It is observed from rule 6 that document
verification is a very crucial part of the admission process
and if any applicant has not verified their original academic
documents, they are not offered admission in the department.
Rule 5 states that if an applicant has less than 54 marks
in the admission test, then they are not offered admission.
It is evident from Rule 7 that if an applicant has less than
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825 marks in the terminal degree and less than 55 in the
admission test, then there is no chance of selection in the
computer science department.

K. RESULTS
The data set contains the applicant’s details from six depart-
ments of a higher educational institute. The decision tree is
induced using the J48 algorithm and shown in Fig. 2. The
decision tree is visualized using WEKA Tool; the decision
rules were extracted by traversing edges of the decision
tree and shown in Table 3. The threshold value for support
to consider a leaf node for a valid decision rule is set to
five intuitively to reduce the number of decision rules for
consideration. These decision rules represented the scenarios
of admission selection criteria for applicants in the respective
department. The derived rules are transformed into CP-Nets
transition rules by using algorithm 1. The Hierarchical
CP-Nets model of the proposed approach is shown in Fig. 3.
The colour tokens are constructed using the same data set
as used to induce decision tree models. The remarks column
shows whether a token simulated through a decision rule pro-
vides a correctness guarantee or identifies the rule as incorrect
or biased. The comparative CP-Nets models before and after
colour token simulation analyses for comprehensible classi-
fication decision rule analyses are shown in Fig. 4 and Fig. 5.
In Table 3, decision rule No. 1, No. 2 and No. 4 with a

‘‘Yes’’ label, can be exploited to predict the applicant selec-
tion for admission in a particular department. The classifi-
cation accuracy for rules No. 1 and No. 2 achieves more
than 91%, but No. 4 has an accuracy of 10% only, which
shows the presence of mislabelled or biased errors in the
data. Hence, to mitigate such error, this work proposed use
of the CP-Net model simulations. Accordingly, rules No. 3,
No. 5 and No. 6 with a ‘‘No’’ label can be employed to
predict the applicant for not selection cases. The classification
accuracy of these rules is 100%.

Algorithm 2 is used for comprehensible classification deci-
sion rule analyses and verification. In Table 6, decision rules
No. 1, No. 2, and No. 4 with label ‘‘Yes’’ are verified using
the simulation process for guaranteeing the correctness of
decision points. The rules have the rule accuracy of nearly
90%, and they cover most of the instances with ‘‘Yes’’ label.
We should note that the application of simulation processes
has corrected the decision rules and enhanced their generality
by adjusting the rules, which led to increased rules accuracy
and a large number of data sent instances passed through
the models. Rules No.3, No.5, No.6, and No.7 are with a
‘‘No’’ label to predict admission not offered case. The rule
sets accuracy for the ‘‘No’’ label is 99%.
Notably, the process of academic document verification

documents is a critical bottleneck in the admission process
because 609 candidates cannot complete this process in
the computer science department only. Hence, the institute
needs a revised policy for academic document verifica-
tion. Accordingly, a set of understandable decision rules
will assist HEIs administrative authorities in effective and

efficient academic decision making. Therefore, this research
work findings help HEIs educational administration monitor,
improve, and redesign learning activities. Table 8 shows
the performance evaluation results obtained by applying the
proposed approach on six-department applicant’s data.

According to the results in Table 9, it is observed that the
proposed approach outperforms Artificial neural networks,
Support vector machine, K-Nearest neighbours, Random for-
est, and Naive Bayes in terms of accuracy, sensitivity and area
under the curve. It has performed marginally low in terms of
specificity for baseline classifiers. Therefore, the proposed
approach shows the primary advantages of good classifica-
tion ability on the data set.

From Table 10, we can see that the proposed approach
shows the best performance in terms of sensitivity, specificity,
accuracy, and area under the curve against the other rule
extraction methods.

We can observe from Table 11 that the proposed approach
has guaranteed the correctness of decision rules by mitigating
the bias effect. Fig. 7 (a) & (b) illustrates the confusion matrix
performance evaluation before and after the formal verifica-
tion process. It is noticeable from the confusion matrix that
the number of correct classified instances has increased by
applying the CP-Net simulations on the decision tree equiva-
lent model. Fig. 7 (c) & (d) shows the ROC curve to evaluate
the performance of the proposed approach for all departments
under consideration. The ROC curve in green represents the
performance evaluations before formal verification, and the
red color curve represents the performance evaluation after
formal verification performed on decision rules.

L. DISCUSSION
Even though the use of Machine Learning is still emerging in
the educational field, it can effectively be applied to analyse
the information. It can leverage HEIs directors with improved
understanding to make decision making by providing pre-
dictions, classification, visualization, and decision rules. Our
proposed approach accuracy for academic data analyses is
above 98% as shown in Table 6. Table 11 shows the correct-
ness improvements gained using CP-Net simulations. This
research work concludes that supervised machine learning
classification models are a good choice for educational data
analysis.

Our approach outperforms the decision tree model pro-
posed in [1]. In [1] strategic decision making has been
focused using three supervised machine learning algorithms,
including decision tree, logistic regression, and random forest
with 84% overall accuracy. The object of the research was to
predict the graduation rates of students.

We have applied the decision tree algorithm with CP-Net
formalism to obtain decision rules the accuracy over 98%.
In [10] association between internet usage behaviour and
academic performance has been predicted using machine
learning. The study results indicated that behaviour disci-
pline plays a vital role in academic success. The proposed
approach used a decision tree, neural network, and support
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TABLE 11. Decision rule correctness analysis.

FIGURE 7. Confusion Matrix of classification model before and after formal verification.

vector machine algorithm to predict a student’s study per-
formance. In [47], a prediction algorithm based on classi-
fication and clustering techniques for evaluating a student’s
academic performance has been discussed. The research pro-
posed a mixed-use decision tree, SVM, neural networks and
k-mean clustering algorithms for performance evaluation.
In [70] higher educational institutes’ academic decision vari-
ables are discussed. The use of supervised machine learning
algorithms, including neural networks and support vector
machines, is explored for predicting graduation rates for deci-
sion making. We used a decision tree with CP-Net formalism
to evaluate the academic background of students for decision
making.

In the literature, correctness guarantees for machine learn-
ing outcomes are discussed in [63], [71], [72]. In [63],
a methodology to extract equivalence classes from decision
trees and tree ensembles to formally verify input-output
mappings has been discussed. The authors presented the
tool VoTE (Verifier of Tree Ensembles) method and eval-
uated it on two case studies. In [72], the authors proposed
re-weighting the data points without changing the labels to
correct label biases present in the data. Our work used CP-Net
model simulations and state-space analysis to verify the cor-
rectness of classification rules formally. It also mitigates
classification biasing and mislabelling errors penetrates in
decision rules.

In formal verification techniques, model checking and the-
orem proving are prominent to verify supervised machine
learning algorithms. This research work is the first attempt
to guarantee correctness with CP-Net model simulations

to the best of our knowledge. Empirically, it is evident
that formal verification with CP-Net models improves the
accuracy of classification outcomes. The accuracy improve-
ments are gained by mitigating mislabelling, and data bias
errors. Hence, the supervised machine learning model imple-
mented in the educational decision support system improves
decision-making quality. When used for administrative deci-
sion support, our model can provide a simulation tool to
explore various scenarios and identify the rules and bottle-
necks in the admission process.

It is essential to state that this study’s results may not gen-
eralize to a larger scale as institutional bias may be affected.
Therefore, further work comparing results with extended data
sets from other institutes would be beneficial. Despite this
limitation, achieved outcomes remain significant in the area
of educational data analysis.

The results of this research study provide insights for
enhancing and revising the administration’s decision mak-
ing. To our best knowledge, this study is the only work
aimed at training decision tree models and guaranteeing the
correctness of comprehensible decision rules using formal
verification.

V. CONCLUSION
Supervised Machine Learning, specifically decision trees,
to analyse educational data can support higher educational
institutes’ better decision-making. It can facilitate in unveil-
ing the decision rules present in large amounts of educational
data stored at higher educational institutes. The organized
structure and better rule visualization put the decision tree
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algorithm in one of the best choices for analysing educational
data sets. However, machine learning outcomes have been
prone to bias and mislabelling errors to mitigate such errors
and guarantee correctness for these rules; formal verification
plays an important role. Formal verification is a technique
used to ensure the correctness of complex software and
hardware systems. In this work, an approach to ensure the
correctness of the decision rule is introduced. It used CP-Nets
formalism to prove decision rules corrects against biasing
and mislabelling errors. The decision rules are formally veri-
fied by modelling equivalent CP-Net models. The equivalent
CP-Net model correctness is ensured using simulations and
state-space analysis.

A decision tree, a supervised machine learning algorithm,
was applied to induce the classification model. The rule
derivation was performed to obtain decision rules from the
classification models using the root node to leaf node path
traversing. The derived rules are transformed into CP-Nets.
The CP-Nets were simulated with colour tokens containing
the applicant’s academic details to prove the decision rules’
correctness and comprehensibility. The absence of errors in
the decision rules was guaranteed using state-space analysis.
The empirical results showed that the proposed approach
improved the correctness of decision rules by integrating
formal verification. Therefore, from this research work, it is
concluded that the extracted decision rule correctness can be
guaranteed by CP-Nets formalism. The research results can
be used to improve the higher education institute educational
decision-making process. These resultant decision rules can
provide applicant background insights for higher educational
institutes’ academic administration for improving the admis-
sion process, curriculum, and learning activities.

In this work, only the decision tree algorithm-based deci-
sion rules have been exploited with CP-Nets formalism.
The proposed approach has limitations and needs further
investigation:
1) The data set only contains the applicant’s details of six

departments from one higher education institute; for
generalized results, the proposed methodology needs to
be validated with many higher educational institute data
sets.

2) Our proposed approach currently uses only the decision
tree-based decision rules. We can exploit other machine
learning methods for better-improved decision rules.

We plan to investigate more supervised machine learning
techniques and algorithms for decision rule correctness guar-
antees in future work. In this work, only CP-Nets formalism
is explored. In the future, other formal verification techniques
like theorem proving need to be investigated for performance
improvement of the verification process of decision rules.
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