
Received April 27, 2021, accepted June 5, 2021, date of publication June 14, 2021, date of current version June 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3089036

Comparative Analysis Review of Pioneering
DBSCAN and Successive Density-Based
Clustering Algorithms
ADIL ABDU BUSHRA AND GANGMAN YI
Department of Multimedia Engineering, Dongguk University, Seoul 04620, South Korea

Corresponding author: Gangman Yi (gangman@dongguk.edu)

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) through the
Ministry of Education under Grant NRF-2019R1F1A1064019.

ABSTRACT The density-based spatial clustering of applications with noise (DBSCAN) is regarded as
a pioneering algorithm of the density-based clustering technique. It provides the ability to handle outlier
objects, detect clusters of different shapes, and disregard the need for prior knowledge about existing clusters
in a dataset. These features along with its simplistic approach helped it become widely applicable in many
areas of science. However, for all its accolades, the DBSCAN still has limitations in terms of performance,
its ability to detect clusters of varying densities, and its dependence on user input parameters. Multiple
DBSCAN-inspired algorithms have been subsequently proposed to alleviate these and more problems of
the algorithm. In this paper, the implementation, features, strengths, and drawbacks of the DBSCAN are
thoroughly examined. The successive algorithms proposed to provide improvement on the original DBSCAN
are classified based on their motivations and are discussed. Experimental tests were conducted to understand
and compare the changes presented by a C++ implementation of these algorithms along with the original
DBSCAN algorithm. Finally, the analytical evaluation is presented based on the results found.

INDEX TERMS Unsupervised learning, clustering, DBSCAN, spatial database.

I. INTRODUCTION
Grouping of data objects is a necessary task in a wide range
of studies such as medical diagnosis (clustering algorithms
in identifying cancerous data [1]), civil engineering [2],
academics [3], biology [4], [5], and networking (clustering
algorithms in wireless sensor network-based applications
[6], [7]). This process can be a supervised or unsupervised
classification based on the information provided by a dataset.
Supervised classification identifies data objects where known
labels or classes for the different data objects are presented
[8]–[10]. It is termed supervised because each data object is
already labeled in a particular group and the classification
process is simply the trivial task of assigning the object to
the appropriate class. When no labels are assigned for data
objects, however, grouping is performed through unsuper-
vised classification [8], [11], [12]. The process of grouping

The associate editor coordinating the review of this manuscript and

approving it for publication was Liangxiu Han .

a given dataset into classes in unsupervised classification is
called ‘‘clustering’’ [13]–[17].

Clustering is the process of partitioning the data into
a groups that are similar as possible given a set of data
objects. [17], [18]. For continuous data, a distance-based
approach can be applied to determine the similarity between
data objects. Distance functions such as Euclidean dis-
tance [13], [19], cosine distance [13], [20], or the Pearson cor-
relation measure [21]–[23] can serve as a similarity measure
between pairs of data objects. Closer data objects are more
similar and likely to be grouped in the same class compared
with objects that are farther apart. Through this mechanism,
clustering algorithms are used as tools to partition a given
dataset into objects classes or ‘‘clusters’’ that have more in
common with each other than with others.

Clustering techniques have been applied in marketing and
sales [23], [24] for businesses to group their customers with
similar purchases and traits in order to run a targeted mar-
keting strategy. They have also been employed in spam fil-
tering [25] to scrape through sections of an email and detect

87918 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-3482-0560
https://orcid.org/0000-0003-4664-5325
https://orcid.org/0000-0003-2491-7473

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

features associated with spams, in identifying fake news [26]
from the media based on the coverage content, and several
other tasks. Such real world implementations of clustering
are helpful to identify all kinds of unknown patterns present
in data.

Many clustering algorithms have been developedwith their
own interpretations of grouping data objects into different
classes. These algorithms employ different yet sometimes
overlapping tactics in their implementations. Therefore, it is
difficult to make a distinctive classification of categories for
these algorithms [14], [27], [28]. For the sake of providing
an overview of the clustering strategies, however, it is gen-
erally accepted to distinguish them into five methods [13],
[29]: partitioning, hierarchical, grid-based, model-based and
density-based methods, as illustrated on Fig. 1.

Given a dataset of n objects, partitioning methods [29]
work by constructing k partitions of the dataset, where each
partition represents a cluster and k ≤ n. Each of these
partitioned groups is ensured to have at least one object as a
member, with each data object belonging to exactly one group
(except in some cases of fuzzy partitioning methods [30],
[31]). The k-means clustering algorithm [24], [32], [33] is
a popular heuristic method representing each cluster by the
mean value of the objects in the cluster called a ‘‘centroid.’’
The inclusion of a particular data object into a cluster is
determined by which cluster’s centroid it is most closest to.
The k-medoids algorithm [33] is a similar algorithm, with
each cluster being represented by an object located near the
center of the cluster.

Hierarchical methods [33] meanwhile regard the decom-
position of a given dataset into a hierarchy of objects as the
crux of their operation. These methods can be ‘‘agglomera-
tive’’, meaning they apply a bottom-up approach to form a
hierarchy. Agglomerative approaches initiates with each data
object set as a cluster; and proceed to merge these clusters
iteratively until a termination condition is satisfied. Con-
versely, the ‘‘divisive’’ or top-down approach works by first
initiating the whole dataset as a single cluster and iteratively
splitting the cluster into smaller clusters instead. Chameleon
[34] and BIRCH [35] are examples of hierarchical clustering.

Grid-based methods [18], [36] focus on the dataspace
by forming a grid structure. Clustering operations are then
performed on each cell of the grid structure instead of the
data objects themselves. This quantization of the dataspace
helps the efficiency of algorithms, such as STING [37] and
WaveCluster [38] become independent of the number of data
objects but dependent on the cells of the grid structure.

Model-based clustering [18], [39] techniques work by pre-
suming that the given data were generated by some model,
then finding the model that best fits the dataset. The clusters
are then detected according to the model along with the
cluster labels for the data objects.

The fifth distinguished method and the focus of this arti-
cle along with its pioneering algorithm density-based spa-
tial clustering on applications with noise (DBSCAN) [40],
[41], is the density-based clustering technique [18], [42].

FIGURE 1. An overview of the several clustering strategies. Generally,
a clustering algorithm falls under one of the five methods. Further
classification for the successive clustering algorithms inspired by the
pioneering DBSCAN algorithm is introduced.

The formal definitions of the clustering model and the
DBSCAN algorithm were first introduced together in 1996,
on the Knowledge Discovery in Databases (KDD) data
mining conference publication. The core idea behind the
density-based clustering method assumes that a cluster is a
region in a dataspace with a high density of data objects.
This clustering model brought unique features different from
the earlier mentioned implementations. It introduced the abil-
ity to form clusters of irregular shapes, detect outliers in
the dataspace, and identify clusters without prior knowl-
edge of the classes present in the dataset. It is a prac-
tical algorithm, and the DBSCAN, has been applied in
several fields of study such as civil engineering [43], chem-
istry [44], spectroscopy [45], social sciences [46], [47], med-
ical diagnostics [48], remote sensing [49], [50] computer
vision [51], automatic identification systems (AIS) [52], [53]
and anomaly detection [54], [55]. Its successful implementa-
tion on real-world applications has led it to receive the Special
Interest Group on KDD test-of-time award [41].

The DBSCAN has served as a stepping-stone to several
other clustering algorithms that aim to improve on the original
algorithm and its limitations. This paper examines the def-
initions introduced by the density-based clustering method
and how the original DBSCAN procedure works, identifying
the challenges DBSCAN faces and discussing the subsequent
density based clustering algorithms inspired by it. Specifi-
cally, the contributions of this paper are as follows.

1. It provides a comprehensive review of density-based
clustering mechanisms. In terms of the pioneering algorithm
DBSCAN, this paper introduces several implementations in
the literature that aim to reduce its limitations. This paper
can serve as a guide for future researchers focusing on the
density-based clustering algorithms.

2. It provides a study of the DBSCAN-inspired implemen-
tations by classifying them under three general categories.
These categories are derived from the major limitations of the

VOLUME 9, 2021 87919

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

original algorithm. Hence, successive algorithms can gener-
ally be identified under one of these introduced categories.

3. An empirical analysis of six density-based cluster-
ing algorithms provides a quantitative comparison between
different implementations. Synthetic datasets are used to
compare the accuracy of the cluster outputs, and several
real-world datasets detail the computational time required for
each dataset to complete.

Accordingly, the rest of this paper is organized as fol-
lows. Section II investigates the DBSCAN algorithm and
its implementation, features, and shortcomings. Section III
is dedicated to the various DBSCAN-based clustering algo-
rithms. Based on themotivation of each algorithm, Section III
discusses the algorithms under three distinct classifications.
In Section IV, the experimental results for six clustering
algorithms are reported and evaluated. Finally, the Section V
concludes the paper by providing and overview of the study.

II. THE DBSCAN ALGORITHM
The DBSCAN [40] algorithm interprets clustering based on
the notion that regions with a high density of data objects that
are separated by sparser regions in a dataspace are identified
as clusters. In addition, DBSCAN uses two input parameters
ε and minPts, to identify the density estimation of a region
surrounding a particular data object. The algorithm uses these
two parameters to estimate the density of a particular data
object’s local region. Moreover, ε refers to the radius of an
object’s local region (neighborhood), whereas minPts is the
minimum number of data objects required within that radius
in order to be a cluster. Therefore, for a given dataset X ,
the DBSCAN algorithm calculates the local density of an
object xi, xi ∈ X as the total number of objects in its ε-
neighborhood (i.e., cardinality of Nε(xi)), where

Nε(xi) = {xj ∈ X : ∀j, dist(xi, xj) < ε}. (1)

Through (1), DBSCAN can find arbitrarily shaped clusters.
Next, by considering the number of objects in a neighbor-
hood, three different types of objects appear. Core objects
are those where their ε-neighborhood contains at leastminPts
number of objects (i.e., |Nε(xi)| ≥ minPts, for some xi ∈ X).
These objects indicate that, for the given values of ε and
minPts, their neighborhood objects (along with the core
objects themselves) form a cluster. The number of objects
in border objects’ ε-neighborhood is less than the given
minPts; however, for a border object xj, a core object xi
exists where xj ∈ Nε(xi). The third type is noise objects.
These objects do not have at least minPts number of objects
in their ε-neighborhood and are not members of any core
object’s neighborhood. Beyond this, the DBSCAN algorithm
sets further definitions regarding the reachability between
pairs of data objects. The definitions are presented as follows.

A. DIRECTLY DENSITY REACHABILITY
An object xi ∈ X is directly density reachable from an object
xj ∈ X for a given ε and minPts if: (a) xi is a member of the

FIGURE 2. Flowchart illustration of the original density-based spatial
clustering of applications with noise (DBSCAN) algorithm. The
EXPANDCLUSTER operation (B) can be subdivided from the core process.
Based on the flowchart of DBSCAN (A), we can determine the algorithm
operates in a recursive process. The EXPANDCLUSTER module returns a
true value if a specific data object successfully builds clusters around its
region; otherwise, it returns false.

ε-neighborhood of xj, and (b) xj is a core object:

DirReach(xi, xj)⇔ xi ∈ Nε(xj) ∧ |Nε(xj)| ≥ minPts. (2)

B. DENSITY REACHABILITY
An object xi ∈ X is density reachable from an object xj ∈ X
with respect to a given ε and minPts if a series of objects
o1, . . . , on, exists, where o1 = xj and on = xi such that oi+1
is directly-density reachable from oi:

Reach(xi, xj)

⇔ ∃oi, . . . , on ∈ X : o1 = xj ∧ on = xi
∧ ∀i ∈ {1 . . . n− 1} : DirReach(oi, oi+1). (3)

By this definition, two border objects that appear in the
same cluster might not be density reachable from each other
due to the core-object constraints set for the series of objects
o1, . . . , on. However, they are directly density reachable
to a common core object. Density connectivity defines this
property.

C. DENSITY CONNECTIVITY
An object xi ∈ X is density-connected to an object xj ∈ X
with respect to a given ε and minPts if there is another object
o such that both xi and xj are density reachable from o with
respect to ε and minPts:

Connect(xi, xj)⇔ ∃o ∈ X : Reach(o, xi) ∧ Reach(o, xj). (4)

Based on these notions, DBSCAN defines a cluster as a
maximal set of density-connected objects concerning density
reachability. That is, a cluster C with respect to ε and minPts
is a nonempty subset of X such that:

a. ∀xi, xj: if xi ∈ C and xj is density-reachable from xi with
respect to ε and minPts, then xj ∈ C , and
b. ∀xi, xj ∈ C : xi is density-connected to xj with respect to

ε and minPts

87920 VOLUME 9, 2021

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

Finally, noise objects are a set of objects in the dataset that
do not belong to any of its clusters.

The DBSCAN algorithm employs a two-step mechanism
to determine the set of objects that satisfies the definitions
provided in the datasets. These sets of maximal objects
in terms of their density reachability are labeled into their
respective clusters. The algorithm starts by choosing a ran-
dom unclassified core-object from the dataset and considers
it as ‘‘seed.’’ It then collects all the density-reachable objects
from the seed to build a cluster that contains the seed object.
This two-step process is repeated until no more unclassified
objects remain.

The collection of density-reachable objects from a seed
is performed through the procedure EXPANDCLUSTER.
It takes in a core object as a seed, finds all the objects
within its ε-neighborhood by performing REGIONQUERY,
and for each identified and unclassified object, places it in
the same cluster as the seed. For all the core-objects found
during REGIONQUERY, their ε-neighborhood objects are
also collected and placed in the same cluster.

The overview of the DBSCAN algorithm on Fig. 2 reveals
that it is a recursive process. For each object it consid-
ers to be a seed, extracting its ε-neighborhood objects
through REGIONQUERY requires traversing through the
entire dataset, at most. This alone yields a time complexity of
O(n) for a region query of a single object. When considering
all the REGIONQUERY executions performed for each of
the seeds throughout the run of the algorithm, the overall
complexity of the algorithm rises to O(n2). This complexity
could be reduced using a spatial index structure, such as the
R*-tree, which requires O(log n) in order to perform region
queries. Such an approachmeans theDBSCANalgorithm can
find clusters in a dataset at O(n log n).

The original DBSCAN algorithm was successful in iden-
tifying clusters with arbitrary shapes. This feature is appre-
ciated, especially in spatial databases where clusters can be
spherical or even straight, bending, and other shapes. The
characteristics of DBSCAN to identify regions with high den-
sity that are separated by sparser spaces allows its clusters’
shapes to be determined by the dataset under examination as
opposed to other clustering methods, such as the partitional
clustering k-means, which always assumes a spherical shape
for its clusters. In addition, DBSCAN can identify isolated
data objects and is able to assign them as noise.

Partitional clustering methods, in comparison, divide the
dataspace into an assigned k different clusters, without con-
sidering the effects of noise objects on the identified clusters.
The DBSCAN also requires minimal knowledge to determine
the input parameters, as the number of clusters that are gen-
erated is not directly dependent on the user but the size of
the local regions of objects. This dependence contrasts with
algorithms such as k-means clustering, where it takes the
number of clusters to be generated as an input parameter.

However, the DBSCAN has some notable limitations. The
algorithm is heavily dependent on the user-specified ε param-
eter. Based on the value set for ε, the clusters found by the

FIGURE 3. How groups of objects with different densities could hinder
the quality of DBSCAN’s results. (A) Cluster results generated when a low
ε parameter value is chosen, causing clusters of sparser density to be
falsely regarded as noise. (B) A higher value of ε produces a possible
merging of two separate clusters. In either case, the DBSCAN algorithm
did not manage to identify all three separate clusters correctly.

algorithm could vary widely. As Fig. 3 illustrates, a higher
value of ε tends to inadvertently group a set of data objects
into a single cluster that should otherwise have been clustered
separately. A lower value might misclassify a set of data
objects that belong in a cluster as noise if the density in the
cluster’s region does not satisfy the preset value of ε. Intu-
itively, we can also observe that treating ε as a global density
parameter hinders the algorithm’s ability to identify clusters
with varying local densities. Many real-world datasets are
characterized by data objects that are grouped together in
different density ranges.When DBSCAN is applied on such a
dataset with ε as the global parameter, either multiple clusters
join into one (a large value of ε), or groups of data objects with
a local density less than ε are assigned as noise (a small value
of ε).

Furthermore, the EXPANDCLUSTER procedure within
the algorithm is worth examining for its efficiency. As dis-
cussed, this procedure collects all the density-reachable
objects from a particular core object to produce a cluster.
This mechanism requires calling the REGIONQUERY oper-
ation on each of the ε-neighborhood elements of the core
object. This requirement translates into a substantial portion
of the algorithm’s computational complexity, as a single
REGIONQUERY by itself works by iterating across all the
data objects in the dataset.

Several clustering algorithms have since been produced
that recognize these limitations and propose new meth-
ods to alleviate them. In the next section, these various
DBSCAN-based clustering algorithms are discussed.

III. VARIOUS DBSCAN-BASED ALGORITHMS
Many clustering methods have been introduced based on
the notion of density proposed in the original DBSCAN
publication. These methods were inspired by the DBSCAN
and aim to reduce its limitations. In this section, we study
the proposed properties of some of these methods and iden-
tify how they work to improve on the DBSCAN algorithm.
To provide a clearer overview of these DBSCAN-based
methods, we group these algorithms under three different
classifications, each focusing on a major limitation of the

VOLUME 9, 2021 87921

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

FIGURE 4. Timeline of the various DBSCAN-based algorithms. Each algorithm has been grouped under one of three categories: ‘‘Parameter
Independence,’’ ‘‘Quality of Clusters,’’ or ‘‘Efficiency’’ based on improvements made over the original DBSCAN algorithm.

original DBSCAN. Fig. 4 plots these clustering algorithms
on a timeline. Each of the algorithms’ implementations is also
described briefly in Table 1.

A. QUALITY OF CLUSTERS
The original algorithm is especially adept at handling spa-
tial datasets that exhibit continuous data objects of irregular
shapes. This feature, coupled with its ability to adequately
identify anomalies and its automatic detection of cluster
amounts within a dataset, is evidence of its superiority to
other clustering mechanisms. However, in terms of the qual-
ity of clusters it produces, the DBSCAN faces two major
challenges: datasets that exhibit multidensity structures in
their data space and high dimensionality. As both of these
are definitive properties of real-world databases, the origi-
nal DBSCAN required the reimplementation of its method
to address these two hindrances. We discuss the various
DBSCAN-based algorithms that aim to solve these problems.

1) MULTIDENSITY DATASETS
One of the areas where DBSCAN faces a challenge is discov-
ering clusters of varied densities in a dataset. As ε serves as
a global input parameter, a set of objects grouped in a region
with a density estimation greater than the ε value is regarded
as noise. Several methods have been proposed to solve this
problem and provide an analytical study to demonstrate their
approaches.
Ordering points to identify the clustering structure

(OPTICS) [57] was proposed to produce an ordering of a
dataset representing its density-based clustering structure that
corresponds to a wide range of parameter values. While
OPTICS does not explicitly assign a cluster to each of the
data objects, it instead holds the information necessary for an
extended DBSCAN to assign cluster relationships to all the
data objects. This cluster ordering is represented graphically
using a reachability plot. Additionally, OPTICS introduced
the notions of core distance and reachability distance to plot
such a graph.

a: CORE DISTANCE
For an object xi ∈ X , with respect to ε andminPts, its core dis-
tance is the smallest distance ε‘ possible to its ε-neighborhood
xj ∈ X such that xi would be a core object with respect to ε‘

if xj ∈ Nε(xi). Otherwise xi’s core distance is undefined:

CoreDist(xi) =

{
undefined, if |Nε(xj)| < minPts
minPtsDist(xi), otherwise.

(5)

b: REACHABILITY DISTANCE
For an object xi ∈ X , with respect to ε and minPts, its
reachability-distance to another object xj ∈ X is the smallest
distance such that xi is directly density-reachable from xj, if xj
is a core-object:

ReachDist(xi)=

{
undefined, if |Nε(xj)| < minPts
max(CoreDist(xj), dist(xj, xi)).

(6)

Based on this, the results of the OPTICS algorithm gener-
ate an ordering of objects in the dataset corresponding to the
objects’ reachability distances. The reachability plot graph-
ically depicts this where the reachability-distance values of
each object are plotted.

The advantage of this clustering method is the relative
insensitivity of the reachability plot to the input parameter ε.
In the reachability plot, the effect of ε is on the number of
clustering levels that are output on the graph. Smaller values
of ε produces more objects with undefined reachability dis-
tances, disregarding clusters with lower densities. The opti-
mal value for ε is the smallest possible value of ε such that the
density-based clustering for ε and minPts generates only one
cluster with almost all the points of the dataset as members.
Such a value would yields all the available clustering levels
in the reachability plot.
The density-based clustering based on hierarchical density

estimates (HDBSCAN) [64] introduces a hierarchical clus-
tering method that proposes an improvement of OPTICS.
It builds on the preexisting notions of OPTICS by applying

87922 VOLUME 9, 2021

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

TABLE 1. Features of the DBSCAN-based algorithms.

VOLUME 9, 2021 87923

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

FIGURE 5. Flowchart illustration of the revised DBSCAN algorithm. The
revised section of the algorithm as detailed in the shaded region of the
illustration, ensures that border-objects are always assigned to the
clusters closest to them; as opposed to the original DBSCAN, which
assigns borders to the first cluster instance in which they appear. This
revised method guarantees consistent cluster formations in all runs of the
algorithms.

the mutual reachability graph. The mutual reachability graph
is a complete graph, where objects on X are the vertices,
and the weight of each edge is the mutual reachability dis-
tance between the respective pairs of objects. Based on the
definitions of the DBSCAN algorithm, clusters in the graph
are the connected components of the ε-core objects, with the
remaining objects regarded as noise.
The varied density-based spatial clustering of applications

with noise (VDBSCAN) [60] is another method that adopts
the plotting mechanism of the objects in the dataset in order
to extract clusters with differing densities. Before operating
the DBSCAN algorithm, VDBSCAN proposes to compute
the distance of the objects in the dataset to their k th nearest
neighbor (k − dist). The objects are sorted by their k − dist
values and plotted on a graph. The k−dist plot produces sharp
changes at suitable values of ε. The DBSCAN algorithm is
computed for each corresponding values of ε. At each run of
the algorithm, objects detected in a cluster at εi, are marked as
clustered at density level i. Marked objects do not participate
in further computation of DBSCAN. The two-step process
of identifying varied-density clusters based on k − dist is
independent of ε as an input parameter but instead requires
the specification of the k th nearest neighbor in order to draw
the plot.

Another limitation the DBSCAN algorithm might face
is during the clustering of adjacent dense regions in the
dataspace. As the algorithm starts by choosing an arbitrary
unlabeled object, its subsequent operation of finding neigh-
borhood core objects and performing expansions could result
in different outputs of cluster members where border objects
of separate groups of objects are closer together.
The revised DBSCAN algorithm to cluster data with dense

adjacent clusters (revised DBSCAN) [50] describes this mat-
ter in depth by demonstrating how multiple iterations of the
DBSCAN algorithm could produce different cluster struc-

tures for the same dataset. The proposed method focuses on
the idea of density-reachable chains of objects to solve this
problem. From the definition of density reachability, border
objects could only be present in the density-reachable sets
of objects as the last element of the chain. Hence, border
objects do not participate in the expansion of clusters. There-
fore, a new concept is proposed, the core-density-reachable
objects, where the chains of objects are x1, . . . , xn for xi ∈ X
and |Nε(xi)| ≥ minPts, i ≤ n (all the objects in the
chain are core-objects). The EXPANDCLUSTER is then
further revised in order to identify border objects for the
corresponding expanded clusters. Due to the implementa-
tion of core-density-reachability, the border objects would
remain unclassified during the EXPANDCLUSTER opera-
tion. Therefore, for each border object, the closest core object
is identified and clustered to the core-density-reachable chain
in which the core object belongs to. Fig. 5 illustrates this
concept in a flowchart visualization of the revised DBSCAN
algorithm.

2) HIGH-DIMENSIONAL DATASETS
The original DBSCAN, and several other traditional clus-
tering algorithms often fail to find meaningful clusters in
datasets characterized by high dimensional and consequently
sparse data space. This challenge has been termed as the
‘‘curse of dimensionality,’’ where high dimensional datasets
contain meaningful clusters deep in the subsets of their fea-
ture space, yet such algorithms as the DBSCAN, which con-
siders the whole dimensional space while clustering, fail to
identify them. This challenge is present due to DBSCAN’s
use of distance measures between data objects to determine
similarity. In high dimensional datasets however, dimensions
with irrelevant information would hide meaningful clus-
ters in the dataspace with noisy data and ultimately hinder
DBSCAN’s attempt to identify clusters.

Multiple methods in the literature have proposed dimen-
sionality reduction to find such meaningful clusters. These
methods work by removing features deemed ‘‘irrelevant’’
or ‘‘redundant’’ in order to filter the dimensions that can
be clustered appropriately. Other methods based on attribute
transformation have also been proposed, such as implement-
ing the principal component analysis (PCA) [84] to generate
functions of attributes. However, such methods of mapping
the whole feature space into lower spaces have major chal-
lenges of their own. The lack of intuitive meaning of the
generated attributes is one challenge, whereas such methods
as PCA do not return the desired results [85].

Hence, subspace clustering techniques have been proposed
to overcome these problems. Subspace clustering approaches
work by automatically detecting clusters in the multiple
subspaces of the original data space. Besides overcoming
the mentioned problems of the previous implementations,
subspace clustering is not limited to detecting clusters in a
single subspace. Therefore, information on objects clustered
differently in varying subspaces is reserved.

87924 VOLUME 9, 2021

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

One approach that implements the subspace clus-
tering techniques for density-based clustering is the
density-connected subspace clustering (SUBCLU) [58] algo-
rithm. During the clustering of high dimensional datasets,
the DBSCAN algorithm tries to detect clusters by considering
all the dimensions for each pair of objects and applying
the necessary distance measures. However, SUBCLU works
to generate clusters that are formed within dimension sub-
sets present in the dataset. The algorithm uses the con-
cept of density-based clustering introduced by DBSCAN
as its underlying clustering method. Provided we have a
d−dimensional dataset X , and A = a1, . . . , ad as the set of
all attributes in X ; a subspace is any subset S ⊆ A. SUBCLU
automatically identifies these subsets of dimensions (sub-
spaces) in which clusters exist. In addition, SUBCLU applies
the notion of monotonicity of density-connected sets to locate
these subspaces. Given two objects that are density connected
in some subspace S ⊆ A, the notion indicates that these two
objects are also density-connected in any subspace T ⊆ S:

ConnectS (xi, xj)

⇒ ConnectT (xi, xj), ∀T ⊆ S ⊆ A, {xi, xj} ∈ X . (7)

Additionally, SUBCLU uses this monotonicity property of
density-connected sets to prune subspaces that need not be
investigated, (i.e., if at least a single subspace T ⊂ S fails to
have a density-connected set, then subspace S does not have
a set of density-connected objects either).

B. EFFICIENCY
The process of identifying all the density reachable ele-
ments from a particular core object involves the iterative
calls of REGIONQUERY for all the ε-neighbors of a core-
object. As the REGIONQUERY is a costly singular opera-
tion by itself, improved ideas have been proposed in terms
of either minimizing the number of calls made to the
REGIONQUERY, or optimizing the process of the operation
itself by proposing novel index structures that facilitate the
complexity of neighbor search operations.
The fast density-based clustering algorithm for large

databases (FDBSCAN) [66] was proposed to address the
complexity brought by the original DBSCAN’s recursive
execution of REGIONQUERY. The FDBSCAN introduced
a method to decrease the frequency of calls to this operation
by identifying the redundancy in DBSCAN’s regional queries
during its expansion phase. When EXPANDCLUSTER is
called on an object xi ∈ X , it finds the core-objects within
the neighborhood of xi and performs REGIONQUERY on
each core object. However, as the neighbor objects in
the core objects’ ε-neighborhood intersect, repetition of
REGIONQUERY is bound to occur, which increases the
complexity of the operation.

Hence, FDBSCAN proposes selecting some representative
objects within a region to solve this. When selecting seed
objects to expand on and form a clusters, FDBSCAN chooses
orderly unlabeled objects outside a core object’s neighbor-

hood. The ordering is performed by sorting the objects using
a certain dimensional coordinate. Two clusters formed using
this method can later be merged together if a core object
exists within the intersection of the two cluster regions. This
approach ensures that REGIONQUERY does not repeat on
a single object that is in the ε-neighborhood of several core
objects.

The Rough-DBSCAN [68] algorithm is a hybrid clustering
algorithm proposed to decrease the time complexity of the
original DBSCAN algorithm. The algorithm first searches
for model objects within the dataset called leaders by using
the leaders clustering method. Afterward, these objects are
used to produce clusters through density-based clustering.
This mechanism enables Rough-DBSCAN to compute the
clusters in O(n), which is an improvement on the DBSCAN
algorithm. This computation is possible due to Rough-
DBSCAN’s implementation of first deriving k leader objects
containing density information using the leader clustering
method, which takes O(n) and later applies the DBSCAN on
these k leader objects only.
The leader method [86] is a partitioning clustering method.

Its advantage is in terms of efficiency, which is linear with
the number of objects in a given dataset. The procedure runs
as follows. Given a threshold distance τ , it maintains a set of
leader objects L that initializes to empty and builds iteratively.
For each object xi ∈ X ; if a leader object l ∈ L exists so that
the distance between xi and l is not greater than the threshold
distance τ , then xi is assigned to the cluster of l and assigned
as the follower of object l. An object is assigned to only a
single leaders object. Through this scheme, each object in L
can be regarded as a representative for the cluster of objects
that follow it. However, two problems are present with the
leader method.

1. Although we can guarantee that two follower objects
within the same group have a distance of at most 2τ , there is
no way to ensure that followers within different groups have
a distance of at least τ .

2. There can be multiple l values with distances of less
than or equal to τ to and object xi ∈ X . Thus, repeated runs
of the algorithm on the same dataset could provide different
clustering results.

To alleviate these issues, Rough-DBSCAN provides a
modified implementation of the leaders clustering algorithm.
The modification offers an ordering of the leader objects as
they are derived, which allows the algorithm to choose the
closest leader object l for an element xi.
After generating the leaders objects with their cor-

responding set of followers, the proposed algorithm
Rough-DBSCAN moves on to its density-based clustering
mechanism. The algorithm uses ε and minPts parameters to
partition the set of leaders derived from the dataset, which
is later expanded into the whole dataset by replacing each of
the leaders objects with their set of followers. This hybrid
implementation of the leaders clustering algorithm on top
of the DBSCAN algorithm helps in gaining efficiency by
reducing the iterations of the DBSCAN from being linear

VOLUME 9, 2021 87925

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

with the number of objects in the dataset to k amount, which
corresponds to the number of leaders produced.
A grid and density-based fast spatial clustering algorithm

(GMDBSCAN) [67] is another hybrid clustering algorithm
that joins the concepts of grid-based clustering along with
an underlying DBSCAN implementation to produce an effi-
cient clustering mechanism. The GMDBSCAN exploits the
efficiency provided by grid-based applications that partition
the whole dataspace into a hypersphere in order to limit
the necessary traversal of the REGIONQUERY operation of
the DBSCAN to only a limited data objects. As the algo-
rithm obtains a grid-structure within the whole dataspace,
REGIONQUERY operations are performed within a speci-
fied grid structure each time. Thus, the processing speed of
the algorithm is independent of the number of data objects
within the dataset.

The DBSCAN algorithm works by performing distance
computations between each pairs of data objects in the
dataset. However, this is unnecessary because the computa-
tion of the distance between two data objects with a distance
greater than the threshold of parameter ε is useless for the pro-
cess of forming density-based clusters. In addition, GMDB-
SCAN aims to remove such redundant operations by limiting
the search space of a single data object. Grid structures are
formed on the dataspace, forming hypercubes of grid blocks
with their width set to the value of the distance threshold ε.
This structure guarantees that, during the REGIONQUERY
sub-operation for an object xi ∈ X , its neighbor objects would
only appear within the adjacent grids of where xi is, (i.e., for
a single data object in the dataset, an object xi ∈ X only
has to perform distance computations with objects within
its adjacent grids instead of against each object within the
dataspace).

C. PARAMETER INDEPENDENCE
The dependence of DBSCAN on its input parameters ε and
minPts to define its density and provide a density estimation
means there requires a degree of knowledge about the dataset
to determine the best values for the inputs. This requirement
is aggravated by the fact that varying ε values could return
highly different clustering results. Adaptive methods have
been proposed to alleviate this that automatically compute for
the optimal ε values to perform the DBSCAN algorithm.
Density clustering based on the radius of data (DCBRD)

[80] is a density-based clustering algorithm that requires no
input parameters. It performs its clustering of data objects
with DBSCAN as its core method. The algorithm focuses
on partitioning the data into overlapped circular regions
(hyperspheres for multidimensions) and uses the best region
to select the neighborhood of a data object. The proposed
algorithm divides the clustering process into two stages.
First, through some distance measure, the algorithm creates
several overlapping circles (hyperspheres). Each data object
appears in at least a single circle. These spheres are subsets
of the dataspace. In the second stage, DCBRD executes the

DBSCAN algorithm and obtains ε from the overlapped cir-
cular regions.
The distribution-based clustering algorithm for mining in

large spatial databases (DBCLASD) [78] focuses on address-
ing the cluster discovery of arbitrary shapes in large spatial
datasets and minimizing the requirement of the input param-
eters. The algorithm introduces these definitions in order to
generate its notion of a cluster.

1) NEAREST NEIGHBOR AND NEAREST NEIGHBOR
DISTANCE
For an object xi ∈ X , its nearest neighbor is an object xj ∈
X − {xi} which has the minimum distance to the object xi.
The distance from xi to its nearest neighbor xj is called the
nearest neighbor distance of xi:

Nearest(xi) = {xj ∈ X :

xj = min
x
dist(xi, xj),∀x(x ∈ X 6= xi)} (8)

NearestDist(xi) = dist(xi,Nearest(xi)). (9)

2) NEAREST NEIGHBOR DISTANCE SET
Let X be the set of objects in the dataset and xn be the
elements in X . Then, the nearest neighbor distance set of X ,
NearestDistSet(X), is defined as the multiset of all values
NearestDist(xn).

The DBCLASD algorithm builds on these definitions and
bases its concept of a cluster on analyzing the expected
distribution of the distances of objects in a cluster to their
nearest neighbor. The objects within a cluster are assumed
to be uniformly distributed. The algorithm then expands
an initial cluster by adding the nearest neighbor objects as
cluster members as long as the newly produced cluster fits
an expected distribution. The REGIONQUERY operation is
employed to retrieve of neighboring objects. The R*-trees is
used as a spatial access method to obtain efficiency.
Locally scaled density-based clustering (LSDBC) [79] is a

clustering algorithm that focuses on automating the process
of clustering by employing local density information to iden-
tify arbitrary clusters in a dataset. In terms of comparing its
technique for density estimation, the methods can be classi-
fied into two categories. The original DBSCAN algorithm
uses the concept of a Parzen window for the purpose of
calculating regional density. The Parzen window is a method
of computing a hypersphere (hypercube, based on the method
used for distance measures) and estimating the regional den-
sity by counting the number of objects falling within the
computed hypersphere (neighborhood).

The challenge this approach presents is the problem of
choosing the most appropriate window size to determine the
neighborhood. Alternatively, LSDBC estimates its density
through the k−nearest neighbors (kNN−type) approach. The
algorithm starts with the density-based ordering of the objects
and applies its cluster expansion method by starting from the
densest possible object. The LSDBC determines the cut-off
criteria for the expansion process based on the density of

87926 VOLUME 9, 2021

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

FIGURE 6. Fundamental Clustering and Projection Suite (FCPS) datasets used for the experiments.

the center of the cluster, (i.e., expansion proceeds until the
density of the generated cluster falls below a prespecified
ratio of the center point density). Unlike the DBSCAN algo-
rithm, LSDBC does not expect the input parameters of ε and
minPts, two arguments used for the Parzen windowmethod to
compute the hypersphere volume and determine the regional
density. However, the kNN method of LSDBC depends on the
value of k: the number of the nearest neighbors to consider for
each data object during density calculation.

IV. EXPERIMENTS
This section evaluates the experimental results for five dif-
ferent density-based algorithms, each run on two different
collection of datasets. Additionally, a density-based subspace
clustering algorithm was evaluated using a set of real-world
multidimensional datasets. The focus of the experiment is to
analyze the quality and performance of the algorithms. For
quality measures, the Adjusted Rand Index (ARI) [87], [88]
and F-score were used. The ARI is a commonly used for
cluster validation because it measures the agreement between
two partitions. A larger value of the ARI indicates a higher
agreement between two partitions. Moreover, the F-score
is an appropriate measurement, as it indicates the accuracy
result of a test. The F-score has also been a commonmeasure-
ment scale of a clustering algorithm’s accuracy in previous
literature in the field. To compare the computation time of the
algorithms, we took several partitions of a real-world dataset
and examined the total required time for each partitioned
dataset to process in order to understand how each algorithm
scales up as the instances in a dataset grow.

A. DATASETS
For the experiments to test the accuracy and speed of the
various algorithms, we have elected to use one set of syn-

thetic datasets and one real-world dataset. The clustering
algorithms were run against the synthetic datasets to test
the clustering validation provided by each of the algorithms.
The second dataset indicated each algorithm’s performance
in real-world conditions. The experimental results were used
to demonstrate the computational time of each algorithm. The
real-world dataset is a 2D dataset, whereas the set of synthetic
data contains a combination of 2D and 3D datasets. Further-
more, an additional 10 multidimensional real-world datasets
were employed to analyze how the original algorithm fares
against SUBCLU, the reimplementation of the DBSCAN
algorithm, to cluster datasets with multiple dimensions.

1) FUNDAMENTAL CLUSTERING AND PROJECTION SUITE
The Fundamental Clustering and Projection Suite (FCPS)
contains 10 synthetic datasets [89]. These datasets are
named ‘‘Atom,’’ ‘‘GolfBall,’’ ‘‘Hepta,’’ ‘‘Chainlink,’’ ‘‘Engy-
Time,’’ ‘‘Lsun,’’ ‘‘Target,’’ ‘‘Tetra,’’ ‘‘TwoDiamonds,’’ and
‘‘WingNut’’. Table 2 describes the instances and dimensions
of each of the datasets used for the experiment. Each one was
built to challenge clustering algorithms based on different
criteria. Each dataset has specific criteria such as the lack of
linear separability, class spacing differences, outlier presence,
and others. Hence, the table also details these criteria and
problems clustering algorithms could face for each dataset in
the FCPS. A graphical representation of the FCPS datasets is
presented in Fig. 6.
The components of the FCPS each have cluster labels for

their data objects. This information was used to compare
the data objects’ cluster labels to the labels generated by
the clustering algorithms during the experiment. The ARI
and F-score used these two set of cluster labels to measure
the agreement between the labels formed by the clustering
algorithms and the labels from the FCPS.

VOLUME 9, 2021 87927

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

TABLE 2. Description of the dataset in the FCPS.

2) GEO-TAGGED TWITTER DATASET
Junjun Yin from the National Center for Supercomputing
Application (NCSA) collected the real-world dataset for the
experiments [71], [90]. The dataset was obtained through
the free Twitter streaming API [91]. The original collec-
tion contains exactly 1% of all geo-tagged tweets from the
United Kingdom in June 2014 and has about 16.6 million
tweets. The subset of the dataset used for the experiments
was generated by filtering the dataset to on the first week
of June. This filtered dataset contains 3,704,351 instances.
Furthermore, in order to analyze how each clustering algo-
rithm performs as the number of instances in the dataset
increases, experiments on the dataset were run on several par-
titions of the dataset, (i.e., at 1,000, 10,000, 50,000, 100,000,
1,000,000 and 2,000,000 instances). The full and filtered
dataset can be found on B2SHARE [90].

3) REAL-WORLD MULTIDIMENSIONAL DATASETS
In Sec. III, we discuss how the SUBCLU (density-based
subspace clustering) was introduced in order to combat the
challenge faced by the DBSCAN algorithm when cluster-
ing datasets with high dimensions. To gain an empirical
understanding of what SUBCLU had achieved, we collected
10 real-world datasets of various dimensions to compare
the clustering results between SUBCLU and the original
DBSCAN. Nine of the collected datasets can be found on the
UCI Machine Learning Repository [92], and one additional
spatial dataset was collected from the data repository at the
University ofMinnesota [93]. Table 3 describes these datasets
in further detail.

B. ALGORITHMS
For the experiments, we collected source codes for the origi-
nal DBSCAN algorithm [95], revised DBSCAN for adjacent
clusters [96], OPTICS [97], HDBSCAN [98], HPDBSCAN
[99], and SUBCLU [100]. All the algorithms except SUB-
CLU are C++ implementations. Whereas DBSCAN, revised
DBSCAN, OPTICS, HDBSCAN, and SUBCLU accept a
comma-separated value (csv) files as input to process their
clustering algorithm, the HPDBCAN algorithm requires its

TABLE 3. Description of the 10 real-world multidimensional datasets.

datasets to be in Hierarchical Data Format v. 5 (HDF5)
format [101]. For the neighborhood search for data objects,
the DBSCAN, revised DBSCAN, HDBSCAN, and SUBCLU
implementations in the experiment perform a linear neigh-
borhood scan, and OPTICS uses an implementation of kd-
tree [102], whereas HPDBSCAN works with a grid-based
data preprocessing and indexing method. This neighborhood
search variation helps portray how scalable each implemen-
tation is as the dataset increases and provides evidence of
the DBSCAN claim of O(n log n) by implementing such data
structures. Due to differences in programming languages,
time performance comparison between the SUBCLU and
DBSCAN algorithms was not possible. Regardless, the clus-
tering results generated from the corresponding algorithms
are worth investigating and were analyzed.

C. RESULTS
The experimental results for each of the experiments are
reported here. Table 4 lists the results of each algorithm
when run against the FCPS collection. Each table provides
the necessary input parameters provided for the algorithms.
An algorithm’s corresponding input parameter for a partic-
ular dataset is the parameter that returns the best results
for the clustering algorithm. Where the DBSCAN, revised
DBSCAN and HPDBSCAN take two parameters (minPts
and ε), the OPTICS and HDBSCAN take only minPts as
input. All experiments were conducted on two Intel Xeon
CPU E5-2695 processors clocked at 2.10 GHz.

To evaluate the cluster accuracy produced by the algo-
rithms, we have measured the ARI and F-score. The ARI
is a variation on the classic Rand Index method. The ARI
expresses the ratio of the cluster assignments regarded as
‘‘correct.’’ It calculates a similarity measure between two
different clusters by considering all pairs of samples, then

87928 VOLUME 9, 2021

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

FIGURE 7. Clusters generated from DBSCAN on the fundamental clustering and projection suite datasets.

counting the pairs assigned in the same or in the different clus-
ters produced, to finally compare against the ‘‘true’’ clusters,
adjusting for random chance. The ARI is bounded between
-1 and 1. The F-score is calculated from the precision and
recall of a test, where precision is the ratio of true positive
results to the total positive results found, and recall is the
ratio of true positive results to the actual positive labels. The
final F-score value is computed by calculating the harmonic
mean of the precision and recall. For both theARI and F-score
measures, the similarity is better as the value approaches 1.
We evaluated the cluster results using the scikit-learn [103]
implementation of the ARI and F-score.

1) FCPS EXPERIMENTAL RESULTS
From the collection of 3D and 2D datasets of the FCPS,
the DBSCAN generally performs well to find the appropriate
clusters of each dataset. The ‘‘Lsun,’’ ‘‘Chainlink,’’ ‘‘Target,’’
‘‘WingNut,’’ and ‘‘GolfBall’’ datasets were clustered with
perfect accuracy by the DBSCAN algorithm. Furthermore,
the DBSCAN algorithm correctly estimated the noise objects
present in the ‘‘Target’’ dataset.

This accuracy can be observed in the table because
the DBSCAN algorithm generated an accuracy of 100%
when clustering ‘‘Target,’’ although only 98.5% of the data
objects had been assigned a cluster. For the other datasets
(i.e., ‘‘Hepta,’’ ‘‘Tetra,’’ ‘‘Atom,’’ and ‘‘TwoDiamonds’’),
DBSCAN did not correctly cluster all data objects. ‘‘TwoDi-
amonds’’ is evidence of a particular case in which the
DBSCANmanaged to group all the data objects into a cluster,
although the assignment was not always to the correct cluster.
Fig. 7 presents the clustering outcome of the DBSCAN algo-
rithm for the FCPS and how it is challenged by datasets, such
as ‘‘TwoDiamonds’’ where two or more different clusters
appear close to each other.

FIGURE 8. Two different runs of the DBSCAN on the same dataset with
different results. The DBSCAN expands clusters through the
density-reachability mechanism, so cluster labels for border objects of
adjacent clusters might vary depending on which data objects are being
randomly processed first. (A) Initialized the cluster expansion from a
certain data object located in the left ‘‘Diamond.’’ (B) Started from a data
object found in the right ‘‘Diamond’’.

The results gathered for the revised DBSCAN algorithm
provide an interesting comparisonwith the original DBSCAN
results. The most significant differences are observed in the
‘‘Tetra’’ and ‘‘TwoDiamonds’’ datasets; datasets where the
clusters are formed adjacent to one another. The adjacency
of clusters appears when border objects that correspond to
one cluster also appear in the neighborhood region of another
cluster. The original DBSCAN’s assignment of cluster labels
for such border objects is determined by its random iteration
of the dataset (i.e., if a particular border object belongs to
the region of two different clusters, DBSCAN automatically
assigns that border object to the cluster it constructs first,
even before considering the second cluster). Furthermore,
because DBSCAN chooses data objects randomly in order
to start building clusters, multiple runs of the algorithm on
the same data object could produce different clusters due to
the assignments of the border objects as shown in Fig. 8. This
condition is displayed in the ‘‘TwoDiamonds’’ and ‘‘Tetra’’

VOLUME 9, 2021 87929

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

TABLE 4. Experimental results on the fundamental clustering and projection suite.

datasets of the FCPS, where data objects belonging to one
cluster were clustered into another.

The revised DBSCAN algorithm provides an improved
implementation for such cases. Instead of assigning a bor-
der object to a particular cluster as soon as it is detected,
the revised DBSCAN algorithm first constructs clusters
by only considering their core-object members. Then, this
algorithm determines which core object is closest for each
border object and assigns it the cluster label of that core
object. This implementation ensures the correct assign-
ment of cluster labels for all border objects, as illustrated
on Fig. 9.

Additionally, consistent cluster shapes and cluster labels at
every run of the algorithm were observed. The gains in accu-
racy when clustering ‘‘TwoDiamonds’’ and ‘‘Tetra’’ with the
revised DBSCAN corroborate this implementation. ‘‘TwoDi-
amonds’’ is perfectly clustered with the revised DBSCAN,
while the accuracy of ‘‘Tetra’’ increases by 37% to 0.914 as
presented on Table 4. The time penalty for the additional com-
putation of the revised DBSCAN algorithm is also evident,
but a more consequential observation of this can be made on
the Twitter dataset.

The HPDBSCAN implementation divides the iterative
computation required for the EXPANDCLUSTER phase of

87930 VOLUME 9, 2021

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

FIGURE 9. TwoDiamonds cluster results for the revised DBSCAN vs. the
original DBSCAN algorithm. The revised DBSCAN (left) correctly labels the
border objects of every cluster and ensures all runs of the algorithm
return the same shape of the clusters.

TABLE 5. Computational time for the five algorithms on the Twitter
dataset (in seconds).

the algorithm among the 72 threads of the two compute nodes
available for the experiment. This implementation results in
a significant acceleration in computational time as compared
to the original DBSCAN algorithm, as listed in Table 4.
Although the change in this scalability is better observed on
larger datasets, such as the Twitter data, the FCPS collection
also exhibits time differences between the HPDBSCAN and
the original DBSCAN. The ‘‘GolfBall’’ dataset portrays this
most significantly, from 0.743 s for DBSCAN to 0.026 s for
HPDBSCAN, a time decrease of 96.53%.

2) TWITTER DATASET EXPERIMENTAL RESULTS
For the Twitter dataset experiment, subsets of the Twitter
dataset at various instances were analyzed to determine how
each algorithm scales as the size of the dataset increases.
This experiment focuses on the computational time of the
algorithms, as no predefined cluster labels exist for each data
object to compare with using the ARI method. The input
parameters of minPts and ε were chosen at 40 and 0.01
respectively [71]. Table 5 presents the time taken for each
algorithm to cluster the dataset at subsets of 1,000, 10,000,
50,000, 100,000, 1,000,000 and 2,000,000 instances of the
Twitter dataset.

The DBSCAN algorithm used for this experiment executes
a brute force implementation of the neighborhood search
for its REGIONQUERY phase, which corresponds to a time
complexity of O(n) per regional query. As such, the exper-
iment conducted on the DBSCAN exhibits a quadratic
increase with respect to the number of instances.

The revised DBSCAN performs slightly slower than the
DBSCAN due to its added procedure of assigning border
objects to their respective clusters. However, the OPTICS

FIGURE 10. Scalability of the computational time of five algorithms as
instances of the Twitter dataset increases exponentially.

algorithm with the kd-tree implementation performs its
REGIONQUERY at O(log n) and the results corroborate this
with a faster time than the DBSCAN’s implementation. The
HDBSCAN algorithm required more memory space than that
available for the instances of ≥1,000,000 at the given input
parameter of minPts = 40. For the sake of fairness of the
experiment, we chose not to alter to a more manageable
minPts for the HDBSCAN and reported only the results of
instances of <1,000,000. Finally, the HPDBSCAN’s parallel
implementation of the originally sequential DBSCAN algo-
rithm results in a significant drop in time, with the data
instances of 2,000,000 requiring only 3.82 s to finish its
run. Fig. 10 plots the results of the experiment in order to
visualize scalability of the five algorithms. At the time of
writing, to our best knowledge, HPDBSCAN is the only C++
implementation of parallel DBSCAN publicly available for
our evaluation; however, it is worth investigating how other
parallel implementations of DBSCAN compare to it.

3) MULTIDIMENSIONAL DATASETS EXPERIMENTAL RESULTS
Further, 10 real-world datasets exhibiting varied dimension-
ality were examined by running on the original DBSCAN
and the SUBCLU clustering algorithms. The SUBCLU clus-
tering algorithm, as discussed in Sec. III works by iterating
through the dimension subsets (subspaces) of the dataset
in order to locate clusters hidden deep within the feature
space. It also incorporates a pruning mechanism to reduce
the search space by applying the monotonicity property of
density-connected sets in a bottom-up approach to subspace
clustering. As such, multiple, usually overlapping clusters in
different subspaces are generated when running the SUBCLU
algorithm as opposed to the cluster output of the origi-
nal DBSCAN in a single search space. For the experimen-
tal results, the number of clusters and coverage percentage
reported for the SUBCLU algorithm are those from subspaces
that return the greatest number of clusters and objects with the
least amount of noise.

VOLUME 9, 2021 87931

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

TABLE 6. Experimental results on 10 multidimensional real-world datasets.

Furthermore, to identify the appropriate parameter val-
ues for the experiments, the approaches proposed in [41]
and [56] were implemented. These papers suggest a minPts
that corresponds to twice the number of dimensions present
in the dataset; and use the calculated minPts to plot the kNN
plot of the dataset. The ε corresponds to the plot where the
maximum curvature is revealed. Table 6 lists the clustering
results generated for the two algorithms. The minPts values
used in each of the reported dataset is double the value of its
dimension.

Of the ten datasets used to conduct the experiment,
three display varying cluster results. The ‘‘Travel Review’’
and ‘‘Ecoli’’ datasets indicate greater coverage of clustered
objects, and ‘‘MFCC’’ was able to identify additional clus-
ter in the SUBCLU algorithm than the original DBSCAN
algorithm.Meanwhile, the ‘‘WDBC’’ dataset, which returned
a single cluster when appropriate parameters were used,
demonstrated no improvement when run against SUBCLU.
This result suggests the subspace clustering method was not
sufficiently adept at identifying significant clusters within
the subsets of the feature spaces of the datasets. The most
likely reason for this scenario is the rigidity of the parameters
used during the SUBCLU procedure. Although the algorithm
examines the subspaces of the datasets, a preset value of
ε and minPts was used on each of the subspaces, which
limits the algorithm’s ability to identify whether a particular
feature space holds meaningful clusters or not, if it was
run using a more subspace-appropriate parameter. Therefore,

the SUBCLU algorithm could either prune the subspace
and all its successive subspaces generated in a bottom-up
approach or generate more noise objects where there should
not be. FutureDBSCAN-based clustering algorithms can pro-
duce a more fluid parameter generation method for subspace
clustering in order to address this problem and reduce the
over-reliance of preset values for the SUBCLU algorithm.

V. CONCLUSION
Several density-based algorithms have been proposed that
aim to improve on the original DBSCAN method. Based on
their implementation, these algorithms can be categorized as
focusing on either improving clustering quality, optimizing
efficiency, or combating the reliance on parameter settings.
The OPTICS andHDBSCAN algorithms produce a hierarchy
of clusters that extract a densely collected set of objects within
a cluster. While OPTICS can identify the denser clusters
using a reachability plot, it does not provide an alternative
means to identify a flat partitioning of the most significant
clusters without using the original DBSCAN approach. The
revised DBSCAN also aims to improve on clustering qual-
ity by focusing on datasets that exhibit adjacent clusters.
It successfully identified the correct cluster labels for border
objects appearing in two different cluster neighborhoods.
However, this added implementation increases the computa-
tional time from the experiments, and datasets that do not
have the adjacency property would suffer without gains in
cluster quality. A ‘‘highly parallel’’ DBSCAN (HPDBSCAN)

87932 VOLUME 9, 2021

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

that employs OpenMPI/MPI to break the sequential pro-
cess of the original algorithm and accelerate neighborhood
searches in a distributed processing environment was also
evaluated. This implementation was tested on a real dataset
and was capable of executing within a time complexity that
is orders of magnitude faster than the other algorithms.

Experiments on three collection of datasets were con-
ducted. The results from the FCPS collection reveal that,
while the improved algorithms provide better quality results
in particular cases, the original DBSCAN is generally adept
at handling clustering operations. The real-world Twitter
dataset used to test the efficiency of the algorithms acknowl-
edged HPDBSCAN’s parallel implementation of the cluster-
ing while providing support for adapting indexing structures
such as the R*-tree or kd-tree for faster regional queries.
Finally, the 10 real-world datasets collected to test how
density-based clustering algorithms handle multidimensional
feature spaces indicated the high sensitivity of SUBCLU’s
results to the input parameters ε and minPts.

REFERENCES
[1] X.Wang and J.M.Garibaldi, ‘‘A comparison of fuzzy and non-fuzzy clus-

tering techniques in cancer diagnosis,’’ in Proc. 2nd Int. Conf. Comput.
Intell. Med. Healthcare, BIOPATTERN Conf., Lisbon, Portugal, vol. 28,
2005.

[2] J. Liu and R. Han, ‘‘Spectral clustering and multicriteria decision for
design of district metered areas,’’ J. Water Resour. Planning Manage.,
vol. 144, no. 5, May 2018, Art. no. 04018013.

[3] O. J. Oyelade, O. O. Oladipupo, and I. C. Obagbuwa, ‘‘Appli-
cation of k means clustering algorithm for prediction of students
academic performance,’’ 2010, arXiv:1002.2425. [Online]. Available:
http://arxiv.org/abs/1002.2425

[4] K. Y. Yeung, M. Medvedovic, and R. E. Bumgarner, ‘‘Clustering gene-
expression data with repeated measurements,’’ Genome Biol., vol. 4,
no. 5, p. R34, 2003.

[5] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, ‘‘Cluster
analysis and display of genome-wide expression patterns,’’ Proc. Nat.
Acad. Sci. USA, vol. 95, no. 25, pp. 14863–14868, Dec. 1998.

[6] K. Akkaya, F. Senel, and B. McLaughlan, ‘‘Clustering of wireless sen-
sor and actor networks based on sensor distribution and connectivity,’’
J. Parallel Distrib. Comput., vol. 69, no. 6, pp. 573–587, Jun. 2009.

[7] A. Saurabh and A. Naik, ‘‘Wireless sensor network based adaptive land-
mine detection algorithm,’’ in Proc. 3rd Int. Conf. Electron. Comput.
Technol., vol. 1, Apr. 2011, pp. 220–224.

[8] S. Alelyani, J. Tang, and H. Liu, ‘‘Feature selection for clustering:
A review,’’ Data clustering: Algorithms Appl., vol. 29, no. 1, pp. 29–60,
2013.

[9] L. Song, A. Smola, A. Gretton, K. M. Borgwardt, and J. Bedo, ‘‘Super-
vised feature selection via dependence estimation,’’ in Proc. 24th Int.
Conf. Mach. Learn. (ICML), 2007, pp. 823–830.

[10] J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping, ‘‘Use of the zero-
norm with linear models and kernel methods,’’ J. Mach. Learn. Res.,
vol. 3, pp. 1439–1461, Mar. 2003.

[11] J. G. Dy andC. E. Brodley, ‘‘Feature selection for unsupervised learning,’’
J. Mach. Learn. Res., vol. 5, pp. 845–889, Jan. 2004.

[12] P. Mitra, C. A. Murthy, and S. K. Pal, ‘‘Unsupervised feature selection
using feature similarity,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 3, pp. 301–312, Mar. 2002.

[13] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari,
M. J. Er, W. Ding, and C.-T. Lin, ‘‘A review of clustering techniques and
developments,’’ Neurocomputing, vol. 267, pp. 664–681, Dec. 2017.

[14] L. Rokach and O. Maimon, ‘‘Clustering methods,’’ in Data Mining and
Knowledge Discovery Handbook. Boston, MA, USA: Springer, 2005,
pp. 321–352.

[15] A. R. Webb, Statistical Pattern Recognition. Hoboken, NJ, USA: Wiley,
2003.

[16] A. K. Jain, R. P. W. Duin, and J. Mao, ‘‘Statistical pattern recognition:
A review,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1,
pp. 4–37, Jan. 2000.

[17] G. Gan, C. Ma, and J. Wu, Data Clustering: Theory, Algorithms, and
Applications. Philadelphia, PA, USA: SIAM, 2020.

[18] C. C. Aggarwal and C. Reddy, An Introduction to Cluster Analysis, 1st
ed. Boca Raton, FL, USA: Chapman & Hall, 2013.

[19] P.-E. Danielsson, ‘‘Euclidean distance mapping,’’ Comput. Graph. Image
Process., vol. 14, no. 3, pp. 227–248, Nov. 1980.

[20] D. T. Nguyen, L. Chen, and C. K. Chan, ‘‘Clustering withmultiviewpoint-
based similarity measure,’’ IEEE Trans. Knowl. Data Eng., vol. 24, no. 6,
pp. 988–1001, Jun. 2012.

[21] K. Pearson, ‘‘VII. Mathematical contributions to the theory of
evolution.—III. Regression, heredity, and panmixia,’’ Phil. Trans. Roy.
Soc. London A, Containing Papers Math. Phys. Character, vol. 187,
pp. 253–318, Dec. 1896.

[22] A. Bravais, Analyse Mathématique sur les Probabilités des Erreurs de
Situation d’un Point. Paris, France: Impr. Royale, 1844.

[23] P. Arabie and L. Hubert, ‘‘Advances in cluster analysis relevant to market-
ing research,’’ in From Data to Knowledge. Berlin, Germany: Springer,
1996, pp. 3–19.

[24] A. K. Jain, ‘‘Data clustering: 50 years beyond K-means,’’ Pattern Recog-
nit. Lett., vol. 31, no. 8, pp. 651–666, Jun. 2010.

[25] A. Sharma and V. Rastogi, ‘‘Spam filtering using k mean clustering with
local feature selection classifier,’’ Int. J. Comput. Appl., vol. 108, no. 10,
pp. 35–39, Dec. 2014.

[26] S. Hosseinimotlagh and E. E. Papalexakis, ‘‘Unsupervised content-
based identification of fake news articles with tensor decomposition
ensembles,’’ in Proc. WorkshopMisinformationMisbehavior MiningWeb
(MIS2), 2018.

[27] V. Estivill-Castro and J. Yang, ‘‘Fast and robust general purpose clustering
algorithms,’’ in Proc. Pacific Rim Int. Conf. Artif. Intell.Berlin, Germany:
Springer, 2000, pp. 208–218.

[28] C. Fraley, ‘‘How many clusters? Which clustering method? Answers via
model-based cluster analysis,’’ Comput. J., vol. 41, no. 8, pp. 578–588,
Aug. 1998.

[29] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques.
Amsterdam, The Netherlands: Elsevier, 2011.

[30] A. Baraldi and P. Blonda, ‘‘A survey of fuzzy clustering algorithms for
pattern recognition. I,’’ IEEE Trans. Syst., Man Cybern. B, Cybern.,
vol. 29, no. 6, pp. 778–785, Dec. 1999.

[31] A. Baraldi and P. Blonda, ‘‘A survey of fuzzy clustering algorithms for
pattern recognition. II,’’ IEEE Trans. Syst., Man Cybern. B, Cybern.,
vol. 29, no. 6, pp. 786–801, Dec. 1999.

[32] J. A. Hartigan and M. A. Wong, ‘‘Algorithm AS 136: A k-means cluster-
ing algorithm,’’ Appl. Statist., vol. 28, no. 1, pp. 100–108, 1979.

[33] C. K. Reddy and B. Vinzamuri, ‘‘A survey of partitional and hierarchical
clustering algorithms,’’ inData Clustering: Algorithms and Applications.
Boca Raton, FL, USA: Chapman & Hall, Sep. 2013, pp. 87–110.

[34] G. Karypis, E.-H. Han, and V. Kumar, ‘‘Chameleon: Hierarchical cluster-
ing using dynamic modeling,’’ Computer, vol. 32, no. 8, pp. 68–75, 1999.

[35] T. Zhang, R. Ramakrishnan, and M. Livny, ‘‘BIRCH: An efficient data
clustering method for very large databases,’’ ACM SIGMODRec., vol. 25,
no. 2, pp. 103–114, Jun. 1996.

[36] W. Cheng, W. Wang, and S. Batista, ‘‘Grid-based clustering,’’ in Data
Clustering. Boca Raton, FL, USA: CRC Press, 2018, pp. 128–148.

[37] W. Wang, J. Yang, and R. Muntz, ‘‘STING: A statistical information
grid approach to spatial data mining,’’ in Proc. VLDB, vol. 97, 1997,
pp. 186–195.

[38] G. Sheikholeslami, S. Chatterjee, and A. Zhang, ‘‘Wavecluster: A multi-
resolution clustering approach for very large spatial databases,’’ in Proc.
24th Int. Conf. Very Large Databases, vol. 98, Aug. 1998, pp. 428–439.

[39] B. Andreopoulos, ‘‘Clustering categorical data,’’ inWiley StatsRef: Statis-
tics Reference Online. Boca Raton, FL, USA: Chapman & Hall, 2014,
pp. 1–12.

[40] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc.
KDD, 1996, vol. 96, no. 34, pp. 226–231.

[41] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, ‘‘DBSCAN
revisited, revisited:Why and how you should (Still) use DBSCAN,’’ACM
Trans. Database Syst., vol. 42, no. 3, pp. 1–21, Aug. 2017.

[42] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek, ‘‘Density-based clus-
tering,’’ Wiley Interdiscipl. Rev., Data Mining Knowl. Discovery, vol. 1,
no. 3, pp. 231–240, May/Jun. 2011.

VOLUME 9, 2021 87933

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

[43] D. P. deOliveira, J. H. Garrett, and L. Soibelman, ‘‘A density-based spatial
clustering approach for defining local indicators of drinking water distri-
bution pipe breakage,’’ Adv. Eng. Informat., vol. 25, no. 2, pp. 380–389,
Apr. 2011.

[44] M. Daszykowski, B. Walczak, and D. L. Massart, ‘‘Looking for natural
patterns in data: Part 1. density-based approach,’’ Chemometrics Intell.
Lab. Syst., vol. 56, no. 2, pp. 83–92, 2001.

[45] L. Zhou, P. K. Hopke, and P. Venkatachari, ‘‘Cluster analysis of single
particle mass spectra measured at flushing, NY,’’ Analytica Chim. Acta,
vol. 555, no. 1, pp. 47–56, Jan. 2006.

[46] S. Liu, Z.-T. Dou, F. Li, and Y.-L. Huang, ‘‘A new ant colony clustering
algorithm based on DBSCAN,’’ in Proc. Int. Conf. Mach. Learn. Cybern.,
vol. 3, 2004, pp. 1491–1496.

[47] A. Ghosh, A. Halder,M. Kothari, and S. Ghosh, ‘‘Aggregation pheromone
density based data clustering,’’ Inf. Sci., vol. 178, no. 13, pp. 2816–2831,
Jul. 2008.

[48] C. Plant, S. J. Teipel, A. Oswald, C. Böhm, T.Meindl, J.Mourao-Miranda,
A. W. Bokde, H. Hampel, and M. Ewers, ‘‘Automated detection of brain
atrophy patterns based onMRI for the prediction of Alzheimer’s disease,’’
NeuroImage, vol. 50, no. 1, pp. 162–174, Mar. 2010.

[49] J. Gong and C. H. Caldas, ‘‘Data processing for real-time construction
site spatial modeling,’’ Autom. Construct., vol. 17, no. 5, pp. 526–535,
Jul. 2008.

[50] T. N. Tran, K. Drab, andM. Daszykowski, ‘‘Revised DBSCAN algorithm
to cluster data with dense adjacent clusters,’’ Chemometric Intell. Lab.
Syst., vol. 120, pp. 92–96, Jan. 2013.

[51] H. Chebi, D. Acheli, and M. Kesraoui, ‘‘Dynamic detection of abnor-
malities in video analysis of crowd behavior with DBSCAN and neural
networks,’’ Adv. Sci., Technol. Eng. Syst. J., vol. 1, no. 5, pp. 56–63,
Oct. 2016.

[52] H. Li, J. Liu, K. Wu, Z. Yang, R. W. Liu, and N. Xiong, ‘‘Spatio-temporal
vessel trajectory clustering based on data mapping and density,’’ IEEE
Access, vol. 6, pp. 58939–58954, 2018.

[53] H. Li, J. Liu, Z. Yang, R. W. Liu, K. Wu, and Y. Wan, ‘‘Adaptively
constrained dynamic time warping for time series classification and
clustering,’’ Inf. Sci., vol. 534, pp. 97–116, Sep. 2020.

[54] R. W. Liu, J. Nie, S. Garg, Z. Xiong, Y. Zhang, andM. S. Hossain, ‘‘Data-
driven trajectory quality improvement for promoting intelligent vessel
traffic services in 6G-enabled maritime IoT systems,’’ IEEE Internet
Things J., vol. 8, no. 7, pp. 5374–5385, Apr. 2021.

[55] K. Sheridan, T. G. Puranik, E. Mangortey, O. J. Pinon-Fischer, M. Kirby,
and D. N.Mavris, ‘‘An application of dbscan clustering for flight anomaly
detection during the approach phase,’’ inProc. AIAA Scitech Forum, 2020,
p. 1851.

[56] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, ‘‘Density-based clustering
in spatial databases: The algorithm GDBSCAN and its applications,’’
Data Mining Knowl. Discovery, vol. 2, no. 2, pp. 169–194, Jun. 1998.

[57] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, ‘‘OPTICS:
Ordering points to identify the clustering structure,’’ ACM SIGMOD.
Rec., vol. 28, no. 2, pp. 49–60, Jun. 1999.

[58] K. Kailing, H.-P. Kriegel, and P. Kröger, ‘‘Density-connected subspace
clustering for high-dimensional data,’’ in Proc. SIAM Int. Conf. Data
Mining. SIAM, Apr. 2004, pp. 246–256.

[59] D. Birant andA.Kut, ‘‘ST-DBSCAN:An algorithm for clustering spatial–
temporal data,’’Data Knowl. Eng., vol. 60, no. 1, pp. 208–221, Jan. 2007.

[60] P. Liu, D. Zhou, and N. Wu, ‘‘VDBSCAN: Varied density based spatial
clustering of applications with noise,’’ in Proc. Int. Conf. Service Syst.
Service Manage., Jun. 2007, pp. 1–4.

[61] A. Ram, A. Sharma, A. S. Jalal, A. Agrawal, and R. Singh, ‘‘An enhanced
density based spatial clustering of applications with noise,’’ in Proc. IEEE
Int. Advance Comput. Conf., Mar. 2009, pp. 1475–1478.

[62] W. Ashour and S. Sunoallah, ‘‘Multi density DBSCAN,’’ in Proc. Int.
Conf. Intell. Data Eng. Automated Learn. Berlin, Germany: Springer,
2011, pp. 446–453.

[63] H. Darong and W. Peng, ‘‘Grid-based DBSCAN algorithm with referen-
tial parameters,’’ Phys. Procedia, vol. 24, pp. 1166–1170, Jan. 2012.

[64] R. J. Campello, D. Moulavi, and J. Sander, ‘‘Density-based cluster-
ing based on hierarchical density estimates,’’ in Proc. Pacific–Asia
Conf. Knowl. Discovery Data Mining. Berlin, Germany: Springer, 2013,
pp. 160–172.

[65] A. Hinneburg and D. A. Keim, ‘‘An efficient approach to clustering
in large multimedia databases with noise,’’ KDD, Tech. Rep., 1998,
pp. 58–65, vol. 98.

[66] B. Liu, ‘‘A fast density-based clustering algorithm for large databases,’’
in Proc. Int. Conf. Mach. Learn. Cybern., 2006, pp. 996–1000.

[67] C. Xiaoyun, M. Yufang, Z. Yan, and W. Ping, ‘‘GMDBSCAN: Multi-
density DBSCAN cluster based on grid,’’ in Proc. IEEE Int. Conf. e-
Business Eng., Oct. 2008, pp. 780–783.

[68] P. Viswanath and V. S. Babu, ‘‘Rough-DBSCAN: A fast hybrid density
based clustering method for large data sets,’’ Pattern Recognit. Lett.,
vol. 30, no. 16, pp. 1477–1488, Dec. 2009.

[69] C. Böhm, R. Noll, C. Plant, and B. Wackersreuther, ‘‘Density-based
clustering using graphics processors,’’ in Proc. 18th ACM Conf. Inf.
Knowl. Manage. (CIKM), 2009, pp. 661–670.

[70] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan, ‘‘MR-DBSCAN: A scalable
MapReduce-based DBSCAN algorithm for heavily skewed data,’’ Fron-
tiers Comput. Sci., vol. 8, no. 1, pp. 83–99, Feb. 2014.

[71] M. Götz, C. Bodenstein, and M. Riedel, ‘‘HPDBSCAN: Highly parallel
DBSCAN,’’ in Proc. Workshop Mach. Learn. High-Perform. Comput.
Environ., 2015, pp. 1–10.

[72] L. Dagum and R. Menon, ‘‘OpenMP: An industry standard API for
shared-memory programming,’’ IEEE Comput. Sci. Eng., vol. 5, no. 1,
pp. 46–55, Jan. 1998.

[73] K. M. Kumar and A. R. M. Reddy, ‘‘A fast DBSCAN clustering algo-
rithm by accelerating neighbor searching using groups method,’’ Pattern
Recognit., vol. 58, pp. 39–48, Oct. 2016.

[74] J. Jang and H. Jiang, ‘‘DBSCAN++: Towards fast and scalable density
clustering,’’ in Proc. Int. Conf. Mach. Learn., 2019, pp. 3019–3029.

[75] Y. Chen, L. Zhou, N. Bouguila, C. Wang, Y. Chen, and J. Du, ‘‘BLOCK-
DBSCAN: Fast clustering for large scale data,’’ Pattern Recognit.,
vol. 109, Jan. 2021, Art. no. 107624.

[76] S.-S. Li, ‘‘An improved DBSCAN algorithm based on the neigh-
bor similarity and fast nearest neighbor query,’’ IEEE Access, vol. 8,
pp. 47468–47476, 2020.

[77] Y. Wang, Y. Gu, and J. Shun, ‘‘Theoretically-efficient and practical
parallel DBSCAN,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
Jun. 2020, pp. 2555–2571.

[78] X. Xu, M. Ester, H.-P. Kriegel, and J. Sander, ‘‘A distribution-based
clustering algorithm for mining in large spatial databases,’’ in Proc. 14th
Int. Conf. Data Eng., 1998, pp. 324–331.

[79] E. Biçici and D. Yuret, ‘‘Locally scaled density based clustering,’’ in
Proc. Int. Conf. Adapt. Natural Comput. Algorithms. Berlin, Germany:
Springer, 2007, pp. 739–748.

[80] A. Fahim, A. Salem, F. Torkey, and M. Ramadan, ‘‘Density cluster-
ing based on radius of data (DCBRD),’’ Int. J. Comput. Inf. Eng.,
2006.

[81] S. Vijayalaksmi and M. Punithavalli, ‘‘A fast approach to clustering
datasets using DBSCAN and pruning algorithms,’’ Int. J. Comput. Appl.,
vol. 60, no. 14, pp. 1–7, Dec. 2012.

[82] M. M. R. Khan, M. A. B. Siddique, R. B. Arif, and M. R. Oishe,
‘‘ADBSCAN: Adaptive density-based spatial clustering of applications
with noise for identifying clusters with varying densities,’’ in Proc. 4th
Int. Conf. Electr. Eng. Inf. Commun. Technol. (iCEEiCT), Sep. 2018,
pp. 107–111.

[83] A. Starczewski, P. Goetzen, and M. J. Er, ‘‘A new method for automatic
determining of the DBSCAN parameters,’’ J. Artif. Intell. Soft Comput.
Res., vol. 10, no. 3, pp. 209–221, Jul. 2020.

[84] I. T. Jolliffe, ‘‘Principal component analysis,’’ Technometrics, vol. 45,
no. 3, p. 276, 2003.

[85] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, ‘‘Automatic sub-
space clustering of high dimensional data for data mining applications,’’
ACM SIGMOD Rec., vol. 27, no. 2, pp. 94–105, Jun. 1998.

[86] H. Späth, ‘‘Cluster analysis algorithms for data reduction and
classification of objects,’’ Ellis Horwood, Chichester, U.K., Tech.
Rep., 1980.

[87] D. Steinley, ‘‘Properties of the Hubert-Arable adjusted rand index,’’ Psy-
chol. Methods, vol. 9, no. 3, p. 386, 2004.

[88] K. Y. Yeung and W. L. Ruzzo, ‘‘Details of the adjusted rand index
and clustering algorithms, supplement to the paper an empirical study
on principal component analysis for clustering gene expression data,’’
Bioinformatics, vol. 17, no. 9, pp. 763–774, May 2001.

[89] M. C. Thrun and A. Ultsch, ‘‘Clustering benchmark datasets exploiting
the fundamental clustering problems,’’ Data Brief, vol. 30, Jun. 2020,
Art. no. 105501.

[90] B2share, HPDBSCAN Benchmark Test Files. (Accessed:Jan. 16, 2021).
[Online]. Available: https://b2share.eudat.eu/records/7f0c22ba9a5a44ca
83cdf4fb304ce44e

[91] Stream Tweets in Real-Time | Docs | Twitter Developer.
(Accessed: Jan. 16, 2021). [Online]. Available: https://developer.twitter.
com/en/docs/tutorials/stream-tweets-in-real-time

87934 VOLUME 9, 2021

A. A. Bushra, G. Yi: Comparative Analysis Review of Pioneering DBSCAN and Successive DBSCA

[92] D. Dua and C. Graff. (2017). UCI Machine Learning Repository.
[Online]. Available: http://archive.ics.uci.edu/ml

[93] V.W. Chandler and R. S. Lively, ‘‘2003 rock properties database: Density,
magnetic susceptibility, and natural remanent magnetization of rocks in
minnesota, version 2,’’ Minnesota Geograph. Surv., Mounds View, MN,
USA, Tech. Rep., 2010.

[94] S. Renjith, A. Sreekumar, and M. Jathavedan, ‘‘Evaluation of partition-
ing clustering algorithms for processing social media data in tourism
domain,’’ in Proc. IEEE Recent Adv. Intell. Comput. Syst. (RAICS),
Dec. 2018, pp. 127–131.

[95] James Yoo. DBSAN: C++ implementation of DBSCAN Clustering
Algorithm. (Accessed: Jan. 16, 2021). [Online]. Available: https://
github.com/james-yoo/DBSCAN

[96] A. A. Bushra. Adilabdu/Revised-Dbscan. (Accessed: Jan. 17, 2021).
[Online]. Available: https://github.com/adilabdu/revised-dbscan

[97] CrikeeIP. Optics-Clustering: An Algorithm for Finding Density-Based
Clusters in Spatial Data. (Accessed: Jan. 16, 2021). [Online]. Available:
https://github.com/CrikeeIP/OPTICS-Clustering

[98] Ojmakhura. HDBSCAN: This is an Implementation of the Hdbscan Algo-
rithm Ricardo J.G.B. Campello. (Accessed: Jan. 16, 2021). [Online].
Available: https://github.com/ojmakhura/hdbscan

[99] M. Goetz. HPDBSCAN: Highly Parallel Dbscan (HPDBSCAN).
(Accessed: Jan. 16, 2021). [Online]. Available: https://github.com/
Markus-Goetz/hpdbscan

[100] M. Reber. (Nov. 2019). SUBCLU Ruby Implementation. [Online].
Available: https://code.michu-it.com/michael/programming-examples/
src/branch/master/ruby/Algorithms/subclu.rb

[101] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson,
‘‘An overview of the HDF5 technology suite and its applications,’’ in
Proc. EDBT/ICDT Workshop Array Databases (AD), 2011, pp. 36–47.

[102] R. A. Brown, ‘‘Building a balanced k-d tree in O(kn log n) time,’’ 2014,
arXiv:1410.5420. [Online]. Available: http://arxiv.org/abs/1410.5420

[103] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

ADIL ABDU BUSHRA received the bachelor’s
degree in computer science from Addis Ababa
University, Ethiopia, in 2019. He is currently pur-
suing the master’s degree with the Department
of Multimedia Engineering, Dongguk University,
Seoul, South Korea. His research interests include
machine learning, data science, and computational
biology.

GANGMAN YI received the master’s and Ph.D.
degrees in computer science from Texas A&M
University, USA, in 2007 and 2011, respec-
tively. In 2011, he joined the System Soft-
ware Group, Samsung Electronics, Suwon, South
Korea. He was with the Department of Computer
Science and Engineering, Gangneung-Wonju
National University, South Korea, in 2012. Since
2016, he has been with the Department of Mul-
timedia Engineering, Dongguk University, Seoul,

South Korea. He has been researching in an interdisciplinary field of studies.
His research interests include the development of computational methods
to improve understanding of biological systems and its big data. He actively
serves as a managing editor and a reviewer for international journals. He also
serves as the chair for international conferences and workshops.

VOLUME 9, 2021 87935

