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ABSTRACT The electrocardiogram (ECG) is a non-invasive tool used to diagnose various heart condi-
tions. Arrhythmia is one of the primary causes of cardiac arrest. Early ECG beat classification plays a
significant role in diagnosing life-threatening cardiac arrhythmias. However, the ECG signal is very small,
the anti-interference potential is low, and the noise is easily influenced. Thus, clinicians face challenges
in diagnosing arrhythmias. Thus, a method to automatically identify and distinguish arrhythmias from the
ECG signal is invaluable. In this paper, a hybrid approach based on marine predators algorithm (MPA) and
convolutional neural network (CNN) called MPA-CNN is proposed to classify the non-ectopic, ventricular
ectopic, supraventricular ectopic, and fusion ECG types of arrhythmia. The proposed approach is a combina-
tion of heavy feature extraction and classification techniques; hence, outperforms other existing classification
approaches. Optimal characteristics were derived directly from the raw signal to decrease the time required
for and complexity of the computation. Precision levels of 99.31%, 99.76%, and 99.47% were achieved by
the proposed approach on the MIT-BIH,EDB, and INCART databases, respectively.

INDEX TERMS Heart disorder classification, marine predators algorithm, deep neural networks, CNN,
feature fusion.

I. INTRODUCTION
Cardiac arrhythmia, a disease characterized by irregular heart
activity [1]–[3] and a cardiac condition associated with the
rhythm of the heartbeat or heart rate, is the main source of
cardiac mortality. It is reported that about 2200000 people
in the US and 4500000 people in EU annually die from
arrhythmia [4], which exceeds the mortality of all cancers
combined. An arrhythmia is a concern with the rate or rhythm
of the heartbeat. The heart may beat excessively quickly,
too slowly or in an unaccountable rhythm during arrythmia.
The disorder is called tachycardia when the heart beats too
quickly. The condition is called bradycardia when a heart
beats too slowly [5].

Various studies have been conducted using computer-aided
detection (CADe) to precisely forecast arrhythmia in order
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to enhance diagnostic efficiency [6]–[8]. Thus, This work
aims to early alerts for unusual disorders may be given by
creating a computational framework focused on machine
learning that rapidly, correctly, and consistently diagnose
cardiac arrhythmia such that qualified doctors can provide
appropriate care. However, because of the variance of ECG
signals and the changes in the recording environment, this
is still a challenge for a computer to execute automatically.
For a healthy person, even in a short time, morphology and
rhythm may vary considerably. Many methods for generic
heartbeat categorization with ECG-based signal were pro-
posed. A fully-automatic approach to detect arrhythmia from
signals collected by the electric cardiogram (ECG) system
can be used in four phases: (1) ECG preprocessing sig-
nal (2) signal segmentation, (3) Features extraction and (4)
classification. In each of the four steps, an action is taken,
and the goal is to discriminate/classify the type of heart-
beat [9], [10]. Different techniques have been extensively
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investigated for preprocessing phase and features extraction
phases [11]–[13].

The methods employed in the preprocessing step greatly
influence and are selected as such for the final output. The
results of the cardiac segmentation process in the instance
of QRS detection are nearly optimal. While the subject of
ECG delineation is essential, the methodologies studied here
are only of little significance. Researchers have been led to
optimize the accuracy level in numerous ways for ECG clas-
sification strategies, thus neural fuzzy networks [14], [15],
genetic algorithms [9], Bayesian approaches [16], key com-
ponent analysis based on support vectormachine (SVM) [17],
and key component analysis based on neural networks [18]
have been suggested.

The main contributions of this paper are summarized as
follows:

• An efficient architecture of deep CNN is designed.
It folds four convolutional layers with two fully con-
nected layer to improve the capacity of the CNN for
ECG classification. The structure of the input data
and convolution is revamped to satisfy the ECG clas-
sification process, where the input data is always in
one dimension rather than multi-dimensions like tra-
ditional used input. Sub-sampling convolutional fil-
ters are adopted to extract more Plentiful features.
We extended information about original heartbeat using
different handcraft features (using different descriptors).
The effectiveness and efficiency of deep CNN for ECG
classification are evaluated.

• A new training mechanism based on MPA-CNN
learning generic features and fine-tuning classification
parameters to learn the characteristic of heartbeats is
proposed for ECG classification (CNN for classifica-
tion task and MPA algorithm for optimizing learning
parameters). The MPA-CNN is trained based on a large
common dataset containing Plentiful ECG heartbeats,
which accelerates the convergence of the MPA-CNN.
Moreover,MPA-CNN accelerates learning time and pro-
vide high accuracy percentage.

• We explore feature fusion and propose a novel scheme
for combining CNN with handcrafted features. The
scheme has two main advantages: First, handcraft fea-
tures in CNN, which takes advantage of some robust
and local features; second, discriminative handcrafted
features help to improve the performance of original
CNN and accelerate training time.

• The available ECG datasets highly category imbalanced
as regular heartbeats take place much more often than
irregular heartbeats (over sampling for regular and under
sampling for irregular), resulting in the majority of
methods providing low sensitivity and positive predic-
tive values for heartbeats classification. To solve the
problem of imbalanced category classification, synthetic
minority over sampling technique (SMOTE) is used for
over sampling and Random under sampling for under

sampling both are applied over the extracted handcraft
features.

• Several experiments are conducted on common bench-
marking datasets, where the obtained results demon-
strate the effectiveness of the proposed approach. The
state-of-the-art performance is achieved using the
MPA-CNN, and the events of VEB and SVEB can be
identified accurately.

The rest of the paper is organized as follows. Section II
discusses the related works. Section III is devoted to present
the preprocessing methods applied to filter and segment the
ECG signals, feature extraction methods, the CNN archi-
tecture, the MPA algorithm, and the benchmarking datasets.
Section IV explains the proposed MPA-CNN approach that
combines CNN architecture with MPA to enhance the ECG
arrhythmia classification. Section V provides the experimen-
tal results and comprehensive evaluation of the proposed
MPA-CNN approach compared with other well-known meta-
heuristic algorithms. Finally, Section VI concludes the paper.

II. RELATED WORK
Simulated linear and nonlinear properties have been derived
and classified by Lee et al. [19]. They categorized coro-
nary artery diseases using various classifier forms. This
classification was conducted using metaheuristic optimiza-
tion techniques, such as nature, optimization of particle
swarm (PSO) [20], Henry gas solubility optimization
(HGSO) [21], Harris hawks optimization (HHO) [22],
[23], Marine Predators Algorithm (MPA) [24], Barna-
cles Mating Optimizer (BMO) algorithm [25], Tunicate
Swarm Algorithm (TSA) [26], Gradient-Based Optimizer
(GBO) [27], Turbulent Flow of Water-Based Optimization
(TFWBO) [28], [29], Owl search algorithm (OSA) [30],
Fitness-Dependent optimizer (FDO) [31], Squirrel Search
Algorithm (SSA) [32], and Deep Learning methods
[33]–[35]. In [36], the discrete wavelet transform (DWT)
performance and SVM coronary heart diseases, decision tree
(DT), K-nearest neighbor, and neural network probability
classifiers were compared to identify normal and nonlinear
techniques. One of the most useful nature-inspired optimiza-
tion algorithms referred to as bacterial-foraging-optimization
(BFO)was developed byKora et al. [37]. The BFOmodifica-
tions with SVM on the MIT-BIH dataset produced precision
levels of 98.9% and 99.3%. A compression algorithm based
on DWT and PSO was used to generate ECG.

A PSO one-dimensional CNN with SVM (1D CNN-
SVM) architecture was proposed by Navaneeth et al. [38]
for real-time disease detection and classification. The effi-
ciency of the proposed architecture was validatedwith a novel
hardware model to detect chronic kidney disease (CKD)
from saliva samples. The urea content of the samples was
tracked to detect CKD by converting urea into ammonia.
On hydrolysis, the urea produces ammonia in the presence
of the urease enzyme. The output of the architecture was
optimized using a PSO algorithm to control the parameter
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values. The proposed design outperforms existing traditional
methods since this method is a synthesis of heavy feature
extraction and classification techniques. Optimal character-
istics were derived directly from the raw signal to decrease
the time required for and complexity of the computation.
A precision of 98.255% was attained for the suggested
architecture. While, Zubair et al. [39] proposed an ECG beat
recognition method using CNN. The MIT-BIH arrhythmia
data collection was used in the analysis, and five Association
for the Advancement of Medical Instrumentation (AAMI)
groups were identified. An accuracy of 92.7% was attained.
In [40], an automatic classification scheme was proposed
based on a deep learning (DL) methodology to control and
diagnose cardiac disease (CD). For an unsupervised type
of feature learning and deep neural networks (DNNs) as a
classifier, the proposed DL architecture is divided into deep
auto-encoders (DAEs). However, DL generates an embedded
function extraction and feature selection directly from raw
data in DAE pretraining and DNN fine-tuning processes.
DAEs will derive high-level functionality from training data
and also from unknown data. Ten classes of imbalanced data
from ECG signals are used in the proposed model. An abnor-
mality is commonly considered for early CD diagnosis since
CD is associated with the heart area. The model is com-
pared with the shallow models and the DL methods to verify
the result. The results showed that with 99.73% precision,
91.20% sensitivity, 93.60% precision, 99.80% specificity,
and a 91.80% F1 score, the proposed approach achieved a
promising efficiency.

In [41], a DL approach incorporating CNNs and long-term
memory networks (LSTM) is suggested to automatically
classify six forms of ECG signals: regular (N) sinus rhythm
parts, atrial fibrillation, ventricular bigeminy (B), atrial flutter
(AFL), pacing rhythm (P), and sinus bradycardia (SBR).
A multi-input structure for processing 10 s ECG signal seg-
ments and corresponding RR intervals from the MIT-BIH
arrhythmia dataset was added to the proposed network.
This network reached 99.32% accuracy with a five-fold
cross-validation approach. Using the sparse representation
methodology to effectively represent the various ECG signals
for efficient analysis. Raj and Ray [42] proposed a new fea-
ture extraction technique. Four features were extracted, such
as time delay, frequency, width parameter, and expansion
coefficient square. These features were concatenated and ana-
lyzed to evaluate the optimal length of the racially discrimi-
natory feature vector representing each of the ECG signals.
These extracted features representing the ECG signals were
further categorized using machine learning techniques, such
as k-NN, SVM, RBFNN, and PNN. Besides, the classifiers’
learning parameters were optimized using ABC and PSO
techniques.

III. PRELIMINARIES AND DATASETS
The ECG is a non-invasive, affordable monitoring instru-
ment used to track the heart’s electrical function and is com-
monly used in various applications [43]. The ECG output

FIGURE 1. Fiducial points and different regular intervals of a heartbeat
(waves).

is described by electrical power in the form of signals that
represent the heart’s electrical operation over some time.
These signals consist of essential physiological data that are
commonly used for heartbeat function research. The heart’s
electric field is created by placing an electrode on different
parts of the body [44]. ECG signals are created in three wave
sequences: the P wave, the QRS waves (known as the QRS
complexes), and the T wave, which are transmitted regularly
over time and comprise a periodic signal as shown in Fig. 1.

A fully automated method for the identification of arrhyth-
mias from signals obtained by an ECG system can be divided
into four steps: (1) ECG signal preprocessing, (2) heart-
beat segmentation, (3) feature extraction, and (4) classifica-
tion [37]. An action is taken in each of the four steps, and
the final goal is to discriminate/identify the type of heartbeat.
For ECG signal preprocessing as a first step, filter techniques
remove distracting elements from the digital ECG data, such
as power line interference and baseline drift [45]. Signal
denoising enhances the efficiency of the proposed classifi-
cation model. The FIR band-pass with [0,5; 50] Hz spectrum
is used [46]. A linear band-pass filter, with a c = [F-Low =
0.5; F-High = 50] cut-off frequency(F), has therefore to be
applied.

A. FEATURES EXTRACTION
The pre-trained CNN accepts RGG images, whereas the
ECG signals are raw vector. To tackle this drawback, a 1D
CNN has been proposed. Although CNNs have achieved
excellent success in ECG classification tasks but, handcrafted
features still play important roles such as the global infor-
mation for the signal and R-R intervals where the single
heartbeat interval does not include the distance values for the
adjacent beats(see section III-A6). Handcrafted features are
designed to define heartbeat content from particular aspects,
and can provide additional information for CNN on ECG
classification tasks. The extraction of features is performed as
follows. The R-peak annotations provided with theMIT-BIH,
EDB, and INCART datasets are used as a reference point for
the segmentation and identification of beats. For each beat,
a window of size 200 ms is centered around the R-peak 80 ms
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before and 120 ms after the peak, and all the features inside
that region are then computed using the following descriptors.

1) 1D-LOCAL BINARY PATTERN
The 1D-LBP feature extraction descriptor is employed in
this work to gather valuable knowledge about the ECG sig-
nal. [47]. The foundation of the original 2D version is pre-
served in the adapted 1D version, which is characterised as an
ordered collection of binary comparisons between the centre
value and its nearby values. In addition, a histogram with
the frequency of each binary pattern is created. Using a 1D
uniform LBP technique, the raw ECG signal is first translated
into the LBP domain, with the eight surrounding samples
forming a 59-dimensional description.

2) HERMITE BASIS FUNCTION (HBF)
ECG signals (i.e., the accompanying QRS complexes) have a
structure commensurable to Hermite waves. Hermite func-
tions can be habituated to estimate these signals with the
fewest coefficients possible while maintaining precision. Fit-
ting of 3,4, and 5-degree Hermite polynomials yielded the
coefficients [48].

3) HIGHER ORDER STATISTICS (HOS)
The quest for trustworthy criteria that give the best ECG
heartbeats is the key difficulty in classifying it. To gather
attributes for effective classification, higher-order statis-
tics (HOS) have been widely used [49]. Kurtosis is utilized to
estimate the deviation of a distribution from a Gaussian dis-
tribution, which is the substratum of HOS. However, Kurtosis
is associated with a high-frequency QRS transition. Skew-
ness implicatively insinuates a non-Gaussian pattern in the
probability distribution of a signal and describes a feature that
defines smooth transitions during QRS onset and offset [50].

4) CENTRAL MOMENT
This is a popular quantitative measure of the form that char-
acterises a group of points. Because of its tight sodality with
these factors, it is widely used to determine skewness and
kurtosis coefficients. The fifth moment is utilised in feature
extraction to detect and define key features (such the R-beaks)
in an ECG signal, as well as to quantify the symmetry of the
input data.

5) DISCRETE WAVELET TRANSFORM (DWT)
The essential properties of the ECG signal are well rep-
resented by DWT. Daubechies and Sweldens [51] used a
wavelet with (db1) function characterized by three decom-
position levels to extract a set of features.

6) R-R INTERVALS
R-R intervals are typically used for feature extraction in the
classification of ECG signals. Different R–R intervals occur
between any consecutive beats.

• Pre-RR: the distance between the current heartbeat and
the previous beat.

• Post-RR: the distance between the current heartbeat and
the following beat.

• Local-RR interval: the average of 10 previous Pre-RR
values.

• Global-RR: containing the average of the Pre-RR values
produced in the last 20 min.

• A normalized version of previous intervals is computed;

B. BENCHMARKING DATASETS
Various well-known Physionet-based datasets, such as the
MIT-BIH, EDB, and INCART datasets, were used to train
and test the suggested algorithms against the most recently
available methodologies.

1) MIT-BIH ARRHYTHMIA DATASET (MIT-BIH)
The MIT-BIH dataset is a freely accessible dataset with reg-
ular investigation content for heart rhythm detection from
47 individual patients. This dataset has 48 records (each with
a period of 30 minutes and a sample rate of 360 Hz), and the
data is properly annotated. Two signals are recorded in the
dataset: a bipolar limb lead known as modified-lead (MLII)
and unipolar chest leads known as V leads (V1, V2, V3, V4,
V5, andV6). TheMLII-type record provides a perfect view of
all significant waves, including Q-waves, P-waves, R-waves,
T-waves, and S-waves, and may thus be shared across all
recordings.

2) EUROPEAN ST-T DATASET (EDB)
For the application of ST and T-wave designs, the EDB
was used. This collection contains 90 annotated samples
corresponding to 79 participants’ outpatient ECG data. Each
recording lasts two hours, with two signals recorded at
250 samples per second.

3) ST. PETERSBURG INCART DATASET (INCART)
INCART is a 12-lead arrhythmia dataset made up of 75 anno-
tated recordings extracted from 32 Holter records. Each
record is 30 minutes long and has 12 regular leads sampled
at 257 Hz each. Patients receiving coronary heart disease
tests provided the initial data. Considering the recommended
practice of the AAMI for all used datasets, classes forms are
divided into five categories. For each recording, only one
channel is used for the classification task.

4) IMBALANCE CLASS
Unbalance class variance represents the non-uniformity of the
class labels. Several instances occur in one class and a few
occur in other classes [52]. Class inequality is a critical issue
encountered in various fields, such as bioinformatics [53],
textual classification [54], and health diagnosis [55]. To solve
the problem of imbalanced category classification, a synthetic
minority oversampling technique (SMOTE) is used for over-
sampling and random undersampling for undersampling are
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both applied in the features set. Random undersampling: is a
re-sampling technique that generates a random sub-sample of
majority class instances. SMOTE: is a popular oversampling
method proposed by Chawla et al. [56]. The main objective
of this approach is to produce ‘‘synthetic’’ minority samples
instead of duplicating the samples. In this study, SMOTE and
random undersampling are selected to obtain an improved
class distribution balance.

5) DATASET DIVISION
The AAMI standard defines the protocol for examining and
analyzing arrhythmia classification methods. It also defines
which datasets should be used. However, it does not specify
which patients/heartbeats should be used to create the model
to be classified (training phase) and which patients/heartbeats
should be used for the evaluation methods (i.e., the test-
ing phase). So there is different such inter-patient, intra-
pathion, semi-automatic, and fully-automatic approaches.
In this regard, de Chazal et al. [57] have found that the use
of heart beats from the same patient for both learning and
testing is a bias in the evaluation process. In order to define
a protocol, de Chazal et al. [57] suggested a partition of the
heartbeats from theMIT-BIH dataset only. The first collection
consists of all the heart beats of the records:101, 106, 108,
109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205,
207, 208, 209, 215, 220, 223 and 230, called Dataset 1 (DS1).
While the second is composed of all heartbeats of records:
100, 103, 105, 11, 113, 117, 121, 123,200, 202, 210, 212,
213, 214, 219, 221, 222, 228, 231, 232, 233 and 234, called
Dataset 2 (DS2). But this division has several issues that
were previously connected to Mar et al. [58] and Llamedo &
Martinez [59].

The imbalance between groups prompted the writers to
add two reports of the same patient to the two sets already
listed. Although these documents, 201 and 202, are from
the same patient and belong to the DS1 and DS2 collec-
tions, the outcomes may be marginally higher than expected.
In comparison, records 201 and 202 are greatly clustered
in a substantial portion of the SVEB heartbeats class. The
use of the imbalanced record 232 in DS2 is another major
limitation of the protocol suggested in [57]. This record
includes more than 75% of the heart beats of the SVEB
class. As such, techniques that obtain the right classification
of the heartbeat of this record can be mistakenly treated
as state-of-the-art, when in fact they may only be special-
ized in the heartbeat of a single patient. In the other hand,
some researchers use semi-automatic approaches [60], [61]
to boost the recorded performance. Semi-automatic methods
will boost results by more than 40% even though a limited
number of heart beats are chosen for adaptation. The down-
side to such methods is that they need the participation of
specialists. Our approach follows fully automated methods
in which heartbeats are automatically chosen for the training
and testing phase. K-fold with k = 5 splitting strategy for
obtaining training, validation and testing sets in automatic
manner.

C. CONVOLUTIONAL NEURAL NETWORK
In this paper, an architecture is designed to provide high
recognition output on a CNN-based ECG (MII) lead, which
has been configured to include uncomplicated and typi-
cal CNN layers. Fig. 2 shows a block diagram of the
10-layer deep CNN model. The ECG beats are fed into the
model through the input layer. Sequentially, each beat passes
through ordered convolution and max-pooling layers and
converts these into function maps of different sizes. An auto-
matic prediction of classes is provided for the dense layer by
studying these feature maps. A dropout technique is used to
avoid overfitting during model training.

D. MARINE PREDATORS ALGORITHM
Similar to most of the metaheuristics, MPA is a nature-
inspired heuristic algorithm that mimics predator behav-
ior when attacking prey. Predators employ two techniques
(namely Brownian and Levy motion) when targeting their
prey. For a balance between the two approaches, predators
calculate the velocity ratio from the prey to their current
position [62]. The mathematical model describing these tech-
niques is formulated as follows:

1) INITIALIZATION
Like most of the metaheuristic algorithms, MPA starts with
the initial solution, which is uniformly distributed over the
search space:

X0 = XL + rand (XU − XL) (1)

where XL and XU are the maximum and minimum limits or
boundary for search spaces while the rand is a unified random
vector in the range 0 to 1.

2) ELITE AND PREY MATRIX CONSTRUCTION
The top predator is the best one for the foraging cycle based
on the survival of the fittest principle, and this predator is used
to create an n× d Elite matrix that is denoted as E.

E =


X I1,1 X I1,2 . . . X I1,d
X ′2,1 X I2,2 . . . X ′2,d

...
... :

...

X In,1 X In,2 . . . X In,d

 (2)

where EX I denotes the best predator vector, which is repeated
n times to create the matrix. n and d refer to the number of
search space agents and the dimensions, respectively.

Anothermatrix with the same dimension as Elite is referred
to as Prey and the predator positions are updated based on this
matrix.

Py =



X1,1 X1,2 . . . X1,4
X2,1 X2,2 . . . X2,d
X3,1 X3,2 . . . X3,d

...
...

...
...

...
...

...
...

Xn,1 X1,2 . . . Xn,d


nxd

(3)
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FIGURE 2. Block representation of the proposed CNN model.

These two metrics are the fundamental parameters of the
optimization process where the initialization stage creates the
initial Prey and the corresponding best fit predator creates the
Elite matrix.

3) OPTIMIZATION PROCESS
In the optimization cycle, the predators seek a better optimal
solution than the current solution. The MPA optimization
method is mathematically formulated as follows:

In the first step, which is the discovery phase, predators
seek to move faster (than previously) before they locate their
prey as the essence of all metaheuristic algorithms at the
beginning of the optimization procedure. This phase is for-
mulated as follows:

while t <
1
3
∗ tmax

Estepsizei = ERL ⊗
(
EEi − ERL ⊗ Epyi

)
(4)

−→
Py i =

−→
Py i + P · R⊗ stepsizei (5)

where ERL is a vector of random values based on the Levy
distribution representing Levy movements. Multiplication of
ERL and Elite follows the predator’s movements in the Lévy
approach [63]. Applying the phase size to the Elite location
simulates the predator’s movements; thus, updating the prey
location. Given that the step size of the Levy distribution
is mainly correlated with small steps, this section helps the
exploitation stage. In the middle step, MPA splits the popula-
tion into two sections to differentiate between exploration and
exploitation; the former will be modified using the Brownian
method while the latter will be considered using the Lévy
method. The mathematical model in this step is given as
follows: While 1

3 ∗ tmax < t < 2
3 ∗ tmax For the first half

of the population:

−−−−−→
stepsizei = ERL ⊗

(
EEi − ERL ⊗

−→pyi
)

(6)

−→py i =
−→py i + P ∗ ER⊗

−−−−−→
stepsizei (7)

For the second half of the population:

−−−−−→
stepsizei = ERB ⊗

(
ERB ⊗ EEi − EPi

)
(8)

−→py i = EEii + P ∗ CF ⊗
−−−−−→
stepsizei (9)

where, CF is a parameter updated based on the iterations
to control the step size and is generated by the following
equation:

CF =
(
1−

t
tmax

)(2 t
tmax

)
(10)

For the final phase of the optimization process, the popu-
lation can only be modified using the Levy flight as follows:

While it > 2
3 ∗max−iter

Estepsizei = ERL ⊗
(
ERL ⊗ EEi −

−→pyi
)

(11)
−→py i = EEi + P ∗ CF ⊗ Estepsizei (12)

Based on the nature of the predators associated with the
surrounding environments, sharks spend more than 80% of
their time near FADs [64]. For the remaining 20%, sharks
will take a longer jump (than that corresponding to 80% of
the time) in different dimensions probably to find an envi-
ronment with another prey distribution. The FADs effect is
mathematically expressed as follows:

−→py1 =


−→py1 + cF

[−→x L + R⊗
(−→x U −

−→x L
)]

⊗
−→
U if r < FADS

pyi + [FADS(1− r)+ r]
(−→pyr1 −−→pyr2)

if r > FADS

(13)

where, r is a number randomly generated in the range of
[0, 1]. FADs = 0.2 indicates the influence of FADs on the
updating process.
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Marine predators have a good memory of successful for-
aging sites. This capability is simulated by memory saving
in MPA, and the process improves the solution quality with
the progress of iteration. After upgrading the Prey effect
and applying the FADs effect, this matrix is tested for Elite
Upgrade Fitness. The fitness of the solution in the current
iteration is compared with the fitness in the previous itera-
tion; however, if more suitable, the new one substitutes the
solution.
1: Initialization Step, P, TP, TF, Pyi.
2: while t < tmax do
3: Compute the fitness value of each −→py i, f

(
−→py i
)

4: Construct E
5: implement the memory saving
6: Update CF based on Eq. 10
7: for each pyi do
8: if

(
t < 1

3 ∗ tmax

)
then

9: Reposition the current −→py i based on Eq. 5
10: else
11: if

(
1
3 ∗ tmax < t < 2

3 ∗ tmax

)
then

12: if
(
i < 1

2 ∗ n
)
then

13: Reposition the current −→py l according to
Eq. 7

14: else
15: Reposition the current−→py i according to Eq. 9
16: end if
17: else
18: Reposition the current −→py i according to Eq. 12
19: end if
20: end if
21: end for
22: Compute the fitness value of each −→py i, f

(
−→py i
)

23: Update TopPradatorPos, and TopPredatorFit .
24: Apply the memory saving
25: Apply the FADS for ∀ py i based on Eq. 13
26: t++
27: end while

IV. THE PROPOSED MPA-CNN APPROACH
Fig. 2 shows the CNNs architecture used in the proposed
method, where it is consist of an input layer that will be pro-
cessed using 2 convolution kernel with size 5 × 5 and 3 × 3,
2 sub-sampling kernel with size 2 × 2 pixels, 2 convolution
kernel with size 5 × 5 and 3 × 3, 2 subsampling kernel with
size 2× 2 pixels, 2 full connection fully connected layer and
the last layer is the soft-max. The proposed method process
can be seen on Fig. 3. MPA in this work would optimize
learning rate parameter. To calculate the fitness value, the root
mean square error between prediction labels vector and the
true labels vector. In general, the flow of the proposedmethod
contains of different procedures as shown below: 1) the first
one is initializing the learning rate of the CNN in the range
of 1e−7 to 1. The batch size of CNN is 32, the number of
CNN epoch value is 6 but early stopping is used to specify an

FIGURE 3. Flowchart of the proposed MPA-CNN method.

arbitrary large number of training epochs and stop training
once the model performance stops improving on a k-fold
validation dataset. To adjust the best value for classification
process k-fold with k = 5 strategy is used. MPA iteration
limit is 100. The convergence status of MPA issued to check
the convergences of MPA, if the error value has not changed
for ten iterations, then the MPA is considered as convergent;
2) after setting up the experiment, the next step is run CNN
training process. 3) the learning rate value will be update
if the solution of search agent has less error compare with
old learning rate value; 4) the MPA will run as long as the
iteration number of MPA and the convergence solution have
not satisfied; 5) after the CNN Training, the model will be
tested 6) the result of test is accuracy of CNN, it represent how
precise of the model can predict the actual value of testing
dataset. The overall framework consists of the initialization
step, evaluation step, and updating, and memory saving steps
as shown in Fig. 4.

A. PARAMETERS OPTIMIZATION
Tuning parameters for a machine learning methodology sig-
nificantly affect the classification efficiency. The learning
rate is a hyperparameter that controls how much the model
can adjust in response to the expected error each time the
model weights are changed. Choosing a learning rate is dif-
ficult, since a value that is too small can result in a lengthy
training phase that may stall, whereas a value that is too high
could result in learning a sub-optimal range of weights that is
too fast or an unpredictable training process. From Fig. 5 if
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FIGURE 4. The general framework of the proposed MPA-CNN approach.

FIGURE 5. Three phases for different learning rates.

the learning rates which are too low, the loss may decrease,
but at a very shallow rate. When entering the optimal learning
rate zone, you’ll observe a quick drop in the loss function.
A further increase in the learning rate would cause the loss to
increase as the parameter changes cause the loss to ‘‘bounce
around’’ and even diverge from the minimum. The MPA
algorithm try to optimize the initial learning rate parameter
to fit in the optimal area. MPA select a value between 1e−7

and 1.

B. FITNESS FUNCTION
The fitness function is a mathematical equation that evalu-
ates the effectiveness of a particular task’s solution. One of
the most critical challenges in developing an optimization
algorithm is to choose the required fitness role. In this study,
the root mean square error for the classification is chosen via
the search process as the solution criterion. The root mean
square error between prediction labels vector (Y) and the true
labels vector (X).MPAoptimization is done byminimized the

TABLE 1. Confusion matrix.

root mean square error.

Rmse =

√√√√(
1
n
)

n∑
i=1

(yi − xi)2 (14)

V. EXPERIMENTS RESULTS AND DISCUSSION
A. PERFORMANCE METRICS
The proposed MPA-CNN model is evaluated using the fol-
lowing standard criteria: (1) accuracy, (2) precision, (3) speci-
ficity, (4) sensitivity, and (5) F1 score. The performance
metrics typically relied on different major metrics (posi-
tive/negative/true/false) of a binary classification test.

let define two possible predicted classes: X and Y. Thus,
Tp are positive instances classified as positive, Fn are positive
instances classified as negative, Fp are negative instances
classified as positive, Tn are negative instances classified as
negative, see Table 1. Based on the confusion matrix, while
there is a multi-class confusion matrix of the form

C = Actual

Classified
c11 . . . c1n
...

. . .

cn1 cnn

(15)

The confusion elements for each class are given by:

Tpi = cii
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FIGURE 6. Accuracy optimization on MIT-BIH.

FIGURE 7. Learning time optimization on MIT-BIH.

Fpi =
n∑
l=1

cli − Tpi

Fni =
n∑
l=1

cil − Tpi

Tni =
n∑
l=1

n∑
k=1

clk − Tpi − Fpi − Fni

ACCi =
TPi + Tni

Tpi + Fni + Fpi + Tni

ACC =
1
n

n∑
i=1

ACCi (16)

The total number of runs required for the MPA is set to be
30 runs and the following formulas describe the performance
evaluation metrics.
• Average accuracy (AVGAcc): (ACC) represents the accu-
rate number of correspondences between the label of the
sample data and the output of the classifier. It involves
calculating the accuracy of each class separately and
then averaging the results; thus, the average accuracy
AVGAcc is calculated from the best prey (At minimum
value for the root mean square error over 100 iterations)
as follows:

AVGAcc =
1
Nr

Nr∑
k=1

ACC (k)
best (17)

where Nr = 30 is the total number of runs, n is the num-
ber of classes and ACC (k)

best best accuracy over 100 itera-
tions.

• Average sensitivity (AVGSn): The sensitivity (Sn), which
is used to assess the rate of prognosticating positive

samples, involves computing the sensitivity of each class
separately and then averaging the results, determined as
follows:

Sni =
Tpi

Tpi + Fni

Sn =
1
n

n∑
i=1

Sni (18)

The AVGSn is calculated from the best prey using the
following equation:

AVGSn =
1
Nr

Nr∑
k=1

Sn(k)best (19)

• Average specificity (AVGSp): The specificity (Sp) indi-
cates the rate of prognosticating negative samples.
It involves calculating the specificity of each class sepa-
rately and then averaging the results as follows:

Spi =
Tni

Fpi + Tni

Sp =
1
n

n∑
i=1

Spi (20)

The AVGSp is determined as follows:

AVGSp =
1
Nr

Nr∑
k=1

Sp(k)best (21)

• Average Precision (AVGPr ): The Precision (Pr) ), which
is used to evaluate the classification approach effective-
ness, involves computing the precision of each class
separately and then averaging the results as given below:

Pri =
{

TPi
TPi + FPi

}
Pr =

1
n

n∑
i=1

Pri (22)

The AVGPr is determined as follows:

AVGPr =
1
Nr

Nr∑
k=1

Pr (k)best (23)

• Average F1 score (AVGF1): The F1 score (F1) is a
measure of the test accuracy. It involves calculating the
precision of each class separately and then averaging the
results as shown below:

F1i =
{

TPi
TPi + FPi

}
F1 =

1
n

n∑
i=1

F1i (24)

The AVGF1 is determined as follows:

AVGF1 =
1
Nr

Nr∑
k=1

F1(k)best (25)
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TABLE 2. Performance analysis of the MPA-CNN model on the MIT-BIH
dataset classes.

TABLE 3. Performance analysis of the MPA-CNN model on the EDB
dataset classes.

TABLE 4. Performance analysis of the MPA-CNN model on the INCART
dataset classes.

The proposed model is trained and tested with ECG signals
from three different datasets. The classification system is
highly efficient for the trained and tested signals. The average
accuracy of the proposed system is 99.32%, 99.76%, and
99.47% due to the maximum number of layer formation with
the ECG signals from the datasets and optimization learning
rate parameter using the MPA algorithm. The optimization
evolution is stopped after 100 generations. Thus, merging
the MPA and proposed CNN model allows the net to yield
better diagnostic accuracy than that of the individual models.
It enhances the model functionality in classifying cardiac
signals of varying sequence lengths.

Fig. 6 and Fig. 7 show accuracy, time and its variance,
when learning 5 epoch, theMPA-CNN aremore accurate than
base CNN. In addition to the MPA-CNN model has lower
learning time than CNN, this suggests that the MPA-CNN
has found parameter that can be successfully learned through
optimization and has obtained good results. Also, the aver-
age optimization calculation time for MPA-CNN is 2547s.
According to Tables 2, 3, and 4, all measures are higher than
97.96%. For the class level, the values of ACC and Sn are very
high for all datasets (ACC > 99.14%, Se > 97.96%). The
model classification accuracy is significantly improved and
nearly balanced for all classes. The best and worst accuracy
are for class F (improvement of 99.81% over that of the EDB
dataset) and class N (improvement of 99.14% over that of the
MIT-BIH dataset), respectively. A maximum of ≤ 0.41% of
the S class and≤ 0.76% of the VEB class were misclassified.
The results for the S and VEB classes are very promising
and indicate improvements over similar existing studies. It is
worth noting that the AAMI recommended measures focus
on the classification of S and VEB class heartbeats.

TABLE 5. Summary of the classification results obtained for the CNN and
MPA-CNN on the MIT-BIH dataset.

TABLE 6. Summary of the classification results obtained for the CNN and
MPA-CNN on the EDB dataset.

TABLE 7. Summary of the classification results obtained for the CNN and
MPA-CNN on the INCART dataset.

Tables 5, 6, and 7 present improvements for theMPA-CNN
model over the CNN model without parameter optimization.
MPA-CNN improves AVGAcc with 5.37%, 2.1%, and 5.60%
over MIT-BIH, EDB, and INCART respectively. Besides the
model enhances AVGSn by 11.58%, 3.28%, and 12.69% over
MIT-BIH,EDB, and INCART respectively.

B. COMPARATIVE STUDY
We compared the applicable dataset, feature extraction tech-
nique, classification models, and classification results with
those of the existing studies. The results presented in the
literature include the recognition of only five (four known
and one unknown) classes as shown in Table 8. The proposed
approach offers (on average) a 99.31%, 99.76%, and 99.47%
increase in accuracy over the MIT-BIH, EDB, and INCART
datasets, respectively. In terms of ACC and Sn, the highest
accuracy is obtained for MPA-CNN. The results showed
that the proposed approach produces significant performance
improvement in the classification measurement factors com-
pared with other approaches. Moreover, the results shown in
the table 8 confirm the proposed model effectiveness.

VI. CONCLUSION
This paper proposes an ECG classification approach called
MPA-CNN, which is based on parameters optimization
of CNN using the MPA algorithm. The classification can
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TABLE 8. Summary of comparisons between the proposed model and the existing methods.

be implemented as follows: 1) To improve the predictive
power of models considering heart problems, this analysis
can be implemented with very large and different datasets.
2) Real-time surveillance of cardiac patients is essential for
developing efficient methods for feature extraction and clas-
sification. 3) This study uses powerful classification models.
For meaningful classification outcomes with improved accu-
racy, these models perform very well with theMPA algorithm
and can enhance the accuracy of the classification process.
4) The results agree with those of previous studies. However,
the results presented in the scientific literature include the
classification classes in the AAMI standard. The MPA-CNN
approach is faster and yields more accurate results than most
existing techniques. The average detection accuracy levels for
MPA with CNN classifier are 99.31% (MIT-BIH), 99.76%
(EDB), and 99.47% (INCART). This suggests that the MPA
algorithm is a more efficient and effective algorithm to obtain
an optimized ECG classification model compared to other
algorithms. It is worth exploring integrating the MPA with
other machine learning classifiers as future research direc-
tions to optimize searching parameters of these classifiers for
efficient detection of arrhythmia and heart rate abnormalities
and failure.
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