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ABSTRACT As the number of space debris has increased rapidly in recent years, it poses amajor threat to the
safety of spacecraft in space, and damage assessment for space debris hypervelocity impact is very important.
In order to more comprehensively and accurately describe the damage defects in the infrared inspection data
collected by infrared thermal imaging technology, this paper proposes an ultra-high-speed impact damage
detection algorithm based on infrared reconstruction image fusion. The algorithm first preprocesses the
obtained infrared thermal response image sequence and separates the damage features, and then applies
a multi-objective evolutionary optimization algorithm to extract the typical transient thermal response, and
then reconstructs the feature infrared images. Finally, image fusion based on guided filtering is performed
on the damage reconstruction infrared images. In this paper, several reconstruction images that represent
different types of impact damage defect are merged together to improve the detection ability of the algorithm.
Infrared detection experiments on damaged specimens obtained from actual hypervelocity impacts verify the
effectiveness of the proposed algorithm.

INDEX TERMS Infrared thermal image fusion, transient thermal response, hypervelocity impact, damage
evaluation.

I. INTRODUCTION
Space debris is generally defined as a space object that
has lost its basic function and is distributed in an orbit
around the Earth utilized by artificial Earth satellites, usually
at an altitude of 100 − 40, 000 km above the ground [1].
Since the first man-made satellite was launched in 1957,
thousands of spacecraft of various types have been sent to
earth orbit. With the increase of human space exploration
activities, the amount of space debris has increased geo-
metrically, including the mission rocket bodies and satel-
lites themselves, rocket jets, discarded material from space
missions, debris from collisions between space objects, etc.,
which have become the main source of pollution of the space
environment [2], [3].
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The space debris travels around the Earth’s orbit at
extremely high velocities, reaching 7−8 km/s, and some even
exceeding 10 km/s [4]. Especially for the huge number of
millimeter-level tiny space debris particles, the probability of
hitting the spacecraft is higher due to the inability to track and
avoid them. The form of damage caused by tiny space debris
hitting spacecraft at hypervelocity is very complex, ranging
from simple craters and cracks caused by initial impacts
to intensive impact damage caused by chain impacts. For
example, the secondary debris cloud formed by the impact
of space debris on the buffer screen of the typical Whipple
protective structure, as shown in Figure 1, its secondary
impact on the rear wall will cause various types of dam-
age, including visible surface damage such as perforations,
tears, potholes, etc., and invisible subsurface damage such as
faults, spalling, and bulges. Complex hypervelocity impact
processes often bring complex damage effects, ultimately
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FIGURE 1. Secondary debris cloud of hypervelocity impact for typical
Whipple protective structure.

forming complex multi-type defects coupling damage sit-
uation. For example, in the local area where the hyperve-
locity collision occurs, the behavior of the solid material is
no longer a given solid material to ram and cause damage,
but a similar compressible fluid acting in the center of the
hypervelocity impact local area, resulting in completely dif-
ferent damage effect compared with that of a low-velocity,
low-energy impact. Therefore, the type of damage caused by
hypervelocity impact is complex, the amount of damage is
huge, and the damage effect caused is completely different
from that of low velocity and low energy impact. There-
fore, how to detect and assess these complex hypervelocity
impact damages comprehensively is an important research
topic, which is very meaningful for space debris protec-
tion design, spacecraft maintenance support, and impact risk
prediction.

The in-situ inspection and non-contact nature of infrared
non-destructive testing is a great advantage considering the
size and dimensions of the spacecraft and the fact that it is
often difficult to disassemble. Secondly, infrared NDT is very
fast and friendly to large area detection. Together with its
high versatility, it is suitable for various materials and surface
shapes of complex parts on spacecraft, such as metals and
non-metals, making it a better detectionmethod for spacecraft
damage detection. Infrared inspection technology is a highly
effective non-contact inspection method that is used in the
aerospace field [5], [6]. The defect damage information is
determined by monitoring the temperature field variation
during the specimen heating process [7]. The processing of
the acquired raw infrared thermal image sequences is a very
important process in infrared NDT technology. Influenced
by infrared thermal camera noise, heating inhomogeneity of
excitation source, and different absorption rate of material
surface, it leads to low reliability of defect information in
a single frame of infrared image, and some subtle defect
information may even be drowned out by noise. And a good
infrared sequence thermal image processing technology can
eliminate the interference of unfavorable factors, improve
the signal-to-noise ratio, and enhance the defect displayabil-
ity [8]–[11].

In order to efficiently derive damage information
from IR thermal response sequences, many authors have

proposed corresponding image-based feature extraction algo-
rithms, such as defect contrast enhancement methods, differ-
ential method, singular value decomposition, pulsed phase
thermography, and ICA [12]–[14]. To some extent, they do
achieve feature extraction. However, these methods have
some drawbacks: the differential and singular value method
decompositions lose temporal information about the image,
and the frequency selection method for pulse phase requires
human judgment. In addition, for compound coupling type
defects and large size defects, it is difficult for the defect
image detection algorithm through a single detection image
to reflect a comprehensive, multi-detail, and holistic defect
damage profile of the part under test. In recent years, a large
number of scholars have also proposed distinctive detection
algorithm frameworks in the field of infrared detection algo-
rithms [15]–[17]. A large number of other effective feature
extraction algorithms have been applied to the processing of
infrared thermal image sequence data. Infrared thermal image
sequence processing algorithms are continuously combined
with other newer and more efficient algorithms [18]–[23].
However, their detection object, that is, the detection of the
defect itself is relatively single. Usually a defect detection
image with good detection effect for a single type of defect
can be obtained. For hypervelocity impact and spacecraft
complex types of defects are often missing to meet the
detection needs of simultaneous detection of multiple types
of defects. The problem of effective detection of complex
multi-type defects at the same time needs to be solved,
so our work effectively achieves the simultaneous detection
of complex defects under hypervelocity impact based on the
effective implementation of infrared data feature extraction
combined with image fusion technology.

An excellent detection algorithm not only needs to be
able to adaptively detect various types of defects from the
infrared thermal response sequence accurately and efficiently,
such as surface and subsurface defects that may be caused
by hypervelocity impact. More importantly, it also needs to
be able to extract fusion images that can represent multiple
types and multiple defects at the same time. In order to facil-
itate subsequent tasks based on image segmentation, contour
extraction, and quantitative analysis [24], the fused image
also needs to be able to represent multiple details.

To solve the above problems, this article proposes an
image fusion-based method for hypervelocity impact dam-
age detection in infrared technology. The algorithm first
extracts and acquires each defect type reconstruction image
of the damaged specimen by the infrared damage information
extraction algorithm and the infrared damage image recon-
struction algorithm. The Density-Based Spatial Clustering
of Applications with Noise clustering algorithm is used to
achieve adaptive determination of the number of defect cat-
egories, which avoids the need to pre-determine the num-
ber of defect categories and separates the transient thermal
response sets of defect categories from each other [25], [26].
Then, a multi-objective evolutionary optimization algorithm
is used to extract the most representative transient thermal
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response from the transient thermal response set of each
category, and at the same time, the typical representative tran-
sient thermal response maintain the greatest difference from
the transient thermal response sets of other categories [27],
[28]. Finally, the extracted representative thermal responses
are used to reconstruct the infrared defect images, which
can fully characterize the defect features of a particular
category.

Afterwards, multiple categories of defect information,
multiple quantities of defect information, multiple details of
defect information, etc. need to be fused together from each
extracted IR reconstructed image. Commonly used image
fusion algorithms include transform domain-based fusion
algorithms based on pyramidal decomposition and wavelet
transform-based fusion algorithms, but the fusion effect
receives serious alignment effects [29]. In recent years, spatial
domain-based fusion algorithms have attracted a lot of atten-
tion, such as pixel-based fusion and block-based fusion [30].
However, in damage assessment under hypervelocity impact,
the quantity information, location information and contour
information of the various defects formed due to the impact
are very important. Wherein, the contour information is cru-
cial for characterizing a defect, so the fusion algorithm needs
to be able to efficiently preserve not only asmuch information
as possible for each IR reconstruction, but also the edge
contour information of the defects in each reconstruction.
Then the image fusion algorithm based on guide filtering [31]
is used to carry out infrared reconstruction image fusion.
In the end, the above method realized the homologous het-
erogeneous coupling defect IR reconstruction image fusion,
heterologous heterogeneous plural quantity IR reconstruc-
tion image fusion, and heterologous and homogeneous multi
IR reconstruction image fusion. The research results ensure
that the fused images are capable of accurately and clearly
reflecting the comprehensive, multi-detail, and overall defect
damage characteristics of the tested specimen. The main
contributions of our work are shown below.

1) We propose a framework for the detection of complex
multi-type coupled defect damage caused by hyperve-
locity impact on spacecraft. After data pre-processing,
the damage detection framework first separates the
transient thermal responses corresponding to differ-
ent types of defects based on the transient thermal
response(TTR) characteristics of each damage region
using a clustering algorithm. The typical representative
transient thermal response curves are then extracted
from the different types of TTR sets, and image recon-
struction is performed to achieve separate, clear, and
highly detectable imaging of different types of defects.
Finally, the detection images of different types of
defects are fused by image fusion technology to achieve
the simultaneous detection of complex multi-category
defects.

2) In order to solve the problem of determining the
number of complex classes of defects caused by

FIGURE 2. Infrared inspection platform.

hypervelocity impacts, we combined the density-based
DBSCAN clustering algorithm to separate the tran-
sient thermal responses of different classes of defects
from each other. It can avoid the problem that general
clustering algorithms need to determine the number of
defect classesmanually in advance. Enablesmore accu-
rate extraction of typical TTRs for each defect class,
improving the detectability of reconstructed detection
images for each individual defect class.

3) To achieve effective detection of complex types of
defects simultaneously, a guided filter-based image
fusion technique is used. Defect edge information can
be retained in each individual type of defect detection
image. The fused image can synthesize the defect fea-
ture information of each individual defect image. Solve
the problem that a single detection image cannot simul-
taneously ensure clear imaging of complex categories
of defects.

II. PROBLEM STATEMENT
To obtain infrared reconstructed images that provide clear
information about the characteristics of various types of
defects, an infrared defect detection platform is adapted,
as shown in Figure 2.

The excitation device generates different optical energy
and thermal energy under the action of the excitation signal.
Afterwards, the optical energy on the surface of the mate-
rial is converted into thermal energy which can be detected
and recorded by an infrared camera. Finally, an infrared
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image sequence consisted of a series of recorded infrared
images during the heating process is obtained. The thermal
image sequence obtained is described as a matrix block
(Y ′ ∈ RI×J×Nt ), in which I , J represent the spatial informa-
tion and Nt represents the time information. It contains a lot
of damage information and non-damage information. Based
on the infrared thermal response sequence, extract effective
defect characteristics and perform infrared image reconstruc-
tion to obtain a reconstructed image that can clearly charac-
terize the damage information.

Infrared thermal images are different from normal visible
images. Infrared images are obtained by measuring the heat
radiated from the object. A sequence of consecutive infrared
thermal images constitutes the temperature change of the
specimen during the entire heat transfer process. However,
the raw infrared thermal image acquired solely by the thermal
imaging camera has poor resolution, low contrast, low signal-
to-noise ratio, and blurred visual effects. Directly based on
the original infrared thermal image for defect detection is
very poor. Therefore, infrared thermal image sequence data
processing algorithm is very important. Awell-designed ther-
mal image processing technique for infrared sequences can
eliminate the interference of unfavorable factors, improve
the signal-to-noise ratio, and enhance the defect visibility.
Therefore, our algorithm is of interest for the effective detec-
tion of defects, especially for the simultaneous detection of
complex multiple types of defects in spacecraft caused by
hypervelocity impacts.

In our previous works in [18], [19], a damage feature
extraction for one IR thermal response sequence has been
obtained, from which a series of IR reconstructed images
of the specimen have been obtained. The k − th IR recon-
structed image from the i− th IR thermal response sequence
is denoted by iRk . Each of the reconstructed images is recon-
structed from a class of defects corresponding to a typi-
cal feature Transient Thermal Response (TTR), represents
a specific type of damage, including different types of sur-
face defects such as perforations, tears, pits, etc., as well
as internal and subsurface defects such as spalling, delam-
ination, and internal fractures. In order to facilitate subse-
quent image processing, including image stitching, image
segmentation, and quantitative analysis, multiple surface and
subsurface IR reconstructed images, such as iRk and iRl ,
of the same specimen that characterize different specific types
of damage are fused together to enable the fusion images
to characterize multiple damage information simultaneously
and to obtain a more complete picture of the specimen’s
defects.

In addition, in the actual infrared inspection of defects,
multiple measurements and local heating of the details are
often required to obtain clearer information about the details
and contours of the defects to obtain detailed infrared video
stream data containing more details of the defect features.
Based on the detailed IR thermal response sequence, a series
of clearer defect detail reconstruction images can be recon-
structed such as jRm. In order to enhance the image detail,

it is also necessary to fuse the information contained in
the IR reconstructed image that characterizes the detail
portion of the image under multiple measurements, such
as iRk and jRm, into the overall reconstructed image to
enhance the overall image detection and defect detail contour
information.

Therefore, image fusion is crucial in defect detection. The
fusion of global image with global image can increase the
image integrity, and the fusion of global image with local
image can enrich the image details, both of which are bene-
ficial for image detection. Therefore, this paper proposes the
following image fusion-based algorithm for ultra-high-speed
impact damage detection in infrared.

III. IMAGE FUSION-BASED ALGORITHM FRAMEWORK
FOR HYPERVELOCITY IMPACT DAMAGE DETECTION
A. ACQUISITION OF INFRARED RECONSTRUCTED IMAGES
During the data pre-processing, we performed a specific
design for the thermal images. In order to utilize the different
temperature response characteristics of each defect region
throughout the heat transfer process, we extracted the feature
information of each type of defect based on the transient ther-
mal response. We used Pearson’s correlation coefficient to
measure the similarity of the thermal response features. Since
the thermal response curves of the same type of defects in the
heat conduction process are similar, we eliminate the redun-
dant transient thermal responses with excessive similarity
considering the detection rate and data size. In addition, since
different types of defective regions, as well as non-defective
regions, vary greatly in size, screening strategies with the
same step size often lead to inefficient data searches, so we
chunked the raw data. In different blocks of data, different
block search steps are obtained based on the correlation
situation within the block.

Since IR thermal response sequence data, M (r, c, t), (r =
1, · · · ,Rmax; c = 1, · · · ,Cmax; t = 1, · · · ,Framemax),
contains a large amount of information, including spatial
location of defective and non-defective pixels, temperature
response, time variation information, etc., if the raw data is
not pre-processed, the detection algorithm will be too long
and the detection efficiency will be reduced, so it is neces-
sary to pre-process the raw thermal response sequence data
first.

Perform data pre-processing algorithm to remove repeti-
tive redundant data. According to the position of the global
maximum value M (Rm,Cm,Tm) in the infrared thermal
response sequence, the Pearson correlation coefficient (PCC)
of the thermal response sequence of it and other pixels in
line with it, M (Rm, c, :), (c = 1, 2, . . . ,Cmax , c 6= Cm),
is calculated to determine the appropriate column step size
CSS. The original IR thermal response sequence is then
divided into K + 1 data blocks based on time thresh-
olds THVtime(k). Find the location of the maximum value
within each block and calculate the PCC between it and
other pixel values within the block, PCC(kM (kRm,k Cm, :
),k M (kr,k Cm, :)), to determine the appropriate line step
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FIGURE 3. Data pre-processing process.

size kRSS. Finally, it searches for valid transient thermal
response and removes repetitive transient thermal response
based on the determined asynchronous step sizes in different
blocks. The infrared data pre-processing algorithm is shown
in Figure 3. The pseudocode of the data preprocessing is
shown in Algorithm 1.
Remark 1: Each square represents a pixel point and each

frame contains the temperature information of the speci-
men at the current moment. After the raw infrared data
acquisition, a 3-dimensional temperature field information
matrix M (r, c, t) is acquired. Based on the position of
M (Rm,Cm,Tm), search both sides and calculate the similarity
of other pixels in the same rowwith it, counting the number of
pixels with similarity greater than THVC as the search column
step CSS. Then the original 3-dimensional matrix M (r, c, t)
is decomposed into k data blocks, and in each block the
information is filtered using different search steps, kRSS. The
search step size kRSS in each data block is mainly affected
by the similarity between the local temperature maximum
value kM (kRm,kCm, :) and other pixels in the same column
within the block. The kRSS decision strategy is similar to that
of CSS. Finally, the obtained different steps are used to sift
redundant information within different blocks, and the pixel
points with too much similarity are considered as redundant
data and are discarded.

After that, the IR thermal data containing multiple struc-
tural characteristics of the specimens were obtained after
variable step chunking feature data screening and repetitive
data removal.

After obtaining the pre-processed transient thermal
response set, it is necessary to separate the defective pix-
els from the non-defective ones and from the pixels with
different classes of defects. In previous works [18], [19],
Fuzzy C-means (FCM) and Bayesian classifiers are the
effective clustering algorithms for transient thermal response
set. However, they require user-defined number of clustering
categories L. FCM and Bayesian classifiers cannot deter-
mine the number of clusters based on the characteristics
of the data itself. In the actual inspection process, there
is often no way to obtain the defect category information
of the parts to be tested in advance, which requires the
process of determining the number of defect categories after

Algorithm 1 DATAPREPROCESSING
Input: Infrared Thermal Response Sequence,

M (r, c, t), (r = 1, · · · ,Rmax; c = 1, · · · ,Cmax; t =
1, · · · ,Framemax); Thresholds, THVc, THVtime(k),
THVr and THVpcc;

Output: TTR set,X = {X1,X2, · · · ,Xn};
1: M (Rm,Cm,Tm)← max(M (r, c, t));
2: CSS ← number of PCC(M (Rm,Cm, :),M (Rm, c, :)) >
THVc, (c = 1, 2, · · · ,Cmax, c 6= Cm);

3: devide M (r, c, t) into k+ 1 blocks with THVtime(k);
4: for each block kM (kr,k c, :) do
5: kM (kRm,kCm, :)← max(kM (kr,k c, :));
6: kRSS ← number of PCC(kM (kRm,kCm, :

),kM (kr,kCm, :)) > THVr , (kr =

1, 2, · · · , kRmax,kr 6=kRm);
7: end for
8: Initialize TTR set,X , r = c = 1;
9: n = 1,Xn←k M (kRm,kCm, :);

10: while c < Cmax do
11: Calculate PCC(kM (r, c, :),Xn);
12: if PCC(kM (r, c, :),Xn) < THVpcc then
13: n = n+ 1;
14: Xn←k M (r, c, :);
15: end if
16: r = r +k RSS
17: if r >k Rmax then
18: k = k + 1,r = 1;
19: end if
20: if r > Rmax then
21: c = c+ CSS;
22: r = 1;
23: end if
24: end while
25: return X ;

clustering, thus reducing the accuracy of the inspection algo-
rithm. Therefore, this paper adopts the Density-Based Spatial
Clustering of Applications with Noise Clustering algorithm
(DBSCAN).

DBSCAN is a density-based clustering algorithm. It can
find clusters of arbitrary shape in noisy spatial database
without specifying the number of clusters in advance. The
core idea of DBSCAN is to expand from a certain core point
to the region where the density can be reached, so as to
obtain a maximum region including core points and boundary
points, and any two points in the region are connected by
density. The DBSCAN algorithm pseudocode is shown in
Algorithm 2. Obviously, the DBSCAN clustering algorithm
can be used to achieve the adaptive separation between the
transient thermal response of defective parts and the tran-
sient thermal response of non-defective parts, as well as the
transient thermal response of different categories. Since the
DBSCAN clustering algorithm is based on the characteristics
of the data itself, there is no need to set the number of defect
categories of the specimen in advance, and the automatic
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Algorithm 2 DBSCAN
Input: Pre-processed TTR data, X ; Clustering Parameters,

eps and Minpts;
Output: Clustering Result,Clu;
1: Initialize core object set,� = 0, clustering number,l =

0, the set of unvisited TTRs, 0 = X , clustering result,
Clu[i];

2: for all each Xn ∈ X do
3: Find eps-Neighbor of TTR Xn, NEeps(Xn) = {Xn ∈

X |dist(Xn,Xm) ≤ eps };
4: if

∣∣NEeps(Xn)∣∣ ≥ Minpts then
, add TTR Xn to core object set,� = �

⋃
Xn.

5: end if
6: end for
7: repeat
8: In the set of core objects �, randomly select a core

object,X i;
9: Initializing the current cluster core object

queue,�current = X i, clustering number,l = l + 1.
Initialize the current set of cluster samples,
Clu[l] = X i, Updating set of unvisited samples,
0 = 0 − X i;

10: repeat
11: Select a core object X i

′

from the current cluster core
object queue �current = X i;

12: Find all its eps-Neighbor, NEeps(X i
′

);
13: 1 = NEeps(X i

′

)
⋂
0;

14: Clu[l] = Clu[l]
⋃
1, 0 = 0 −1;

15: �current = �current
⋃
(1
⋂
�)− X i

′

;
16: until �current == 0,then � = �− Clu[l];
17: until The core object set,� == 0, Cluster end;
18: return Clu;

discrimination of the number of defect categories can be
realized.
Remark 2: In our work, in an attempt to solve the prob-

lem of simultaneous imaging of complex multiple types of
defects, we first combine the DBSCAN algorithm to unsu-
pervisedly cluster the thermal response curves of each type
of defect, and then extract from them the typical transient
thermal response of each type of defect for image recon-
struction. The reconstructed images thus obtained are able to
characterize each type of defect more clearly individually and
specifically. In particular, the DBSCAN clustering algorithm
is based on density clustering, which eliminates the need to
set the number of defect categories in advance and solves
the problem of unclear categories, numbers and locations of
defects caused in hypervelocity impacts of spacecraft and
the problem of difficulty in obtaining defect information
manually in advance.

The dist(Xn,Xm) in Algorithm 2 is the Euclidean dis-

tance, dist(Xn,Xm) =

√
D∑
d=1

(Xnd − Xmd )2, wherein d is the

dimensions of the TTR vector. After the DBSCAN clustering
algorithm, the pre-processed TTR sets are clustered into L

classes, which achieves the mutual separation of defect infor-
mation and non-defect information, and themutual separation
of different classes of defect information.

It is then necessary to select a representative thermal
response transient from each class set for quantitative anal-
ysis and subsequent image reconstruction operations. Ide-
ally, the thermal response of a representative feature TTR
should not only be sufficiently representative of the overall
thermal properties of the set of transient thermal response
categories in which it is located, but should also be suffi-
ciently distinct from the thermal response of transients in
other sets of categories. The above two metrics are often
opposed to each other, so a decomposition-based MOEA/D
multi-objective evolutionary optimization algorithm is used
to extract the transient thermal response of each category
of features, which was discussed in our previous work [3].
The multi-objective optimization problem is decomposed
into a series of single-objective optimization sub-problems,
and then an evolutionary algorithm is used to optimize these
sub-problems simultaneously using the information from a
certain number of neighboring problems, in order to avoid
falling into a local optimum while maintaining the distribu-
tion of solutions.

In the detection process, the above two opposing objective
functions are:

f1(lX )=min

√√√√ D∑
d=1

(lXd −l Cend )
2 (1)

f2(lX )=min

−
 L∑
l′=1,l′ 6=l

√√√√ D∑
d=1

(lXd −l′ Cend )
2

 (2)

where d , (d = 1, · · · ,D) represents the dimension of the
TTR X . l and l ′, (l, l ′ = 1, · · · ,L, l 6= l ′) mean the l-th and
l ′-th class. The lCend and l′Cend represent the cluster center
of l-th class and l ′-th class. f1(lX ) represents the intra-class
Euclidean distance inside the l-th class, f2(lX ) represents
the total sum of inter-class distances between the l-th class
and classes other than l. The multi-objective optimization
problem is

min F (iX) = (f1 (lX) , · · · , fL (lX))T

sub to lX ∈ l� (3)

where l� is the range of the l-th class determined by the tran-
sient thermal response. L is the number of objective functions.
fi (lX) is the i-th objective function defined of l-th decision
variable lX .

After selection of a representative feature transient thermal
response based on a multi-objective evolutionary optimiza-
tion algorithm, a thermal image need to reconstructed to
represent the defect information by using the typical thermal
response selected in the way of multi-objective evolutionary
optimization. The following formula is used: R = Ĉ ∗ T ,
where R means reconstructed image, Ĉ is the generalized
inverse matrix of the matrix formed by the set of points
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Algorithm 3 Infrared Reconstruction Image Acquisition
Algorithm
Input: Infrared Thermal Response Sequence, M ; Thresh-

olds, THVc, THVtime, THVr and THVpcc; Clustering
Parameters, eps and Minpts; Iterative Termination Con-
ditions, I ; Neighbor Size, n; Population size, D;

Output: Infrared Reconstruction Image, R;
1: X = DATAPREPROCESSING;
2: Clu = DBSCAN (X , eps,Minpts);
3: for each cluster Clu[l] do
4: Decompose the multi-objective functions

min gte(X
∣∣γ, p∗ ) = max{γi

∣∣fi(X )− p∗i ∣∣}
5: Initialization. Solution set, lFV = []; Define

the neighbor of each weighted vector, N (k) =
{k1, . . . , kn} (k = 1, . . . ,D), and its nearest n
weight vectors are γ =

(
γ k1 , · · · , γ kn

)T , Randomly
generated initialization population, X1, · · · ,XD, ini-
tialize the reference point,p∗,p∗ = (p∗1, · · ·, p

∗
j , · ·

·, p∗L)
T , p∗j = min

{
fj(X )|X∈i�

}
, (i = 1, . . . ,L);

6: while i < I do
7: for each X k , (k = 1, · · · ,D) do
8: Randomly select two solutions from the neighbor

N (k) of the k-th subproblem to generate a new
solution kXnew using evolution operator.

9: for j = 1 to L do
10: if p∗j < fj(kXnew) then
11: p∗j = fj(kXnew);
12: end if
13: end for
14: for j ∈ N (k) do
15: if gte(kXnew|γ, p∗) ≤ gte(X j|γ, p∗) then
16: replace X j with kXnew;
17: end if
18: end for
19: Keep the solution vector that dominates

F (kXnew) from lFV , delete all solution vectors
that are dominated by F (kXnew), if none of
the vectors in lFV dominate F (kXnew), add
F (kXnew) to lFV ;

20: end for
21: end while
22: end for
23: Select a point from each lFV as a representative transient

thermal response to form a matrix,lC=lXRTTR;
24: T = reshape(M );
25: R = Ĉ ∗ T ;
26: return R;

selected in the multi-objective evolutionary optimization, and
T represents the 2d matrix converted from the original 3d
matrix by column reconstruction. The overall process of
extracting infrared reconstruction images from an infrared
thermal response is shown in Algorithm 3.

As shown in Algorithm 3, the multi-objective evolu-
tionary optimization algorithm first decomposes the origi-
nal multi-objective problem using the Chebyshev method,
then initializes it, calculates the Euclidean distance between
the weight vectors, finds the nearest n-weight vector
as the domain, and updates the population solution based on
the aggregation function value. The Pareto Front is obtained,
from which a Pareto optimal solution is selected as the
transient thermal response of the representative features of
each category. The IR image is reconstructed based on
them.

After the above steps, the algorithm acquires a set of IR
reconstructed images R. The k-th IR reconstructed image
obtained from the i-th IR thermal response sequence is rep-
resented by iRk . Each reconstructed image is capable of
clearly and individually characterizing the feature informa-
tion of a particular type of defect. In order to obtain fusion
images that characterize the integrity and richness of the
defect features of defective specimens, it is necessary to
fuse the different reconstructed images using image fusion
techniques. In the field of infrared NDT, the original recon-
structed image contains a large amount of information in
which the defect information, including contour information,
location information, size information, etc., is very important.
In comparison, pixel-level image fusion preserves more of
the original information. In the process of processing recon-
structed images with defect information, the edge contour
information of the defected part is one of the most important
information to characterize a defect. Image fusion needs to
meet the basic requirements as well as the edge retention
function.

Therefore, how to make the edge contour information of
the defect part clearer and more obvious is a crucial issue
in reconstructed image processing. In recent years, many
edge-preserving filters have been proposed, which are capa-
ble of smoothing the image while keeping the edges clear.
Among them, the guide filter is a good edge-preserving
filter. Its fusion only needs to acquire two scales of the
image, which is efficient, and introduces the concepts of
pixel saliency and spatial continuity of the image to improve
the fusion effect while maintaining efficiency. It effectively
retains the edge details of the image, so it is a good match
for the flawed feature information retention and fusion
requirements in reconstructed images. Figure 4 shows the
process.

B. IMAGE FUSION ALGORITHM BASED ON GUIDED
FILTERING
The image fusion process based on guide filtering for IR
reconstructed images is shown in Fig.(5). Fig.(5) shows a
schematic diagram of the image fusion algorithm part of the
detection algorithm framework. The schematic is divided into
two parts A and B. Part A corresponds to III.A of the article,
which is the stage of infrared reconstruction image acquisi-
tion for different defects, and the clear infrared reconstructed
images obtained after part A characterizing different types of
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FIGURE 5. Image fusion process.

FIGURE 4. Defect detection process.

defects are noted as R1,R2,R3,R4. The individual infrared
reconstructed images are used as input to part B to achieve
image fusion to obtain a fused image that clearly character-
izes all defective features. part B is divided into steps a, b and
c. Step B.a) Firstly, the mean filtering is performed on each
of the obtained infrared reconstructed images to obtain the
base layer image characterizing the background information,
namely B1,B2,B3,B4, and the detail layer image character-
izing the existing defect information in each reconstructed
image, D1,D2,D3,D4. Then, after step B.b), the original
infrared reconstruction images without mean filtering are
Laplacian filtered to obtain high-pass images and saliency
detection is performed. The saliency maps of each image,
which is represented by S1, S2, S3, S4, are obtained and
the weight maps, namely M1,M2,M3,M4, of each infrared
reconstruction image are obtained by comparing the saliency
maps. Based on the obtained weight maps, the saliency maps
are used as the guide images for the guide filtering to obtain
the refined base layer weight maps, WB

1 ,W
B
2 ,W

B
3 ,W

B
4 , and

detail layer weight maps, WD
1 ,W

D
2 ,W

D
3 ,W

D
4 . Finally, after

step B.c), the decomposed individual base and detail layer

images are combined with the corresponding base and detail
layer weight maps for weighted average fusion to obtain the
final fused image.

1) IMAGE FUSION ALGORITHM BASED ON GUIDED
FILTERING
The output O of the guided filter is a linear transformation of
the guided imageG in a local window centered at pixel k, ωk .

Oi = αTk Gi + bk ,∀i ∈ ωk (4)

wherein, ωk is a rectangular window of size (2r + 1) ×
(2r + 1), αk is a coefficient vector of 3 × 1, and Gi is the
color vector of pixel i in the guide graph. αk and bk are
constants in the rectangular windowωk . They can be obtained
by minimizing the following variance formula between
the input infrared reconstructed image R and the output
image:

E(αk , bk ) =
∑
i∈ωk

((αTk Gi + bk − Ri)
2
+ ε|αk |

2) (5)

Herein, ε is a preset regularization parameter. Using a
linear regression model, αk and bk can be obtained as follows

αk = (6k + εU )(
1
|ω|

∑
i∈ωk

GiRi − µk R̄k ) (6)

bk = R̄k − αkTµk (7)

6k is a 3×3 covariance matrix of the guide imageG in the
window ωk , U is the identity matrix, µk is the mean vector
of the guide image G in the window ωk and |ω| is the number
of pixels in the window ωk , R̄k is the mean of the input IR
reconstructed image R in the window ωk . Because a pixel can
be contained in multiple windows, the coefficients αk and bk
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are averaged before filtering.

Oi = ᾱTi Gi + b̄i (8)

herein, ᾱi = 1
|ω|

∑
k∈ωi

αk , b̄i = 1
|ω|

∑
k∈ωi

bk . Henceforth,

the guide filter operation is denoted by GFr,ε(R,G), r, ε
represent the filter parameters, R,G represent the infrared
reconstructed images to be fused and the guided images,
respectively.

2) GUIDED FILTER-BASED IMAGE FUSION PROCEDURE
The image fusion process based on guide filtering for IR
reconstructed images is shown in Figure 5. First, a two-scale
representation of the original infrared reconstructed images
at the base and detail levels is obtained using mean value
filtering, and then image fusion is performed using aweighted
average fusion strategy based on guided filtering.

a: DUAL SCALE IMAGE DECOMPOSITION
The source infrared reconstructed images to be fused are
decomposed into base and detail layers by means of mean
value filtering. The base layer image is derived from the
following:

Bn = Rn ∗ Z (9)

herein, Rn is the n − th infrared reconstructed image to be
fused, and Z is the mean filter, usually set to the scale size
of 31× 31. When the base layer image is acquired, the detail
layer image is obtained by subtracting the base layer image
from the source infrared reconstructed image.

Dn = Rn − Bn (10)

Image decomposition decomposes the source image into a
base layer with strong intensity variations at large scales and a
detail layer with narrow intensity variations at smaller scales.

b: CONSTRUCTION OF WEIGHT MAP BY GUIDED FILTERING
Each source infrared reconstructed image is filtered by
Laplace filter to obtain high pass image Hn:

Hn = Rn ∗ L (11)

Herein, L is a Laplace filter of size 3×3. Then the saliency
map Sn is constructed by using the local average of absolute
value of high pass image Hn:

Sn = |Hn| ∗ GFrgf ,σgf (12)

herein,GF is a Gaussian low-pass filter with size (2rgf +1)×
(2rgf +1) and parameter σgf . A saliency map is an impressive
visual feature in an image that provides a good description of
the level of saliency of image details. The saliency map is
then used to determine the weighting map by the following
equation:

Pkn =

{
1, if Skn = max(Sk1 , S

k
2 , · · · , S

k
N )

0 otherwise
(13)

herein, N is the number of source infrared reconstructed
images. Skn is the saliency value of the k-th pixel in the n-th
source infrared reconstructed image. However, the resulting
weight map is not aligned with the boundary of the actual
reconstructed image, which affects the effect of the fused
boundary. A well-suited strategy is to adopt the criterion of
spatial consistency, based on which two adjacent pixels with
similar brightness or color information shall carry similar
weights. A common approach is to introduce an energy func-
tion that contains information about the saliency of the pixel,
and the weights of the edge alignment are reinforced by a
regularization term. The energy function is then minimized
to obtain the desired weighting map.

Specifically, the fusion algorithm applies guide filtering to
each weight map and adopts its corresponding input infrared
reconstructed image as the guide image:

WB
n = GFr1,ε1 (Pn,Rn) (14)

WD
n = GFr2,ε2 (Pn,Rn) (15)

herein, WB
n and WD

n are the base level result map and the
detail layer result map of the weight map after filtering,
r1, ε1, r2, ε2 are parameters for the corresponding guide filter,
respectively. Finally, the N weight maps are normalized.

c: DUAL SCALE IMAGE FUSION
Firstly, the image of the basic level and the detail layer is
weighted average based on the weight map:

B̄ =
N∑
n=1

WB
n Bn, D̄ =

N∑
n=1

WD
n Dn (16)

Then, the final fused image is obtained by combining the
weighted average of the base and detail layer images.

F = B̄+ D̄ (17)

C. DISCUSSION OF PARAMETER ISSUES
Our proposed algorithmic detection framework does involve
a series of parameter settings. As presented in the above
subsections, most of these parameters are configured with
reference to empirical or general settings in general and with
experimental validation and testing that can guarantee better
detection results for our particular detection target. However,
within certain reasonable limits, the defect detection per-
formance of the algorithmic framework is insensitive to the
impact of minor differences in the settings of the individual
parameters in these subsections. The setting of the number of
defect classes, which has the greatest impact on the detection
effect, has been addressed by the density-based adaptive clus-
tering algorithm during the algorithmic clustering process
and no longer requires artificial settings. The results in most
cases, the proposed algorithm can achieve good fusion and
detection of complex multi-type defects. The experimental
results can verify the good generality of the proposed algo-
rithm to some extent.
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FIGURE 6. Setup for the hypervelocity impact experiment.

FIGURE 7. (a) The protection material with impact damages;
(b)Experimental set-up.

IV. EXPERIMENTAL RESULTS
To verify the effectiveness and necessity of image fusion
for defect detection in different types of specimens, several
inspection experiments were performed, including those on
defective specimens formed under real hypervelocity impact.
The test results are as follows.

A. EXPERIMENTAL A
The defect conditions of defective specimen A were actu-
ally created under hypervelocity impact which was con-
ducted in China Aerodynamics Research and Development
Center (CARDC). The hypervelocity impact test as shown
in Figure 6. The defective specimen A’s defect includes
surface impact crack and back spalling defects due to
excessive impact force, which is shown in Figure 7(a).
Therefore, a single infrared reconstruction of the defect fea-
tures cannot represent both defects simultaneously, and the
surface and sub-surface defect features can be effectively
fused together using the image fusion algorithm in this
paper.

1) EXPERIMENTAL A:ACQUISITION OF INFRARED
RECONSTRUCTED IMAGES
Due to the coupling of surface and subsurface defects in
the same specimen caused by the hypervelocity impact, an
inspection procedure was performed on specimen A shown
in Figure 6(a). The results were as follows.
First, the experiment begins with an infrared thermal cam-

era acquiring infrared thermal image sequences data, which
is shown in Figure 7(b). The IR thermal image sequence

FIGURE 8. Result of clustering.

size is 512 × 640 × 500, indicates that the infrared ther-
mal response sequence contains a total of 500 frames of
512 × 640 thermal image temperature field information
data. The total number of pixels contained is 327680. After
infrared data preprocessing, we got 2103 transient thermal
responses.

The 2103 transient thermal responses with redundant infor-
mation removed were then clustered by DBSCAN cluster-
ing algorithm, herein, the 2103 transient thermal responses
were divided into L = 3 classes, each with 372, 927, 804
numbers, marked as Class A, Class B and Class C as shown
in Figure 8. This represents the exist of 3 classes of structures
with different thermal properties in our specimens, includ-
ing the thermal response properties of the defect regions
we need to characterize. Then a typical transient thermal
response point for image reconstruction needs to be screened
from each category. It should not only be guaranteed that
the TTTR has a high similarity with other thermal response
points of the same category, to prevent finding edge points
and isolated points in the category, but also to ensure that
the thermal response points with different categories also
have a high degree of variability, so that the analysis of each
category has a clear differences. Thus the multi-objective
evolutionary optimization algorithm is executed in each
category.

In the MOEA/D multi-objective optimization algorithm,
set the weight vector numberD = 40, i.e., the weight vector is
−→
γ 1, · · · ,

−→
γ 40. The neighborhood range of each weight vector

is set to number n = D × 20% = 8. And set the maxi-
mum number of iterations Imax = 200. The multi-objective
function decomposition method chooses the penalty term
based intersection method (PBI), and set the penalty term
α = 8. The multi-objective optimization target problem is
set as follows:

Class A : minF(1X ) = (f1(1X ), f2(1X ), f3(1X ))T

f1(1X ) =

√√√√ D∑
d=1

(1Xd−1Cend )2
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TABLE 1. RTTR of each Classes and its transient thermal response curve
of Specimen A.

f2(1X ) = −


√√√√ D∑

d=1

(1Xd−2Cend )2


f3(1X ) = −


√√√√ D∑

d=1

(1Xd−3Cend )2


Class B : minF(2X ) = (f1(2X ), f2(2X ), f3(2X ))T

f1(2X ) =

√√√√ D∑
d=1

(2Xd−2Cend )2

f2(2X ) = −


√√√√ D∑

d=1

(2Xd−1Cend )2


f3(2X ) = −


√√√√ D∑

d=1

(2Xd−3Cend )2


Class C : minF(3X ) = (f1(3X ), f2(3X ), f3(3X ))T

f1(3X ) =

√√√√ D∑
d=1

(3Xd−3Cend )2

f2(3X ) = −


√√√√ D∑

d=1

(3Xd−1Cend )2


f3(3X ) = −


√√√√ D∑

d=1

(3Xd−2Cend )2


After the evolutionary algorithm, the representative tran-

sient thermal responses and their corresponding infrared
reconstruction images are shown in Table 1. The Pareto
Fronts of each class are shown in Figure 9. Represen-
tative transient thermal response points that can maintain

a high correlation with similar transient thermal response
points while maintaining a high variability with non-identical
transient thermal response points have been extracted by
multi-objective evolutionary optimization algorithms. The
point selected by Multi-objective evolutionary optimiza-
tion algorithm of Class A in Function Value is 1FV 8

=

F(1X43) = (4.9280,−4.7772,−5.6057)T . Its correspond-
ing transient thermal response vector after dimensional-
ity reduction is 1X43

= (3.5327,−3.5405,−3.6038).
In Class B, the selected point’s Function Value is 2FV 7

=

F(2X72) = (5.9319,−6.0718,−6.7283)T . Its correspond-
ing transient thermal response vector after dimensionality
reduction is 2X72

= (4.1167,−4.5881, 1.1014). In Class C ,
the selected point’s Function Value is 3FV 20

= F(3X56) =
(4.3031,−4.8562,−4.9423)T . Its corresponding transient
thermal response vector after dimensionality reduction is
3X56

= (0.2225, 4.8870,−2.2895).

2) EXPERIMENTAL A:IMAGE FUSION ALGORITHM BASED ON
GUIDED FILTERING
After obtain the 3 infrared reconstructed images, 1RA, 1RB
and 1RC , we can see that image 1RA corresponds to the struc-
ture type as the background region, 1RB to the structure region
as the subsurface spalling defect, and 1RC to the structure
region as the surface impact crack, and their corresponding
damage regions have been highlighted in the reconstructed
image. However, a single infrared reconstruction map can
only highlight one type of defect, and for better detection
and subsequent processing, different types of defect features
need to be fused into a single map. The surface defects and
subsurface defects of specimenA are highlighted in Figure 10
separately, we can see that a single reconstructed IR image is
missing certain defect information, so useful complementary
information from different reconstructed images needs to be
extracted and fused into one image.
Then perform infrared reconstructed image fusion of 1RB

and 1RC based on guide filtering. The result of fusion is
shown in Figure 11. The fused infrared reconstructed image
obtained by the guided filtering based fusion method can well
preserve the complementary information of different source
infrared reconstructed image such as the central cratering
defects due to hypervelocity impact and the surrounding
crack defect caused by secondary debris clouds. From this
figure, it can be seen that the proposed detection algorithm
can well preserve the brightness and color of the differ-
ent defects, providing an enhanced quality of defect feature
fusion image for more accurate and efficient defect detection
and quantification. Besides, the fused image is not blurred,
and the detection algorithm does a good job of protecting the
focus areas of different source infrared reconstructed images
without creating any artifacts that are non-existent, which
means our algorithm has high robustness. As can be seen,
our algorithm does implement defects color, good retention
profile and details, can well preserve the complementary
information of source infrared reconstructed images without
producing artifacts and distortions.
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FIGURE 9. Pareto Front of Specimen A.

Firstly, the source infrared reconstruction image 1RB and
1RC are decomposed in two scales to obtain the base and
detail images respectively, then Laplace filtering is performed
to obtain the high-pass image, and then a saliency map is
established based on the high-pass image, and the parameters
are σgf = rgf = 5 to obtain the preliminary weight map,
afterwards, the guide filter parameters are set to r1 = 8,ε1 =
0.0900,r2 = 4,ε2 = 0.0025 to filter the weight map to
obtain WB

1 , W
D
1 , WB

2 , and WD
2 respectively. The process

of fusion is shown in Figure 12. As shown in Figure 12,
thanks to our algorithm that makes full use of the strong
correlation between adjacent pixels to correct the noise and
the deviation of the weight estimation that may be caused by
the measurement of the saliency map as shown in the figure,
thus achieving a better fusion Effect, and also improved
robustness.

FIGURE 10. Defects in Specimen A.

FIGURE 11. Result of infrared thermal image fusion.

B. EXPERIMENTAL B
The defect condition of specimen B is a man-made defect
specimen. The specimen contains 3 rows of internal inclusion
defects which are invisible, as shown in Figure 13. Each
row consists of a series of circular holes of different sizes.
The circular holes are filled with materials with different
thermal conductivity to simulate super subsurface defects that
may be formed under hypervelocity impact. Since that there
are too many defects, three rows of defects called upper,
middle and lower layers in specimen B. Each row of defects
consists of 5 circular holes of different sizes, in order to
obtain more accurate and more detailed defect information.
Because that it is difficult to obtain sufficient inspection
accuracy in a single inspection, we conducted three inspec-
tions on specimen B, and carried out detailed inspections
for the upper, middle and lower defects respectively. And
then our proposed algorithm will be used to perform image
fusion on the three-line defect feature infrared reconstructed
image.
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FIGURE 12. Fusion process of specimen A.

FIGURE 13. The surface of the specimen with internal inclusion defects.

1) EXPERIMENTAL B:ACQUISITION OF INFRARED
RECONSTRUCTED IMAGES
Due to the excessive number of defects, we carried out tar-
geted inspections on the upper, middle and lower layers of
specimen B. The results were as follows.

First, the IR thermal image sequence size is 512 × 640 ×
150, indicates that the infrared thermal response sequence
contains a total of 150 frames of 512 × 640 thermal image
temperature field information data. The total number of pixels
contained is 327680. After infrared data preprocessing, for

the upper layer, we got 1047 transient thermal responses.
For the middle layer, 873 transient thermal responses were
obtained. For lower layer, the number of obtained transient
thermal responses is 1226.

The transient thermal responses were also divided into L =
3 classes by DBSCAN, each with 251, 337, 459 numbers for
upper layer, 198, 273, 402 for middle layer, 453, 396, 377
for lower layer. marked as Class A, Class B and Class C
as shown in Figure 14. Then a typical transient thermal
response point for image reconstruction needs to be screened
from each category. It should not only be guaranteed that
the TTTR has a high similarity with other thermal response
points of the same category, to prevent finding edge points
and isolated points in the category, but also to ensure that
the thermal response points with different categories also
have a high degree of variability, so that the analysis of each
category has a clear differences. Thus the multi-objective
evolutionary optimization algorithm is executed in each
category.

In the MOEA/D multi-objective optimization algorithm,
also set the weight vector number D = 40, i.e., the
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FIGURE 14. Clustering result for Specimen B.

weight vector is
−→
γ 1, · · · ,

−→
γ 40. The neighborhood range

of each weight vector is set to number n = D ×
20% = 8. And set the maximum number of iterations
Imax = 100. The multi-objective function decomposition
method chooses the penalty term based intersection method
(PBI), and set the penalty term α = 5. The multi-objective
optimization target problem is set the same as specimen A.

After the evolutionary algorithm, the Pareto Front, infrared
reconstruction images, and transient thermal response curves
for each category of upper layer, middle layer, and lower
layer are shown in Table 2, Table 3, and Table 4, respec-
tively. From the IR reconstruction images of three detections,

FIGURE 15. Defects in Specimen B.

it can be seen that due to the excessive number of defects
in the specimen at the same time, it is difficult to extract all
defects at the same time in one detection, so it is necessary
to perform multiple detections on different regions. Then,
we need to pick out the detail feature image of the defect
part that we are interested in, from the IR reconstructed
images obtained in each inspection, and fuse the defect detail
feature images from the 3 inspections so that we get the
detail feature case of the 3 layers simultaneously in one
image.

2) EXPERIMENTAL B:IMAGE FUSION ALGORITHM BASED ON
GUIDED FILTERING
After three times of testing, a series of infrared reconstruc-
tion images about specimen B are obtained, including the
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TABLE 2. Pareto Front, Transient thermal response and Infrared reconstructed images of upper layer.

infrared reconstruction images which represent each line of
defect details, 1RB, 2RB and 3RB. Through the infrared recon-
struction image, we can see that 1RB can clearly show the
location and shape of the defects in the upper layer, 2RB
can represent the size and location of several defects in the
middle layer, and 3RB can clearly show the specific character-
istics of the bottom layer defects, their corresponding defect
area feature information has been highlighted in the infrared
reconstruction images. Because it is difficult to characterize
so many defects, so various of sizes, and so many types
of defects simultaneously in a single infrared reconstruction
image, it is necessary to fuse the details of individual defects
from multiple measurements into a single fused image. The
defects of specimen B are highlighted in Figure 15. As shown
in Figure 15, the picked three IR reconstruction images, 1RB,
2RB and 3RB, do have the details of the three-layer defects
that we are interested in.

Then perform infrared reconstructed image fusion of
1RB, 2RB and 3RB based on guide filtering. The result
of fusion process is shown in Figure 16. It can be seen
that our algorithm can still effectively preserve the edge
and detail features of defects in each detection for the
infrared reconstructed image which is not obtained by
the same detection, and realize the fusion of multiple
information.

Finally, the source infrared reconstruction image 1RB, 2RB
and 3RB are decomposed in two scales to obtain the base and
detail images respectively, then Laplace filtering is performed
to obtain the high-pass image, and then a saliency map is
established based on the high-pass image, and the parameters
are set the same σgf = rgf = 5 to obtain the preliminary
weight map, afterwards, the guide filter parameters are set
to r1 = 8, ε1 = 0.1100, r2 = 4, ε2 = 0.0030 to filter

FIGURE 16. Result of infrared thermal image fusion.

the weight map to obtain WB
1 , W

D
1 , WB

2 , W
D
2 and WB

3 , W
D
3

respectively. The final result of fusion is shown in Figure 17.
As can be seen from the final fused image, our algorithm is
able to achieve good fusion results for IR defect details that
are not reconstructed from the same inspection, and the fused
image is able to retain valuable defect edge detail information
from each inspection without creating blurred and artificial
areas.
Remark 3: To illustrate the effectiveness of our detection

framework, the detection results of TSR, ICA, and PCA
algorithms based on the same raw infrared thermal image
sequence data from our experiments A and B have been
used for comparison with our algorithm. Since our algo-
rithm clusters the transient thermal responses of different
types of defects, it is able to extract the typical thermal
response curve of each type of defects during heat conduction
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FIGURE 17. Fusion process of Specimen B.

and perform defect reconstruction based on them. The com-
parison results show that the reconstructed thermal images
(Our subsection III-A.) of each type of defect based on the
typical transient thermal response have higher detectability,
distinct defect characteristics, higher contrast, and less noise

information than the detection images of TSR, ICA, and
PCA algorithms. After individual imaging of each type of
defect, our image fusion section (subsection III-B) enables
simultaneous detection and clear imaging of complex types of
defects.
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TABLE 3. Pareto Front, Transient thermal response and Infrared reconstructed images of middle layer.

TABLE 4. Pareto Front, Transient thermal response and Infrared reconstructed images of lower layer.

V. CONCLUSION
Due to the different thermal performance characteristics
reflected by the transient thermal response of each fea-
ture, different reconstructed images have completely dif-
ferent descriptions of the defective specimens. The fusion
algorithm takes advantage of the complementary nature of
two or more defect reconstructed images in terms of defect
type and defect feature information, so that the fused images
have a more comprehensive and clearer description of the
specimen’s defect characteristics. It can enhance the fuzzy
feature information in the single source image and restore the

missing information in the image to improve the ability of
image stitching, detection, classification and identification.
Nevertheless, there are areas of our work that need to be
improved in the future work.

1) The effect of clustering algorithm depends on the selec-
tion of clustering parameters, more advanced and adap-
tive clustering algorithms should be adopted in the
future.

2) More advanced image fusion algorithms are needed
to enhance and improve the adaptation to the fusion
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needs of different materials and different defects in
hypervelocity impacts of spacecraft.

3) The fused infrared detection results image should be
taken further image processing and defect quantifica-
tion algorithms to improve the accuracy and detectabil-
ity of defects.
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