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ABSTRACT This paper presents a novel security approach called Anomalous Resource Consumption
Detection (ARCD), which acts as an additional layer of protection to detect cyberattacks in embedded
systems (ESs). The ARCD approach is based on the differentiation between the predefined standard resource
consumption pattern and the anomalous consumption pattern of system resource utilization. The effective-
ness of the proposed approach is tested in a rigorous manner by simulating four types of cyberattacks:
a denial-of-service attack, a brute-force attack, a remote code execution attack, and a man-in-the-middle
attack, which are executed on a Smart PiCar (used as the testbed). A septenary tuple model consisting
of seven parameters, representing the embedded system’s architecture, has been created as the core of the
detection mechanism. The approach’s efficiency and effectiveness has been validated in terms of range and
pattern by analyzing the collected data statistically in terms of mean, median, mode, standard deviation,
range, minimum, and maximum values. The results demonstrated the potential for defining a standard
pattern of resource utilization and performance of the embedded system due to a significant similarity of
the parameters’ values at normal states. In contrast, the attacked cases showed a definite, observable, and
detectable impact on resource consumption and performance of the embedded system, causing an anomalous
pattern. Thus, by merging these two findings, the ARCD approach has been developed. ARCD facilitates
building secure operating systems in line with the ES’s capabilities. Furthermore, the ARCD approach can
work along with existing countermeasures to augment the security of the operating system layer.

INDEX TERMS Anomalous resource consumption, brute-force attack, cyberattacks, denial-of-service
attack, embedded systems, password attack, remote code execution, testbed.

I. INTRODUCTION
In light of the enormous expansion and spread of embedded
systems (ESs) applications in different application domains
such as communication, transportation, education, defense,
energy, and medicine, ESs form critical components in cyber-
physical systems (CPS) and IoT-enabled systems. Industry
4.0, the industrial internet of things (IIoT), integrates all
systems into the Internet, such as supervisory control and
data acquisition systems (SCADA), industrial automation and
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control systems (IACS), industrial control systems (ICS), and
distributed control systems (DCS). Hence, cybersecurity by
design is a critical challenge for the success of these modern
applications. This highlights the urgent need to secure these
systems against cyberattacks, which can cause catastrophic
consequences to both humans and the economy. There are
many mature techniques for protecting IT infrastructure.
However, compared to conventional multitasking systems,
ESs face significant challenges to adopt existing advanced
security solutions due to their capabilities and limiting char-
acteristics, such as small size, small volume of memory,
less computational capabilities, low energy consumption,
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mobility, independence, and low cost. It is necessary to have
effective security solutions that maintain security goals and
match the ES’s capabilities and characteristics.

Marwedel [1] discusses many tight constraints on ES
resources, particularly in the case of a system on a chip (SoC),
and how these limitations hinder the ability to implement
advanced security solutions. These constrained capabilities
also make it impossible to apply conventional security mech-
anisms [2]. ESs must be resource-aware, and cannot have
excessive pipeline performance due to limited resources [3].
The gaps in processing, battery, and cost are at the top of
the security challenges list. The high barrier of constraints
on computational capability, storage, power, and real-time
determinism makes it difficult to maintain data confidential-
ity through encryption and key management [4]. The addition
of many software-based security mechanisms on top of the
OS layer would compete for computational resources, intro-
ducing an incompatibility with ES capabilities [4]. Developed
security solutions must consider the capabilities of software
and hardware during the earliest stages of design, hence
mitigating the additional cost for cybersecurity at the later
stages of the system lifecycle.

The execution of advanced cryptography and other
advanced security solutions and countermeasures, such as an
intrusion detection system (IDS), require intensive computing
resources and inevitably consume more energy [5]. ESs are
unable to handle intensive cryptographic calculation-based
encryption and decryption operations due to SoC resource
limitations [3]. The existing cryptographic algorithms require
sufficient processing,memory, and energy capabilities, which
may be unavailable in limited resource SoCs [6]. Therefore,
running a robust encryption scheme on an ES with its limited
resources is a challenge [7], [8]. Conversely, the nature of an
ES poses significant tight constraints and their impact reflects
on performance capabilities [9], [10].

Hameed et al. [11] addressed the issue of distributed
denial-of-service (DDoS) attack detection and stated,
‘‘Detection of DDoS in IoT is a challenging issue as IoT
network and traffic characteristics are quite different from
the traditional network. Due to the limitation of IoT devices,
resource-efficient DDoS detection and countermeasure tech-
niques are required.’’ Neglecting security countermeasures at
the design stage could provide more chances for attackers to
destroy these systems successfully. As many ESs are pow-
ered by battery and security enhancement could inevitably
sacrifice part of the energy, it is crucial to reduce the amount
of power consumption with lightweight and efficient solu-
tions [5]. AsAli et al. [12] stated, the conflicting requirements
for higher computational capabilities but lower power con-
sumption pose serious challenges to implement effective and
efficient solutions for the security of ESs. It is not feasible to
implement conventional IT security solutions in ESs in terms
of the ES’s capabilities.

In general, embedded systems are exposed to the same
security threats as conventional computer systems, but
with significant limitations to handle the advanced security

solutions that have been implemented on these conventional
computers and servers. Therefore, there is an urgent need
for lightweight security strategies to enhance system security
under these constraints [5], [11] based on existing hardware
and software systems and without excessive computational
requirements or additional cost for hardware components.

Based on the relevant studies in this field, we have pub-
lished a comprehensive analytical study that covers all aspects
of the cybersecurity of embedded systems [13] and addressed
some of the existing solutions. In this study, we are presenting
an alternative security solution, where the proposed approach
utilizes resource consumption patterns to recognize the exis-
tence of a cyberattack. In this paper, we aim to deliver a
novel security approach to detecting and dealing with cyber-
attacks without conflicting with the ES’s characteristics and
without depleting its resources, through monitoring system
resource consumption and detecting anomalous performance
patterns. The proposed approach is referred to as Anomalous
Resource Consumption Detection (ARCD). Anomaly detec-
tion as a concept has been previously implemented in appli-
cations such as bank fraud and intrusion detection systems
(IDS) [14]. It is worth noting, though, that IDS applications
concentrated on the network traffic by inspecting every single
packet and looking for any malicious activities or unexpected
ongoing data traffic using data analysis methods or machine
learning algorithms [15], [16]. This is quite different to the
concept proposed in our study that focuses particularly on
ESs, benefiting from the ES’s characteristics (being dedicated
to performing specific functions).

The remainder of this paper is organized as follows.
In Section II, the hypothesis of this study was presented, and
the concept of the septenary tuplemodel was explained. In the
third section, the hardware and software for the experimental
environment are illustrated. The adopted methodology has
been described in Section IV. The final results and analysis
of the typical cases have been summarized in Section V,
followed by the attacked cases results in Section VI. The
final statistical results for all cases have been explained and
discussed in Section VII. Finally, the conclusion and future
work are presented in Section VIII.

II. THE HYPOTHESIS AND TESTBED CONFIGURATION
A. THE HYPOTHESIS
The proposed security method is based on the hypothesis that
a unique characteristic of ESs distinguishes them from con-
ventional multitasking systems, in which these systems are
designed to perform specific functions. Thus, the hypothesis
states: In embedded systems designed to perform specific
functions, the performance and resource consumption form a
narrowly bounded, determinable pattern. Thus, an anomalous
pattern, if it exists and is identifiable, can be exploited as an
indicator to detect potential cyberattacks.

The anomaly detection concept is a wide concept on
its own, and it can be implemented in conjunction with
uncounted technologies, and many related studies are
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pointing in the same direction as the approach that we seek to
present. However, what distinguishes our proposed approach
is its comprehensive detection mechanism, which is based on
the septenary tuple model, as well as its generality through
focusing on the embedded system abstractly rather than its
implementations.

The hypothesis comprises two main parts. First, it requires
that when an ES is performing its specific functions, we can
identify the range and the pattern of the performance and
resource consumption under normal operation conditions and
in the absence of cyberattacks. The second part implies that
an anomalous resource consumption pattern can be inferred
as an indicator of a cyberattack occurrence. To validate the
hypothesis, we need to prove the feasibility of creating a
standard pattern for the system performance and resource
consumption under normal operating conditions (with no
cyberattacks present) to be used as the control pattern. Also,
in an attack case, we need to prove the existence of anomalous
performance and resource consumption and their detectabil-
ity, contrary to the control case. The anomalous pattern should
be recognizable and distinguishable from standard resource
consumption. To prove the validity of the hypothesis, we con-
duct an experiment to observe specific parameters’ values,
which represent resource consumption and the ES’s perfor-
mance under different circumstances.

Based on the collected data, we will be able to confirm
the validity of the first part of the hypothesis, which is essen-
tial. If the range and pattern of resource consumption under
normal operating conditions is highly variable and undeter-
minable, it would prove difficult to distinguish anomalous
patterns from normal patterns. Hence, the second part of the
assumption would not be proved without proof of the first
part. After proving the first part of the assumption, we will
move to the second part of the research hypothesis and exe-
cute various scenarios of cyberattacks to see if it is possible to
detect the existence of attacks based on the anomalous change
on system performance and resource consumption.

B. THE TESTBED
Testbeds ‘‘are composite abstractions of systems and are used
to study system components and interactions to gain further
insight into the essence of the real system’’ [17]. According
to Edgar and Manz [18], a testbed is defined as ‘‘a control-
lable cyber environment that enables experimentation.’’ In
our study, a Smart PiCar will be used as a testbed. The ES
within this CPS will be monitored to study particular aspects
of system performance and its resource consumption under a
controlled environment.

The testbed has specific attributes: (1) purpose, (2)
resources, (3) resource management, (4) configuration/
initialization, (5) experimental design, (6) experimental
control, (7) instrumentation and data collection, and (8)
access [18]. During the testbed design stages, these attributes
have been taken into account.

Three typical design options are normally adopted for
experimental design [19]: (1) simple design, (2) fractional

factorial design, and (3) full factorial design. Simple design
refers to adopting a fixed configuration and changing one fac-
tor at a time to determine the impacts of this factor on system
performance. Observing impacts when modifying only a few
factors against others reflects the concept of fractional facto-
rial design, whereas altering all factors against each other is
an example of the full factorial experimental design concept.
The fractional factorial or full factorial design options are the
most suitable to study how factors interact with each other.

In our experimental design, we first adopt the simple exper-
imental design approach and alter one factor at a time to
determine the impact on system performance. The selected
factor is the existence or absence of a cyberattack. This is
followed by a parameter selection phase to design a septenary
tuple model. In this stage, we adopt a full factorial design
to find the most influential parameters to build the detection
mechanism’s core.

The Smart PiCar provides a realistic hardware-software
environment to test the embedded system components under
different operational circumstances. As a result of the testbed,
we will have quantitative results about the operational behav-
ior of the ES for specific parameters. Thus, our case study’s
design decision has been taken based on both theoretical and
empirical studies.

1) THE PARAMETERS OF A TESTBED
To validate the proposed security approach, it is necessary
to monitor, collect and analyze values of specific parameters
on the testbed, representing the performance of a real CPS,
to be able to make a comparison between unattacked cases
and attacked cases. Determining specific parameters to be
investigated in the experiments is not arbitrary, but is based on
the architecture of an ES. This consists of a central processing
unit (CPU) to manage the data and execute the instructions,
volatile memory or random-access memory (RAM), read-
only memory or non-volatile memory (ROM), as well as
the system bus, communication subsystem, power subsystem
(battery), and input/output units. Based on these components,
seven important parameters have been identified as follows:

1- CPU utilization: the CPU utilization percentage param-
eter represents the percentage of the total available CPU
computing power available that is being used to perform
the function of the ES. A Broadcom BCM2711, quad-
core ARM Cortex-A72 (SoC - ARMv8) 64-bit is work-
ing as the compute unit of the CPS.

2- Memory load: the memory (Mem) usage percentage
parameter indicates the amount of memory resource
used. The Smart PiCar is equipped with 4GB LPDDR4-
3200 SDRAM to support the processes of the ARM
processor. Specifically, we monitored the active system
virtual memory usage percentage. (see psutil commands
documentation [20]).

3- Task count: this parameter reflects the total number of
current CPU software processes. These processes are the
programs currently under execution in the processor or
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still alive, and which have not been fully completed by
the system or user.

4- Thread count: a single program can contain multiple
threads. Threads provide a mechanism for coordinating
parallel instruction flows within a process. However,
‘‘Linux has a unique implementation of threads’’ [21]:
threads and processes are executed in an equivalent man-
ner by the operating system kernel, so a multi-threaded
software application appears in a task view as multiple
related processes, and thread count has been extracted
based on the system command syntax according to the
manual pages 22]. Thus, all active threads have been
recorded.

5- CPU temperature: the CPU temperature (in celsius)
of the processor is an important factor affecting the
performance of the system. If the temperature rises
without a justifiable reason, that might be an indica-
tor of unexpected activity. ‘‘Thermal throttling’’ of the
BCM2711 has been taken into consideration based on
documentation from the official website of the Rasp-
berry Pi Foundation [23].

6- Power consumption: the power consumption rate is the
work done per unit of time and is equivalent to the
voltage (V) multiplied by the current, which is measured
in amperes or ‘‘amps’’ (A). Therefore, the measurements
of voltage and current have been monitored.

7- Received (RX) and Transmitted (TX) packets rate: the
data traffic whether received or transmitted are mean-
ingful and an important indicator of the system’s con-
nection stability, and proves that the system is immune to
any suspicious activities. The Raspberry Pi is equipped
with 2.4 GHz and 5.0 GHz IEEE 802.11ac Wi-Fi and
2.4 GHz BLE Bluetooth 5.0. Only traffic travelling over
the 802.11 Wi-Fi interface was measured.

2) SYMBOLIC MODEL FOR THE TESTBED
The above-mentioned parameters represent the hard-
ware/software components of the ES that interact instantly
with performed functions of the system. Thus, a dynamic
reflection of the system’s health can be observed by mon-
itoring these parameters’ changes. The CPU works as the
brain of the system and each process running in the CPU will
directly reflect on the memory consumption. The temperature
of the ARM processer and its changes will reflect the load
of the CPU. In addition, to attest to system stability and
reliability, and to ensure that the system performance is accu-
rately measured, the number of alive processes and executed
threads have been included among the testbed’s parameters.
Additionally, energy consumption rate has been included as
a parameter because it is one of the most important resources
of an ES. Its stability or fluctuation is expected to give
a meaningful indication of activity during the experiment.
A parameter model reflecting the Smart PiCar ES state is
therefore represented by a septenary tuple, {U, M, N, ϑ , T,
P, R}, shaping the ranges and patterns of performance and
resource consumption. It is as described as below:

U : CPU utilization, U = {ur , up}, where ur is the range of
the CPU utilization and up is the pattern of CPU utilization.
M : Memory utilization, M = {mr , mp}, where mr is the

range of memory utilization and up is the pattern of memory
utilization.
N : Task count, N = {nr , np}, where nr is the range of

active tasks and np is the execution pattern of tasks.
ϑ : Thread count, ϑ = {ϑr , ϑp}, where ϑr is the range

of executed threads and ϑp is the execution pattern of the
threads.
T : CPU temperature, T = {tr , tp}, where tr is the range of

CPU temperature and tp is the thermal pattern.
P: Power consumption, P = {V ,I }, where V : voltage, V =
{Vr ,V p}, Vr is the range of the voltage, and Vp is its pattern;
I : current, I = {Ir ,Ip}, where Ir is the range of current volt
and Ip is its pattern.
R: Rate of RX and TX packets, R = {RX r , RXp}, where

RXr is the range of received packets and RXp is its pattern.
Similarly, in TX, TXr is the range and TXp the pattern of
transmitted packets.

The following table summarizes these parameters in terms
of associated resource or performance measurement, along
with the symbol used to represent them.

TABLE 1. Parameters of the testbed.

The U, M, T, and P parameters represent resource con-
sumption, while the N, ϑ , and R parameters represent aspects
of system performance. All the values of these parame-
ters in both resource consumption and performance will be

TABLE 2. Statistical analysis criteria.
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analyzed based on seven statistical criteria that define their
ranges and patterns. For the ranges, the minimal (XminV ),
maximal (XmaxV ), and range (XgV ) values will be calcu-
lated to determine the range, where X refers to a parameter.
To determine the pattern, the following values will be cal-
culated: the median (XmidV ), mean (XavgV ), mode (XmodV ),
and standard deviation (XstdV ). Table 2 summarizes these
criteria.

III. HARDWARE AND SOFTWARE OF THE TESTBED
ASmart PiCar (equippedwith a Pi camera) has been designed
for reconnaissance purposes and is used as the testbed of
the validation experiments. A Raspberry Pi 4 Model B
is integrated as a processing unit (the ES) to handle the
computational processes and steer the actions of the PiCar.
The Smart PiCar consists of the following components: ultra-
sonic obstacle avoidance module, robot hardware attached on
tops (HATs) Raspberry Pi module, and a motor driver mod-
ule. The bus PWM driver supports independent output power
and uses four wires to control the back wheels. The sys-
tem was configured with DEBIAN RASPBIAN GNU/Linux
version 10.2, and to complete the programmatic settings of
the Smart PiCar the system was configured according to
the documentation provided by SunFounder Inc. In addition,
the Secure Shell protocol (SSH) and the Pi camera were

FIGURE 1. The testbed: A smart PiCar with its schematic diagram.

enabled. Figure 1 depicts the hardware configuration of the
assembled Smart PiCar testbed.

IV. METHODOLOGY
To prove the effectiveness of the proposed approach, we con-
ducted a series of scientific experiments using the testbed.
This series of experiments was performed on a healthy system
and under attack conditions by exposing the same system to
four different types of cyberattacks to validate the accuracy of
the hypothesis, which states there exist discernable patterns in
system resource consumption.

The methodology of this study consists of three main
phases: (1) initializing the experiment environment, (2) con-
ducting the experiments, and (3) using an analysis method for
validation (Figure 2).

FIGURE 2. The experiment landscape on the testbed.

A. CONFIGURATION OF THE EXPERIMENT ENVIRONMENT
Phase I is to create a suitable testbed environment and its
procedure should be applicable across different platforms.
To extract the values of specific parameters from Raspberry
Pi, specific Linux commands are inserted in compatible
Python syntax. Based on the official Linux and Python ref-
erences [22], [24], Table 1 shows the executed commands
to extract the required parameters’ values and the tool that
has been used to measure the power consumption. A UM25C
USB power meter tester was attached to the Smart PiCar to
take voltage and current measurements and was connected to
a portable power source to supply the Smart PiCar with the
needed energy.

In Phase II, two cases are studied:
Normal case: The Smart PiCar is run repeatedly with-

out any cyberattacks to generate three rounds of data ref-
erence sets (Rs): R1 first round, R2 second round, and
R3 third round. The values of the selected parameters will
be collected and analyzed according to the statistical crite-
ria. Based on the values analysis, a standard model (Std)
will be generated, where the range is Stdr and pattern
is Stdp.
Attacked case: The Smart PiCar is run repeatedly four

times but this time under different types of cyberattacks:
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(1) Denial-of-Service (DoS), (2) password attack (Brute-
Force (BF)), (3) Remote Code Execution (RCE), and (4)
Man-in-the-Middle attack (MITM). The landscape of the
experiments is shown in Figure 2.

To ensure the data collection’s accuracy and integrity,
the system was rebooted before each experiment and the
following steps were taken:
- All the physical components and connecting cables were
checked visually.

- The USBmeter tester was activated to monitor the energy
consumption via Bluetooth.

- The electrical power source was connected.
- The Raspberry Pi and Smart PiCar were switched on.
- The IP address of the test device was determined by using
the following command: $ arp -a

- After determining the IP address, the Smart PiCar was
remotely accessed.

- The accuracy of the system time and time zone was
checked in order to ensure an precise time stamp during
the data collection period.

- The recording function for the built-in camera was acti-
vated in the Smart PiCar by executing the following com-
mand: pi@raspberrypi: ∼ $ raspivid -o
video.h264 -t 360000

- The ultrasonic obstacle avoidance module was activated
according to the instructions provided by the manufac-
turer.

- The Python program that had been written for the purpose
of extracting and saving the values of the testbed’s param-
eters was started.

- Finally, the ambient and initial temperatures of the system
were recorded.

After completing all these steps and after the system had com-
pleted an entire cycle of performing its functions, parameter
values representing (336 seconds) of operationwere extracted
and stored as records. These steps have been repeated for
each round. At the end of the video recording period, the sys-
tem stops its recording function automatically. After that,
the following steps were followed to collect and save the
data in preparation for the analysis phase: the log file and
the recorded video were renamed with unique names to avoid
being overwritten by the next run; the produced files for R1,
R2, and R3 were relabeled; and the system was rebooted in
preparation for the next round. The steps were then repeated.

B. EXPERIMENT CONDUCTION AND ANALYSIS METHOD
After completing the data collection of the recurring exper-
iments, the third phase of data analysis was started, aiming
to generate a reliable standard model for measurement and
comparison. This should allow the validity of the first part of
the hypothesis to be tested in terms of the determinability and
definability of the standard range and pattern of regular con-
sumption. Then, moving to the second part of the hypothesis,
the same stepswill be repeated but under different cyberattack
scenarios that are expected to have an anomalous impact. The

FIGURE 3. Data processing stages.

execution of attack scenarios will be explained in the upcom-
ing sections. The third phase consists of six stages, starting
with data generation and ending with approach validation.
Figure 3 summarizes these six stages.

To generate the data, we will operate the Smart PiCar
remotely through the terminal using the SSH protocol. The
targeted parameters were linked to an IoT analytics plat-
form (ThingSpeak) to visualise and analyse the data when
needed as an option. To collect and store the data in a log file,
the following command was included in the Python code:

‘sys.stdout = open(‘‘log.csv’’,’’a+’’)’. Log
entries were written to this file following a comma-separated
values (CSV) file convention within the Python code. During
the data processing stage, the timestamp of each entry was
checked and any corrupted or duplicated data was excluded.

By comparing the values of the selected parameters in
terms of the statistical criteria, the range and pattern of
the system performance and resource consumption, whether
under normal operating conditions or under attack impacts,
could be defined. For the first part of the experiment, if the
results of these criteria show similarity, consistency, iden-
ticality, or conformity in terms of the parameters’ values,
the validity of the first part of the hypothesis will be proven.
A standard model, based on typical operating cases, will be
generated by filling the defined statistical criteria accord-
ing to the septenary tuple model after the analysis stage.
For the second part of the experiment, if the parameters’
values of these criteria under the cyberattack circumstances
diverge, deviate, or differ from standard cases in terms of
the range and patterns, then the mechanism of the approach
will be an efficient security solution as long as this anoma-
lous consumption can be monitored and is detectable and
distinguishable.

V. RESULTS AND ANALYSIS OF NORMAL CASES
A. CPU UTILIZATION
In this section, the acquired results from the testbed were
analyzed and the analytical results of the collected data of
the embedded system’s functions under normal operating
conditions showed great similarity in terms of U , where the
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FIGURE 4. CPU load patterns for R1, R2, and R3.

TABLE 3. CPU utilization under normal operating conditions.

UavgV ranged between 12.39%, 12.68%, and 12.74% for R1,
R2, and R3, respectively. Also, the UmodV was concentrated
between 7.90%, 7.70%, and 7.50%. The range (UgV ) of
the distribution of the values was between 20.20%, 20.50%,
and 22.80%. Table 3 summarizes these criteria values, and
Figure 4 demonstrates the CPU utilization patterns, showing
their great similarity among R1, R2, and R3.

B. MEMORY LOAD
In terms of memory usage, not only were similarities
observed, but an identical memory performance was recorded
in terms of memory mode (MmodV ), where the memory usage
percentage (Mode) was concentrated at 9.50% in R1, R2,
and R3. Likewise, the MmidV value was 9.50 in all cases and
the minimum value was at 9.30% in R1, R2, and R3. The
range values ranged between 1.40 and 1.50, which showed a

FIGURE 5. Memory load for R1, R2, and R3.

FIGURE 6. Memory load for R1, R2, and R3.

TABLE 4. Memory performance under standard operating conditions.

stable pattern in memory load with only a 0.10 difference.
Also, the standard deviation values were close in R1, R2,
and R3. Table 4 summarizes these criteria values, and Fig-
ures 5 and 6 show the transcendent conformity in terms of
memory usage rate each time the system’s functions have
been activated under regular operation conditions.

C. TASKS AND THREADS
In terms of the number of processes and threads, the statistical
criteria results showed a remarkable convergence, as can be
seen in Tables 5 and 6. The average values (NavgV ) of the
three rounds in terms of counting alive tasks were 167.9,
168.8, and 168.1 for R1, R2, and R3, respectively. Also,
the average values of executed threads were 228, 228.9, and
228.3, respectively, for R1, R2, and R3. Also, one of the most
important aspects to determine the pattern is themode (NmodV
and ϑmodV ) value, which has been calculated to determine
the performance pattern for R1, R2, and R3. In terms of
tasks count mode, the NmodV values were identical in all Rs
cases (172 alive tasks). Also in terms of threads, the ϑ values
were identical (232 threads). Likewise, in terms of the NmaxV
for R1, R2, and R3, the values were identical (173 tasks).
In terms of threads number, the range (ϑgV ) between the
highest and lowest value also was identical between R1 and
R3. Therefore, the ability to define the range and pattern
of the typical consumption for the system designed to per-
form specific functions can be seen clearly in these testbed
results.
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TABLE 5. Values of tasks number under standard operating conditions.

TABLE 6. Values of threads number under standard operating conditions.

FIGURE 7. Tasks number for R1, R2, and R3.

FIGURE 8. Threads number for R1, R2, and R3.

Figures 7 and 8 demonstrate a significant similarity in the
pattern of performance in terms of tasks and threads.

D. CPU TEMPERATURE
When dealing with the ARM processor’s temperature, it was
necessary to take into account the ambient temperature
and consider the initial temperature before experimenting.

FIGURE 9. CPU temp (◦C) for R1, R2, and R3.

TABLE 7. CPU temp under standard operating conditions.

By taking into account the ambient and initial temperatures,
we will avoid any misleading of these external factors, espe-
cially when conducting the attacked scenarios. After conduct-
ing the experiment and collecting the data, Table 7 shows the
final results for R1, R2, and R3 in terms of CPU tempera-
ture. Figure 9 depicts the range and pattern of the processor
temperature under normal operating conditions.

Based on Table 7, the CPU temperatures were concentrated
(TmodV ) at 54◦C, 50◦C, and 51◦C for R1, R2, and R3, even
when the initial temperature in R2 was at 38◦C, which is
considered low compared to the other initial temperatures
(R1 and R3), where it tended to rise and stabilize between
51◦C and 54◦C. Regarding the effect of the surrounding
environment’s temperature, the difference between the TmodV
values and the outer temperature (ambient) in all ordinary
cases was very close as the difference reached 31◦C, 29◦C,
and 28◦C for R1, R2, and R3, respectively.

E. POWER CONSUMPTION MEASURING
Among the testbed’s parameters, the rate of power consump-
tion was observed, where Tables 8 and 9 show a remarkable
similarity and significant convergence in the rate ofP in terms
of V and I, with the current (I ) being more important as the
voltage (V ) drops slightly while the current changes rapidly
and the regulator struggles tomaintain the 5V level. As shown
in the voltage table results, the VmodV was 4.99v in R1 and 5v
in R2 and R3, and these values represent the minimum and
maximum recorded volts, which are identical in R1, R2, and
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FIGURE 10. Voltage measurements for R1, R2, and R3.

FIGURE 11. Current measurements for R1, R2, and R3.

TABLE 8. Values of voltage (V) under typical operating conditions.

TABLE 9. Current values (Ampere: A) Under typical operating conditions.

R3. Also, the median (VmidV ) values were almost identical
(4.99) in R1, R2 and R3. In terms of the current, the Ir or
current patterns were noticeably intertwined, as demonstrated
in Figure 11. This pattern formed the normal range of power
consumption in terms of current, ranging between 0.59A at its
lowest level and 0.68A as the maximum value. Also, the IavgV
for R1, R2, and R3 was at' 0.62A, where similarly the ImidV ,
and Istd values were converging. These results describe the
power consumption rate’s stability under normal conditions.
Tables 8 and 9 summarize these results, and Figures 10 and 11
show the power consumption patterns and their ranges.

F. DATA TRAFFIC RATE
The data traffic rate is one of the testbed parameters, and
as long as the ESs are designed to perform specific func-
tions, we assume that the data transmission rate (transfer-
ring and receiving) will be within a determinable range
(RXgV and TXgV ). Therefore, the number of received and
transmitted packets per second were monitored and stored in
the log files. The final results of R1, R2, and R3 in terms
of the received and transmitted packets count are described
in Tables 10 and 11.

TABLE 10. Received packets rate under standard operating conditions.

TABLE 11. Transmitted packets rate under standard operating conditions.

Based on the results of the analysis criteria of received
packets shown in Table 10, it can be concluded that the
RXavgV was between 4.04 and 5 packets. The normal dis-
tribution range (RXgV ) of the received packets rate ranged
between 0 to 27 packets based on R1, R2, and R3. In general,
these results show remarkable similarity, especially if we
consider that the most frequent value (RXmodV ) is 0 in R1,
R2, and R3, indicating that the volume of the received data
is low and subject to the purposes for which the system
was designed. Also, the RXmidV and RXstdV values reflect
significant convergence between R1, R2, and R3 in terms of
received packets volume. Figure 12 shows the similarities in
patterns of the received packets for R1, R2, and R3.

In terms of the transmitted packets, the TXmodV and TXminV
values were identical for R1, R2, and R3, which is 0, as shown
in Table 11. As for the TXavgV , TXmaxV , and TXrV of the
transmitted packets, the values were not 100 % identical,
but they are close enough to shape a determinable range
and pattern for the standard model. Table 11 summarizes
the final results of the statistical criteria. Figure 13 depicts
the similarities in patterns for R1, R2, and R3 in terms of
transmitted packets.

Based on the septenary tuple model of the parameters’
values {U, M, N, ϑ , T, P, R}, and according to the statistical
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FIGURE 12. Received packets rates for R1, R2, and R3.

FIGURE 13. Transmitted packets rates for R1, R2, and R3.

TABLE 12. Values of the generated standard model.

criteria results, we can say that the range and pattern of
the ES’s performance and its resource consumption under
normal operating conditions fall within a definable range and
determinable pattern.

Table 12 shows the values of the standard model in terms
of the Stdr and Stdp of the Smart PiCar implemented based on
the septenary tuple model. Also, the probability of unlisted,
convergent values within the normal range has been calcu-
lated by extending the maximal and minimal marginal by
adding the highest subtracted value between Rs cases in each
parameter for every statistical criterion to the standard range
and pattern. The following table shows the determined range
and pattern values of standard performance and resource
consumption.

Proving the ability to define a standard model for the
ES designed to perform specific functions paves the way
for the software engineer to apply the necessary restrictions

to maintain an optimal resource consumption level for the
prevention of any heterogeneous consumption due to illegal
activities. However, we will not stop at this conclusion alone,
as these results prove the correctness of the first part of the
hypothesis. It must be ensured that cyberattacks are causing
anomalous consumption patterns that can be distinguished
from typical consumption. This approach will be validated
computationally to ensure that the ES with its hardware and
software layers can distinguish between regular consumption
and anomalous consumption. This will be covered later by
testing a random dataset of the collected data by using the
Support Vector Machine (SVM) algorithm.

VI. ATTACKED CASES RESULTS
A. DENIAL-OF-SERVICE ATTACK (DoS)
According to the Department of Homeland Security offi-
cial website [25], the denial-of-service (DoS) cyberattack is
‘‘a denial-of-service condition accomplished by flooding the
targeted host or network with traffic until the target cannot
respond or simply crashes, preventing access for legitimate
users.’’ DoS is the general description of different types of
cyberattacks that tend to breach one of the security goals,
which is availability. Some examples of this type of attack
are distributed denial-of-service (DDoS), application-layer
attacks, advanced persistent DoS, and denial-of-service as a
service. Carrying out one of these types of DoS attacks can be
done by usingmany techniques. Also, repelling these types of
attacks depends on different defence techniques.

During the testbed, the Low Orbit Ion Cannon (LOIC) tool
was implemented to perform a DDoS attack. From Windows
virtual machine, the LOIC was used to flood the targeted
ES (the victim device) with random data using TCP as the
connection protocol, and port 22 was selected as the targeted
port. The LOIC is an open-source tool written by C#. The
victim device (the Smart PiCar) was flooded with arbitrary
messages from another Windows virtual machine by using
the User Datagram Protocol (UDP). After the DDoS attack
was completed, we started collecting the parameter’s values
from the log file, and these results reflect the DDoS attack
impact on system performance. Table 13 summarizes the
final results.

TABLE 13. Parameters values under DoS attack.

Based on the results that are shown in the above table,
the CPU load reached 54.1% as the maximum percentage
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FIGURE 14. CPU load pattern DoS attack vs R1, R2, and R3.

FIGURE 15. CPU range under DoS attack vs R1, R2, and R3.

and the most frequent value is concentrated at 30.90%. The
CPU utilization values were also widely distributed from
6.80 to 54.10%. Thus, it reached 47.30 as the range of values
distribution, reflecting the magnitude of the large fluctuation
in performance and instability in the pattern. In terms of CPU
performance, the following chart reflects the impact of the
DDoS attack on the CPU utilization pattern compared to the
typical performance.

The difference between typical performance and anoma-
lous utilization while the system is exposed to the DoS attack
can be seen clearly based on Figure 14 (time in seconds).
Also, Figure 15 shows the DoS attack’s impact on CPU
resources compared to typical utilization in terms of mini-
mum, average, and maximum values.

In terms of memory usage, the most repeated value was
10.20% (see Table 13) and the maximum value was 11.50%,
while the minimal was 9.70%. The range of propagation or
distribution of the consumption values was between 9.70%
and 11.50%. These values reflect a clear difference compared
to regular consumption in terms of range (Mr ) and pattern
(Mp). Figure 16 shows the impact of a DoS attack on memory
resources.

Tasks and threads are among the parameters whose val-
ues were collected during the testbed. These two parameters

FIGURE 16. Memory load under DoS attack vs R1, R2, and R3.

showed high accuracy in monitoring the performance of the
Smart PiCar, and even minor changes have been reflected in
these parameters. Based on the values in Table 13, the most
common value of alive tasks during the exposure of the ES
to the DoS attack was 171 tasks, but the average value of
alive tasks was 181.6. This was despite the concentration
value or density point, which was 171 tasks per second,
but due to the high fluctuation between the lowest value
166 and the highest value 199, and due to thewide distribution
range of tasks number per second, which reached 30 pro-
cesses as the difference between the lowest and highest value,
an unbalanced and anomalous performance pattern has been
formed and this is attributed to the abnormal activity. Also,
it is worth mentioning that the most common value occurred
and was recorded at the end of the DoS attack. While at
the peak of the DoS attack, the impact caused a significant
number of tasks until it reached 199 processes per second.
Figure 17 demonstrates the anomalous performance of the
Smart PiCar in terms of alive processes as a result of the DoS
attack. Moreover, Figure 18 shows how the number of the
tasks under the DoS attack diverge significantly from the Nr
and Np of Rs and Std cases, which is represented by the blue
area in Figure 18.

Regarding the pattern of executed threads, the results did
not differ from task patterns due to their relationship. The
results showed that the number of executed threads at the
peak of the DoS attack was 259 threads and the most frequent
value was 249 threads. As with the value of the distribution
range, the difference between the highest and lowest value
(33 threads) caused an abnormal and unstable performance
pattern. Thus, this significant difference is considered an
anomalous performance. Figures 19 and 20 show the effect
that the DoS attack has had on the embedded system’s per-
formance in terms of executed threads per second. Based on
Figure 20, the typical performance range can be seen within
the blue area. However, we can see how the DoS attack’s
effect took the number of executed threads to unprecedented
levels, which caused unfamiliar consumption and pattern.
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FIGURE 17. Tasks number under DoS attack vs R1, R2, and R3.

FIGURE 18. Tasks range (XgV) under DoS attack vs R1, R2, and R3.

FIGURE 19. Threads pattern under DoS attack vs R1, R2, and R3.

Thus, the threads’ values have deviated significantly out of
the blue area.

Concerning voltage performance, an apparent deviation
from the normal range is observed as shown in Figure 21.
The reason for this anomalous power consumption is due
to the effect of the DoS attack on the system’s func-
tions, as it was noted that the ultrasonic avoidance mod-
ule was no longer functioning normally, and the connec-
tion with the administrator’s device had become unsta-
ble as a result of the flooded traffic generated by the
attacker.

FIGURE 20. Threads range (XgV) under DoS attack vs R1, R2, and R3.

FIGURE 21. Voltage measurements under DoS attack vs R1, R2, and R3.

Thus, this apparent decrease indicates the presence of an
attack that disrupts the system’s functions and that a sig-
nificant voltage drop caused it. Accordingly, if we exclude
any hardware deficiencies, we can infer the existence of
an attack based on the unfamiliar consumed voltage pattern
compared to the Vp in Rs cases. It was also noticed that
the effect of the DoS attack was not evident in terms of
the flow rate of electricity (current) except during the first
few seconds of the attack, as shown in Figure 22. Thus,
the significant interference in the current rate under con-
ditions of attack or its absence makes this sub-parameter
independently insufficient to predict and detect the attack
because it did not achieve the anomalies and distinguisha-
bility principles. However, supporting this sub- parameter
with other parameters’ impacts will help clarify the anoma-
lous pattern caused by the DoS attack. Figure 23 depicts
the impact of the DoS attack in terms of current power
consumption.

The DoS attack’s impact not only diminished on the direct
parameters of system resources, but it impacted the tempera-
ture of the Smart PiCar processor (ARMv8). The CPU tem-
peratures recorded abnormal values that were not observed
previously under normal operating conditions. The initial
temperature was 55◦C, which is within the normal range, and
the ambient temperature was 24◦C, which was calculated to
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FIGURE 22. Current measurements under DoS attack vs R1, R2, and R3.

FIGURE 23. CPU Temp under DoS attack vs R1, R2, and R3.

avoid any contribution by an external factor. The following
figure shows the effect of the DoS attack on the processor
temperature.

During the attack, the CPU temperature continued to
increase significantly. The difference between the maximum
recorded temperature and the ambient temperature reached
41◦C. Thus, this is an anomalous value of CPU temperature
compared to 31◦C, 29◦C, and 28◦C for R1, R2, and R3.

B. PASSWORD ATTACK (BRUTE-FORCE ATTACK)
According to the Encyclopaedia of Cryptography and Secu-
rity [26], a dictionary attack describes a password-guessing
technique in which the attacker attempts to determine a user’s
name or password by successively trying a compiled list of
likely words, numbers, and symbols. In this test, ’’Brute-
Dum’’ has been used as a brute-forcing tool. Within this tool,
Network Mapper (Nmap) has been used for port scanning.
After selecting a specific port, the SSH port has been selected
for the attack purpose. The Hydra tool has been activated
as a parallelized network logon cracker, supported with a
random text password list. The initial expectation was that
this type of attack would not have a monitorable effect or
an indistinguishable impact. However, the obtained results
after the attack was carried out are promising and auspi-
cious for the effectiveness of the approach we are seeking
to deliver. Table 14 summarizes the final results obtained

TABLE 14. Parameters values under brute-force attack.

FIGURE 24. CPU load pattern under BF attack vs R1, R2, and R3.

after calculating the values of the statistical criteria for the
septenary tuple model.

The results were as follows. In terms of CPU utilization
rate, the maximum usage was 61.20% and the most com-
mon value was 30.50. The minimum level was 6.50%. Thus,
the range of distribution of values is vast, reaching 54.70.
Also, the mean value is 31.16, which is close to the most
repeated value. Figure 24 gives an impression of the effect
that the password attack had on the Smart PiCar processor’s
performance compared to the typical patterns.

Moreover, the standard deviation values of tasks and
threads were significantly higher than the typical values in
R1, R2, and R3. Therefore, this performance pattern of CPU
utilization diverges significantly from the standard range and
pattern.

The memory utilization rate reached its highest limit at
11.30. This value had not been previously recorded under
normal conditions. For the mean and mode values, the results
were 9.78 and 9.60, respectively. Although these values
overlapped within the normal range Stdr of memory usage,
the performance pattern appeared unfamiliar and anomalous
compared to the standard pattern (Stdp), as shown in Fig-
ure 25. Furthermore, adding the anomalous patterns of other
parameter impacts to this parameter will increase the attack
recognition accuracy of detecting the existence of a password
attack. Figure 25 depicts the impact of the password attack on
memory usage.

In terms of the executed number of processes and threads
resulting from the password attack, the highest number of
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FIGURE 25. Memory load pattern under BF attack vs R1, R2, and R3.

FIGURE 26. Tasks pattern under BF attack vs R1, R2, and R3.

tasks reached 213 alive processes and the lowest number was
163 processes. Thereby, the attack distributed the number
of the tasks into a large scale and caused an oscillating
pattern. Likewise, the mode value was 180 and the mean was
189.1, which sharply deviated from the standard patterns and
formed an anomalous pattern that was distinguishable. Fig-
ure 26 illustrates the executed task pattern under the password
attack.

Regarding the pattern of executed threads, the similarity
with the pattern of executed processes is clear, as shown
in Figures 26 and 27. This similarity is due to their asso-
ciation with each other. Therefore, the tasks and threads
patterns are heading in the same direction of anomalies, and
these two parameters deviated from the standard pattern.
Figure 27 shows how the threads pattern under the password
attack differed from the normal range.

In terms of power consumption under the password attack,
Figures 28 and 29 depict the password attack effect on the
power consumption rate in terms of voltage or current. This
pattern differs from the regular pattern and is similar to
the impact pattern of the DDoS attack, especially in terms
of voltage, which appeared decreased compared to typical
patterns in R1, R2, and R3. Thus, the rate of anomalous
consumption of power is a significant indicator that deserves
attention. However, the decrease in voltage is not due to the
cyberattack’s direct impact, but instead to the attack’s indirect
effect on the system’s functions. Thereby, this deficiency
in the system’s functions has been reflected in the voltage

FIGURE 27. Threads pattern under password attack vs R1, R2, and R3.

FIGURE 28. Voltage pattern under BF attack vs R1, R2, and R3.

FIGURE 29. Current pattern under BF attack vs R1, R2, and R3.

and current patterns, indicating the existence of suspicious
activities.

Regarding the effect of the password attack on CPU tem-
perature, an increase in CPU temperature was observed. The
CPU temperature under the attack differed from the typical
patterns (Tp) in R1, R2, and R3. Thus, this abnormal pattern
in temperature proved the existence of illegal activity that
caused an increase in computing operations, which thus pro-
duced an increase in CPU temperature. Therefore, defining
the pattern and range of CPU temperature under normal
operating conditions, taking into account the ambient temper-
ature (25◦C, in this scenario) and initial temperature (51◦C,
in this scenario) of the system, andmonitoring any anomalous
temperatures (63◦C, as was recorded due to the attack impact)
will contribute to predicting the presence of cyberattacks on
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FIGURE 30. CPU temp under BF attack vs R1, R2, and R3.

the system. Figure 30 depicts the CPU temperature pattern
under the password attack.

C. REMOTE CODE EXECUTION ATTACK (RCE)
The third attack scenario that was executed is the remote code
execution attack (RCE). The RCE is an attacker’s ability to
gain unauthorized access to a remote device and executemali-
cious software. In other words, the attacker will run a local
code to be executed remotely in the victim’s device [27]. The
following command was executed to generate this attack sce-
nario: ‘sudo ssh pi@192.168.8.117 python -u
- < cameraRemotly.py’. As shown in this command’s
syntax, it consists of malicious software (cameraRemotly.py),
written in Python language to intentionally cause damage to
the Smart PiCar through its targeted IP address and disrupt
one of its functions by disabling its Pi camera remotely.
Table 15 shows the final results of the statistical criteria of
the testbed’s parameters under the RCE attack.

The most common value was 6.20% in terms of CPU
utilization, whereas the typical utilization’s mode values were
between 7.5% and 7.9%. Themean value was 12.33% and the
minimum and maximum values were 4.9 and 37.1, respec-
tively, which created a wide distribution range and fluctuating
performance, especially in the first few seconds of the RCE
attack. Despite interference with the typical performance,
a different CPU utilization pattern had been shaped due to
the RCE attack. For example, the UmodV values of CPU
utilization in R1, R2, and R3 was between 7.5% and 7.9%,
while under RCE attack the mode value was 6.20%. Fig-
ure 31 illustrates the impact of the RCE attack on CPU
utilization compared to the typical patterns.

TABLE 15. Parameters values under remote code execution attack.

FIGURE 31. CPU load pattern under RCE attack vs R1, R2, and R3.

FIGURE 32. Memory load pattern under RCE attack vs R1, R2, and R3.

As for memory usage percentage, the results that we
obtained for this parameter are essential. Note that the range
value is 0 and the lowest, highest, most frequent, and average
values are identical (9.9%). This indicates the absence of
any change in memory usage, which demands attention. The
absence of change in memory usage indicates the absence
of changeable activities, which indicates the presence of a
defect resulting from a failure in one of the system functions.
This failure can be inferred as an indicator of the presence
of illegitimate activity, especially if we exclude any known
manufacturer’s defect. Disrupting the Pi camera function
due to the RCE attack was evidently reflected in the values
of this parameter. The irregular pattern of memory usage
under the RCE attack and its impact on the memory usage
rate compared to the typical patterns (Mp) are demonstrated
in Figure 32.

In terms of the number of executed processes under the
RCE attack conditions, the most frequent value was 169 and
the average was 167.45. The distribution range (XgV ) val-
ues reached 11 tasks as the difference between the lowest
value (162) and the highest value (173). Figure 33 shows the
anomalous pattern of this parameter compared to the typical
performance.

Regarding the number of executed threads, the formed
pattern resulting from the RCE attack is shown in Figure 34.
This parameter’s pattern was unfamiliar and deviates entirely
outside the normal range, as at the beginning of the attack
period the minimum value was 215 threads, the maximum
value was 226 threads, and the most frequent value (mode)
was 221 threads. The following chart shows how the threads
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FIGURE 33. Alive tasks pattern under RCE attack vs R1, R2, and R3.

FIGURE 34. Threads pattern under RCE attack vs R1, R2, and R3.

FIGURE 35. Voltage pattern under RCE attack vs R1, R2, and R3.

number under the RCE attack deviates from the typical
patterns.

For the first time, change has appeared in both the voltage
and current in terms of energy consumption. In the voltage,
change has appeared in the form of an increase, while in the
current it appeared in the form of a decrease. This is a crucial
indication of the malfunction of one of the system’s func-
tions, hereby detecting an attack depending on the anomalous
energy consumption rate is an effective method, especially
if this is done in addition to monitoring other parameters.
Figures 35 and 36 show the abnormality of the power con-
sumption and how it differed from the typical patterns.

In this attack scenario, transmitted and received packets
have been monitored. Figures 37 and 38 show the effect
of the RCE attack on the data traffic rate. Based on the
analytical criteria, there was interference in the range but
with a pattern difference. The slight abnormality or anoma-

FIGURE 36. Current pattern under RCE attack vs R1, R2, and R3.

FIGURE 37. Received packets rates under RCE attack vs R1, R2, and R3.

FIGURE 38. Transmitted packets rates under RCE attack vs R1, R2, and R3.

lous pattern in transmitted and received packets will support
the distinguishability between typical and anomalous traffic,
especially if the other parameters’ impacts have been consid-
ered. In this attack case, the impact might not be noticeable
enough in this parameter as it will be in the next scenario. Fur-
thermore, this kind of parameter might help in determining
the type of attack as a network attack. For example, in a packet
drop attack or blackhole attack [28], anomalous change in
the expected predetermined packets volume can lead to the
detection of this kind of attack based on this parameter.

Concerning CPU temperature under the conditions of this
type of attack and after considering the initial (59◦C) and
ambient (25◦C) temperatures, it is noticeable that disabling
one of the embedded system’s functions due to the attack was
reflected by the CPU temperature. This reflection has compli-
cated the possibility of predicting the existence of a cyberat-
tack based on this parameter alone. Therefore, the decrease
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in computing operations caused a decrease in CPU load,
allowed the CPU temperature to decrease. It is worth noting
that this decrease placed the temperature within the range
of familiar patterns (Tp). Thus, it is impossible to rely on
this parameter to infer the anomalous pattern that indicates
a cyberattack’s existence. However, this observation is based
on a relatively short period. Thus, a long operational period
might show a different pattern of CPU temperature if the
attack is held for a while, causing a significantly noticeable
decrease due to function failure. The following figure depicts
the impact of the RCE attack on CPU temperature.

D. MAN-IN-THE-MIDDLE ATTACK (MITM) REMOTE
COMMAND EXECUTION
In this attack scenario, the attacker not only disabled the
recording function of the equipped Pi camera, but also
redirected the camera broadcast to their device by exe-
cuting a remote command, which is known as a remote
command execution attack. This attack type differs from
the remote code execution attack, which had been exe-
cuted in the previous scenario. By executing the follow-
ing command in terminal: ’raspivid -o - -t 0 -w
960 -h 540 | cvlc -vvvstream:///dev/stdin
–sout ’#rtp{sdp = rtsp://:8554/}’:demux =
h264’, the adversarial will gain unauthorized streamed
video. Furthermore, the passive repetition of this illegitimate
activity, without harming the system (only eavesdropping),
will make the attack an advanced persistent threat (APT).
During the attack period, the testbed’s parameters were mon-
itored and the final results of the analysis criteria are shown
in Table 16.

TABLE 16. Parameters values under MITM attack.

In terms of CPU utilization, the most common value under
these conditions was 7.40%, while the mean value is 15.87%.
The lowest value was 5.30% and the highest value was
38.90%. The general pattern of CPU utilization was fluc-
tuating and anomalous in comparison to the Stdp pattern.
Figure 40 gives a clear vision of the CPU utilization pattern
under this attack, and it shows how the CPU performance pat-
tern of the attacked scenario differs from the typical patterns
(Up) in R1, R2, and R3.

In terms of memory usage, a steady and high pattern of
memory usage has been observed, and this steadiness is

FIGURE 39. CPU temp under RCE attack vs R1, R2, and R3.

FIGURE 40. CPU load pattern under MITM attack vs R1, R2, and R3.

FIGURE 41. Memory load pattern under MITM attack vs R1, R2, and R3.

abnormal in this case. Also, the standard deviation value was
0.01 compared to 0.2 in Rs cases. The mode and mean values
were stable at 10.50%. This performance pattern’s steadiness
appeared utterly different from the typical patterns (Mp ) in
Rs cases due to the MITM attack. Figure 41 illustrates the
memory performance patterns under the attack and typical
operational circumstances.

In terms of the number of tasks executed per second, Fig-
ure 42 shows the pattern of the executed tasks/s, which ranged
from 167 to 177 tasks/s, with173 the most common value
(mode). Although there was interference within the typical
ranges (Np), the anomalies in the executed tasks pattern under
the MITM attack were sufficient to characterize the tasks
pattern as an anomalous performance pattern, thus shaping
an abnormal pattern with the system performance indicating
the presence of an attack. Therefore, this situation facilitates
the ability to detect the attack based on the attack’s impact on
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FIGURE 42. Tasks pattern under MITM attack vs R1, R2, and R3.

FIGURE 43. Threads pattern under MITM attack vs R1, R2, and R3.

system performance. The following figure depicts the pattern
of this parameter under the MITM attack.

Although there was interference within the Stdr , the abnor-
mality in this pattern was sufficient to characterize the per-
formance as an anomaly performance due to the presence of
the MITM attack. Hence, this situation facilitates the ability
of detection when making a comparison to the supposed
performance.

Regarding the number of executed threads, the pattern
formed from the attack is shown in Figure 43. It was unfa-
miliar and deviated entirely outside the normal range (ϑr )
as its minimum value was 235 threads, which is higher
than the maximum value in the normal operation conditions
(234 threads). The mode value was 221 threads and the
maximum number of executed threads was 245. Overall,
this parameter’s pattern is categorized within the anomaly
patterns compared to R1, R2, and R3, as illustrated in the
following figure.

Regarding the change in power consumption under the
MITM attack conditions, it was noted that the change was
more pronounced in the pattern rather than range. The con-
sumption rate of V and I during the attack was intertwined
with the normal Pp but differently. At the end of the period,
there was a sharp fluctuation due to the MITM attack’s
impact. In terms of voltage mode, minimum and maximum
values were 5V, 4.98V, and 5V, respectively. In terms of
the current rate, the mode was 0.61A and the minimum and
maximum values were 0.53A and 0.69A, sequentially. Fig-
ures 44 and 45 demonstrate the impact of the MITM attack
on this parameter P(V and I ).

FIGURE 44. Voltage pattern under MITM attack vs R1, R2, and R3.

FIGURE 45. Current pattern under MITM attack vs R1, R2, and R3.

FIGURE 46. Received packets rates under MITM attack vs R1, R2, and R3.

In terms of the data traffic rate under the circumstances of
the MITM attack can be observed through Figures 46 and 47
that the patterns have changed dramatically, which confirms
the presence of illegitimate activity. Also, the analysis cri-
teria (mean, mode, median, std.d, range, min, and max)
for TX/RX packets showed a significant difference and the
results deviated significantly outside the normal standard
range (Stdr ), as well as in the pattern (Stdp), especially in
terms of transmitted packets number. The mean value of
the transmitted packets under the conditions of this type of
attack was 284.29 packets, while the TXavgV in Rs cases was
between 4 to 5 packets/s, which is considered an enormous
amount of data compared to the typical transmission rates
(TXr and TXp) in Rs cases, proving undoubtedly the existence
of unauthorized activities.

VOLUME 9, 2021 103221



A. Aloseel et al.: Novel Approach for Detecting Cyberattacks in ESs Based on Anomalous Patterns

FIGURE 47. Transmitted packets under MITM attack vs R1, R2, and R3.

FIGURE 48. CPU temp under MITM attack vs R1, R2, and R3.

Regarding the CPU temperature pattern under the
attacker’s influence (as the attacker redirects the camera back
to his device), the temperatures were close to the typical
ranges but relatively anomalous in the pattern. The most
common temperature was 55◦C, the maximum was 60◦C,
the minimum was 54◦C, and the average value was 56.15◦C.
In the first and last seconds of the attack, the CPU temperature
increased for a short period, forming a different pattern from
the usual pattern. Altogether, adding this parameter pattern
to other parameters’ impacts will enable the detection of
the cyberattack’s presence. Figure 48 summarizes the CPU
temperature pattern in this attack scenario compared to other
typical patterns. The initial temperature was 55◦C and the
ambient temperature was 25◦C.

VII. ANALYSIS AND DISCUSSION
A. CPU UTILIZATION PARAMETER
Based on the results shown in the CPU utilization parameter
(Table 17), it is clear to us that the CPU utilization rates
under normal operational conditions (R1, R2, and R3) are
very similar, whether in terms of ranges or patterns.

The typical range of CPU utilization extends from 4.6%
as the lowest value among Rs cases to 28.50% as the highest
value, and the typical pattern of CPU utilization (mode value)
was concentrated at 7.90%, 7.70%, and 7.50% for R1, R2, and
R3, respectively. Based on the significant similarity of these
results in terms of range and pattern, we defined the standard
pattern (Stdp) and range (Stdr ) of CPU utilization. Thereby,

TABLE 17. Overall CPU performance for all cases.

FIGURE 49. Overall CPU ranges for attacked cases vs standard cases.

the validity of the first part of the hypothesis in terms of this
parameter has been proven.

In contrast, the CPU utilization under all cyberattack con-
ditions without exception had shown anomalous patterns.
Consequently, based on the mathematical results of the
collected and analyzed data, it is possible to distinguish the
regular consumption from anomalous consumption in terms
of range and pattern. Therefore, as long as we were able to
define a standard utilization of the CPU based on the embed-
ded system’s functions, the cyberattacks had a distinguishable
anomalous impact on the CPU performance. Thus, it has been
proven to us that cyberattacks can be detected based on this
technique. When looking closely at the values in Table 17,
we notice that the mean values in all cyberattack cases are
sufficiently different except for the RCE attack, which is
somewhat close to the average of R1, R2, and R3. However,
it differed in its range, pattern, lowest values, and highest
values, which created a discernible anomalous pattern that
enabled its distinction, especially if we consider the other
parameters’ anomalous patterns impacts. In Figure 49, we see
that the most deviated impacts of an attack from the normal
range and pattern in terms of CPU utilization compared to
typical performance were the password attack (brute-force
attack), followed by the denial-of-service attack, man-in-the-
middle attack, and finally the remote code execution attack.
Table 17 and Figure 49 show the effect that cyberattacks have
had on the performance of the CPU (represented in the red
area). The abnormality of CPU utilization under the attack
scenarios shows how these scenarios’ CPU patterns deviated
outside the normal range (represented in the blue area).
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B. MEMORY USAGE PARAMETER
Table 18 summarizes the final results that we obtained, and
it clearly demonstrates that memory consumption in optimal
operating conditions was not only similar but identical in
terms of the most common value (9.50%), and the average
is almost 9.5% in R1, R2, and R3.

TABLE 18. Overall memory performance for all cases.

The lowest recorded value in R1, R2, and R3 was 9.30%.
The highest values were 10.7%, 10.8%, and 10.7% for R1,
R2, and R3, respectively. Thus, the possibility to define a
standard pattern and range of the typical memory consump-
tion due to its similarity pattern, which has reached a congru-
ence level, has been proven.

Conversely, after analyzing the pattern of memory con-
sumption in the context of cyberattack cases, we notice
that the general characteristic of the consumption pattern is
anomalous compared to the standard patterns in R1, R2, and
R3. Furthermore, defining the regular optimal pattern implic-
itly necessitates that any other patterns will be anomalous.

Also, it is worth mentioning here that the impact of the
cyberattacks does not necessitate the appearance of an abnor-
mal increase, but rather, it may appear in the form of a
decrease that calls attention and indicates the existence of
function failure, such as that which occurred in the RCE
attack scenario. In addition, the values distribution ranges
in RCE and MITM attacks were 0 and 0.1, respectively,
indicating the absence of alive activities and processes. Thus,
it can be concluded that there was a malfunction in the system
functions, and this is what exactly happened as the attacker
in the RCE scenario disrupted the recording camera. In the
MITM attack, the camera was directed to an attacker’s device
to monitor streaming broadcasts instead of the recording
function that was supposed to take place if it had not been
hacked. Figure 50 demonstrates how the DoS and password
attacks differ from the normal patterns of R1, R2, and R3.
Also, how the RCE and MITM attacks shape an anomalous
pattern in terms of memory usage compared to the normal
performance can be seen.

In general, based on Table 18 and Figure 50, it becomes
apparent that the memory parameter (M ) fulfills the require-
ments to be a parameter that effectively detects cyberattacks
in terms of anomalies and deviations from the normal range.
Departing from the standard range requires an anomaly in
the range of consumption. However, if consumption does not
deviate from the defined standard range (Stdr ), the anomalies
in the patterns will be the vital factor in determining the
feasibility of the parameter to be used to detect cyberattacks,

FIGURE 50. Overall memory ranges for attacked cases vs standard cases.

and this is what happened in the RCE and MITM attacked
cases.

Also, it is worth noting that the more coherent the typical
consumption value is, the more precise a pattern is formed,
from which the anomalous patterns are easily distinguished
and vice versa. The more widespread the consumption values
are, the more the pattern of attacks needs to be clearly anoma-
lous to distinguish it. Therefore, when the mode values of Rs
cases were identical precisely at 9.5%, any minor deviation
would be enough to distinguish the anomalous pattern.

C. TASKS AND THREADS PARAMETERS
The numbers of alive tasks and threads are among the param-
eters of the testbed. Based on the analysis results in terms
of executed tasks number, it has been precisely proven that
the range and pattern of the regular performance of a Smart
PiCar can be determined based on the collected values during
repeated runs of the system’s functions. As shown in Table 19,
the normal ranges range between 173 tasks as the maximal
value and 159 tasks as the minimal value. Also, the mean
value (StdavgV ) is 168.2 tasks as the average of R1, R2, and
R3. In addition, the median values (TmidV ) were between
congruence and similarity. Moreover, the standard deviation
values were closely converging compared to the attacked
cases. The following table summarizes these results.

TABLE 19. Overall tasks number for all cases.

In terms of pattern, the most frequent value or the density
value was identical in R1, R2, and R3, which is 172 processes.
This significant similarity in general and identicality, in par-
ticular in terms of the most common values and maximum
values, demonstrate to us the possibility of defining the nor-
mal range and pattern of tasks count that is supposed to be
executed while the system performs its function under nor-
mal conditions. However, the tasks number values under the
circumstances of cyberattacks with their anomalous patterns
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FIGURE 51. Overall tasks ranges for attacked cases vs standard cases.

proves to us the effectiveness of this approach in detecting
cyberattacks. Figure 51 illustrates the significant convergence
in the pattern of tasks number in R1, R2, and R3 compared to
attacked cases.

In the DoS attack scenario, the number of executed
tasks reached 199 tasks. However, in the dictionary attack
case, the number of executed tasks reached 213, which is
an unprecedented value that caused an abnormality in the
performance pattern compared to Stdp and significantly devi-
ated from the standard range (Stdr ), as was also the case with
the DoS attack.

In the RCE attack case, it has been noticed that the
number of executed tasks did not significantly deviate out
of the normal range, but the pattern was odd compared
to the normal pattern in R1, R2, and R3. The most fre-
quently occurring value was 169 tasks, the average was
167.4 tasks, and these two values differ from the normal
pattern (Section V, Table 12). Thus, the pattern has become
anomalous in comparison to the normal pattern. Furthermore,
taking into account the impacts of other parameters will clar-
ify the distinguishability in this situation. The same applies
to the MITM attack, where the highest value was slightly
outside the normal range but the anomaly in terms of mean,
minimum and maximum values supported the possibility of
detecting the cyberattack.

In general, the results of the analysis criteria proved the
accuracy of the defined standardmodel in terms of tasks num-
ber under normal operating conditions. Also, the obtained
results under the circumstances of various cyberattack sce-
narios proved the ability to detect the attacks due to their
abnormalities and deviations from the typical performance.

Regarding the number of threads, the general trait is similar
to the tasks number parameter because it is linked to it.

As shown in Figure 52, the normal range is demonstrated
within the blue area, starting from 219 threads to 234 threads
as the maximum value (see Table 20). Also, the normal
pattern concentrated identically in 232 threads for R1, R2,
and R3, shaping the Stdp in terms of ϑr .
Thus, these results have proved the ability to determine the

normal range, which has been used to generate the Stdmodel
and pattern for the threads number. In contrast, the attacked
cases deviated from the normal range, and with its most
common value (mode) at 249, 240, 221, and 241 for DoS,

FIGURE 52. Overall threads ranges for attacked cases vs standard cases.

TABLE 20. Overall threads number for all cases.

BF, RCE, and MITM, respectively. The anomalous behaviors
have been monitored in comparison to the normal pattern,
with the anomalous values appearing along the red zone,
having more than 234 threads or less than 219 threads as
shown in Figure 52. The following table summarizes the final
results of the analysis criteria under all various conditions.

D. CPU TEMPERATURE
The reliance on CPU temperature to predict the existence of
a cyberattack was effective in some cases and not sufficient
in other cases. However, by looking at the maximal values
shown in Table 21, the impact of cyberattacks that took the
CPU temperatures to unprecedented levels compared to typi-
cal patterns can be observed. In general, attacks that consume
more resources caused an increase in temperatures, while
attacks that disrupted the system’s functions interfered with
the typical CPU temperature patterns. Therefore, the effec-
tiveness of this parameter remains effective when combined
with the effects of other parameters. Figure 53 depicts the
temperature difference in the attacked cases from those in the
conventional cases. Also, the overlap of the lower limits of
the attacked cases’ CPU temperatures with the conventional
cases’ upper limits is presented in this figure.

TABLE 21. Overall CPU temp number for all cases.
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FIGURE 53. Overall temp ranges for attacked cases vs standard cases.

E. THE VOLTAGE AND CURRENT PARAMETER
The values of voltage and current have been monitored dur-
ing the testbed and while the system performs its functions.
In terms of range and pattern, R1, R2, and R3 are very similar
and several values are often identical in terms of range or
pattern as shown in Tables 22 and 23. For example, the stan-
dard deviation values in terms of voltage were identical in
Rs cases. Therefore, defining the normal range and power
consumption pattern is possible due to the identicality and
significant similarity of the consumption.

For the attacked cases, in terms of the voltage parameter,
the DoS attacks, BF, and RCE clearly deviate out of the
normal range (XgV), as shown in Figure 54.

FIGURE 54. Overall voltage patterns for attacked cases vs standard cases.

In the MITM attack case, the power consumption in terms
of voltage differs slightly from the normal range but is clearer
in terms of pattern. Thus, relying on this parameter separately
to detect an attack is not enough. However, in this situation the
impacts of other parameters will support the determination of
a cyberattack’s existence. The following table summarizes the
results of power consumption in terms of voltage for all cases.

In terms of the current-voltage sub-parameter, the general
trait is the overlap and similarities in the range or pattern
except in the RCE attack case. In the RCE scenario, the rate
of power consumption significantly differed from the normal
range and shaped an anomalous pattern due to the failure of its
function because of the RCE attack. Figure 55 demonstrates
the P rate in terms of Ir and Ip in all cases as summarized in
the following table.

TABLE 22. Overall voltage consumption for all cases.

FIGURE 55. Overall current patterns for attacked cases vs standard cases.

TABLE 23. Overall current consumption for all cases.

F. RECEIVED AND TRANSMITTED PACKETS PARAMETERS
The average of transmitted and received packets has been
monitored during the RCE and MITM attacks as one of the
testbed parameters. Based on the results in Table 24 and Fig-
ure 56, it is possible to define the normal range and patterns
of the typical rate of received packets as we did in Section V
because of the huge convergence in terms of packets count
and due to its similarity in the performance pattern, which
was sufficient to generate the Std. The range and pattern of
R2 and R3 are almost identical in many aspects and very
close to R1’s range and pattern. Based on the that, the RXr
ranges from 0 to 27 packets, with 0 the most frequent value
and 4.36 to 4.997 the average of received packets.

In the attacked cases, for the RCE attack case there is no
significant difference in terms of received packets. However,
in the MITM attack case, the rate of received packets per sec-
ond has differed from the normal range. Thus, this sort of
parameter might help in detecting specific kinds of attacks
such as a network-based attack, where the attacks continu-
ously receive data from the victim’s device. The following
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TABLE 24. Overall received packets for all cases.

FIGURE 56. Overall received packets rates patterns for MITM attack vs
standard cases.

FIGURE 57. Overall transmitted packets rates patterns for RCE attack vs
standard cases.

FIGURE 58. Overall transmitted packets rates patterns for MITM attack vs
standard cases.

figure shows the impact of RCE attacks and MITM on the
volume of received packets/s.

In terms of transmitted packets, the R1, R2, and R3 showed
a sufficient convergence to determine the normal range and
pattern. The normal range of the transmitted packets rate
extended from 0 to 29 packets per second and the most
common value was 0. Also, the average was between 4 to 5
packets per second. In the attacked cases, the general trait
was similar to the received packets rate parameter. As shown
in Figures 57 and 58, the RCE attack (yellow line) does

TABLE 25. Overall transmitted packets for all cases.

not differ significantly from the normal range as the MITM
attack shown in Figure 58, where even the pattern was some-
how similar to R1, R2, and R3. Thus, the impacts of other
parameters must be added in order to facilitate the separation
ability in this case. In contrast, the TX parameter in theMITM
case deviated significantly from the normal range, causing an
anomalous pattern as shown in Figure 58. Therefore, having
this parameter within the septenary tuple model will help
detect specific kinds of attacks. The following table summa-
rizes the final analytics results of the transmitted packets/s.

The work in this paper is mainly concentrated on the
feasibility of detecting anomaly patterns using the proposed
approach, which is illustrated from the presented results, but
detection latency is also a critical factor in demonstrating
its effectiveness. In our suggested approach, the detection
latency is closely related to the determination of the anomaly
threshold, and the anomaly threshold depends on the for-
mation of the abnormal pattern in performance. Therefore,
according to our proposed approach, which is based on mon-
itoring the values of specific parameters representing the
system performance and resource consumption in real-time,
the time taken to detect the attack is the total time of: mon-
itoring, analyzing and anomalous pattern formation. Thus,
another vital factor related to the detection latency, and which
plays an important role, is the time taken for the abnormal
pattern to form and for its effect on system performance and
resource consumption to appear.

In other words, there is no problem in detecting the attack;
as soon as there is an anomalous pattern, the attack will be
detected, but how long does it take for the abnormal pattern to
form?. To find out, the time-series of two attacked scenarios
have been revised: DoS and password attack, and relevant
insights have been presented. Based on the results shown
in Table 26, and Table 27, the DoS attack was executed
at 00:26:25, and the anomalous pattern started to form at
00:26:26.

Also, at 00:16:16s, the password attack was executed,
and at 00:16:18s, the anomalous pattern began to appear
(Appendix I: snapshots of real-time observation). There-
fore, detecting attacks based on this approach is an efficient
method. However, the formation of the anomalous pattern is
also related to other factors that might have an influence, i.e.,
the type of attack, the architecture of the operating system,
and the computing capabilities of the ES.

Although all executed attack scenarios caused anomalous
performance patterns, this approach is active in terms of
detecting the attack existence and not proactive in terms
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TABLE 26. Timestamps during DoS attack.

TABLE 27. Timestamps during password attack.

of preventing the attack occurrence. Thus, it is better not
to rely on the anomaly detection technique independently
but also to initially preserve the predefined standard perfor-
mance by applying the necessary restrictions on resource con-
sumption. Usually, cyberattacks need an entry point, thereby
living on system resources to pass on their harmful instruc-
tions, and this will be reflected negatively on the system
performance. Therefore, the cyberattacks will be efficiently
detected if a reference pattern has been defined. Accordingly,
it is expected that other untested types of attacks will cause
irregular performance patterns. It will be possible to detect
them based on this approach, especially since the septe-
nary tuple model, which represents the core of the detection
mechanism, includes seven parameters considering the ES’s
architecture. Thus, this detection mechanism is capable of
monitoring the most important changes in system resources
comprehensively. However, it is beneficial to examine more
attack types to find out if there is an attack that does not have

a noticeable impact on the system’s performance; as this will
not be detected according to this technique.

Returning to the starting point from which we started (the
hypothesis of the study) and based on our final results, we can
confirm the validity of the hypothesis where cyberattacks
against embedded systems can be detected according to our
proposed approach. By delivering this approach, we have
paved the way for software engineers to augment OS robust-
ness by adding a protective layer to prevent cyberattacks
based on a new perspective, which is the statistical analysis
of the septenary tuple model.

VIII. CONCLUSION AND FUTURE WORK
Embedded systems differ from typical computer systems
given that they are designed to perform specific functions.
In this context, we proposed a new security approach for
detecting cyberattacks based on the recognition of anomalous
resource consumption and performance patterns of an embed-
ded system. In particular, a septenary tuple of a parameter
model, consisting of CPU utilization, memory load, tasks,
threads, data traffic rate, temperature, and power consump-
tion, is presented as the detection mechanism. The data
has been collected through the repetitive operation of a test
model, i.e., Smart PiCar, where the collected data has been
analyzed in terms of seven statistical criteria, i.e., mean,
median, mode, standard deviation, range, minimum, and
maximum. The final result illustrated there exists a pattern of
resource consumption and performance of embedded systems
that can be defined as a standard pattern due to a distinctive
feature (ESs are dedicated to performing specific functions),
providing a baseline on which the pattern of normal states
of an embedded system can be determined and utilized as a
reference profile to detect anomalous patterns.

In contrast, the anomalous patterns of the Smart PiCar
performance under different cyberattacks (denial-of-service,
password, remote code execution, and man-in-the-middle)
have clearly appeared and been observed. These anomalous
patterns differ from the typical normal pattern.

The experimental results prove the efficacy of the ARCD
approach. Thus, this approach enables software engineers to
improve the OS layer of the ESs. By creating a recognition
mechanism against cyberattacks based on resource consump-
tion and performance patterns, the OS layer of an ES could
secure regular consumption and respond to cyberattacks once
an anomalous pattern occurs. Moreover, for the adoption of
ARCD by practicing software engineers, an additional layer
of protection can be added to the embedded system’s OS.

Furthermore, the raw data enabled us to develop a machine
learning model by using the support vector machine algo-
rithm to determine the prediction accuracy percentage in
terms of separating anomalous patterns from typical patterns,
forming our future task. The outcomes of computational
validation based on machine learning algorithms will be
presented in a forthcoming paper, including an architecture
framework facilitating this approach adoption for software
engineers.

VOLUME 9, 2021 103227



A. Aloseel et al.: Novel Approach for Detecting Cyberattacks in ESs Based on Anomalous Patterns

APPENDIX

REFERENCES

[1] P. Marwedel, Embedded System Design. Cham, Switzerland: Springer,
2018.

[2] P. I. R. Grammatikis, P. G. Sarigiannidis, and I. D.Moscholiosb, ‘‘Securing
the Internet of Things: Challenges, threats and solutions,’’ Internet Things,
vol. 5, pp. 41–70, Mar. 2019, doi: 10.1016/j.iot.2018.11.003.

[3] W. Wang, X. Zhang, Q. Hao, Z. Zhang, B. Xu, H. Dong, T. Xia, and
X. Wang, ‘‘Hardware-enhanced protection for the runtime data security
in embedded systems,’’ Electronics, vol. 8, no. 1, p. 52, Jan. 2019, doi:
10.3390/electronics8010052.

[4] D. Papp, Z. Ma, and L. Buttyan, ‘‘Embedded systems security: Threats,
vulnerabilities, and attack taxonomy,’’ in Proc. 13th Annu. Conf.
Privacy, Secur. Trust (PST), Jul. 2015, pp. 145–152, doi: 10.1109/
PST.2015.7232966.

[5] H. Chai, G. Zhang, J. Zhou, J. Sun, L. Huang, and T. Wang, ‘‘A short
review of security-aware techniques in real-time embedded systems,’’
J. Circuits, Syst. Comput., vol. 28, no. 2, Feb. 2019, Art. no. 1930002, doi:
10.1142/S0218126619300022.

[6] A. R. Sfar, E. Natalizio, Y. Challal, and Z. Chtourou, ‘‘A roadmap for
security challenges in the Internet of Things,’’ Digit. Commun. Netw.,
vol. 4, no. 2, pp. 118–137, 2018, doi: 10.1016/j.dcan.2017.04.003.

[7] H. Habibzadeh, B. H. Nussbaum, F. Anjomshoa, B. Kantarci, and
T. Soyata, ‘‘A survey on cybersecurity, data privacy, and policy issues in
cyber-physical system deployments in smart cities,’’ Sustain. Cities Soc.,
vol. 50, Oct. 2019, Art. no. 101660, doi: 10.1016/j.scs.2019.101660.

[8] A. Humayed, J. Lin, F. Li, and B. Luo, ‘‘Cyber-physical systems security—
A survey,’’ IEEE Internet Things J., vol. 4, no. 6, pp. 1802–1831,
Dec. 2017, doi: 10.1109/JIOT.2017.2703172.

103228 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.iot.2018.11.003
http://dx.doi.org/10.3390/electronics8010052
http://dx.doi.org/10.1109/PST.2015.7232966
http://dx.doi.org/10.1109/PST.2015.7232966
http://dx.doi.org/10.1142/S0218126619300022
http://dx.doi.org/10.1016/j.dcan.2017.04.003
http://dx.doi.org/10.1016/j.scs.2019.101660
http://dx.doi.org/10.1109/JIOT.2017.2703172


A. Aloseel et al.: Novel Approach for Detecting Cyberattacks in ESs Based on Anomalous Patterns

[9] S. Ravi, P. Kocher, R. Lee, G. McGraw, and A. Raghunathan, ‘‘Security as
a new dimension in embedded system design,’’ in Proc. 41st Annu. Conf.
Design Autom. (DAC), 2004, p. 753, doi: 10.1145/996566.996771.

[10] C. Bodei, S. Chessa, and L. Galletta, ‘‘Measuring security in IoT com-
munications,’’ Theor. Comput. Sci., vol. 764, pp. 100–124, Apr. 2019, doi:
10.1016/j.tcs.2018.12.002.

[11] S. Hameed, F. I. Khan, and B. Hameed, ‘‘Understanding security
requirements and challenges in Internet of Things (IoT): A review,’’
J. Comput. Netw. Commun., vol. 2019, pp. 1–14, Jan. 2019, doi:
10.1155/2019/9629381.

[12] S. Ali, T. Al Balushi, Z. Nadir, and O. K. Hussain,Cyber Security for Cyber
Physical Systems, vol. 768. Cham, Switzerland: Springer, 2018, pp. 11–33,
doi: 10.1007/978-3-319-75880-0_2.

[13] A. Aloseel, H. He, C. Shaw, and M. A. Khan, ‘‘Analytical review of
cybersecurity for embedded systems,’’ IEEE Access, vol. 9, pp. 961–982,
2021, doi: 10.1109/ACCESS.2020.3045972.

[14] B. Mukherjee, L. T. Heberlein, and K. N. Levitt, ‘‘Network intru-
sion detection,’’ IEEE Netw., vol. 8, no. 3, pp. 26–41, May 1994, doi:
10.1109/65.283931.

[15] A. Vikram, ‘‘Anomaly detection in network traffic using unsuper-
vised machine learning approach,’’ in Proc. 5th Int. Conf. Com-
mun. Electron. Syst. (ICCES), Jun. 2020, pp. 476–479, doi: 10.1109/
ICCES48766.2020.9137987.

[16] S. Singh and S. Banerjee, ‘‘Machine learning mechanisms for net-
work anomaly detection system: A review,’’ in Proc. Int. Conf. Com-
mun. Signal Process. (ICCSP), Jul. 2020, pp. 0976–0980, doi: 10.1109/
ICCSP48568.2020.9182197.

[17] P. J. Fortier and H. E. Michel, ‘‘Introduction,’’ in Computer Systems
Performance Evaluation and Prediction. Amsterdam, The Netherlands:
Elsevier, 2003, pp. 1–38.

[18] T. W. Edgar and D. O. Manz, ‘‘Instrumentation,’’ in Research Meth-
ods for Cyber Security. Amsterdam, The Netherlands: Elsevier, 2017,
pp. 321–344.

[19] P. J. Fortier and H. E. Michel, ‘‘Hardware testbeds, instrumentation, mea-
surement, data extraction, and analysis,’’ in Computer Systems Perfor-
mance Evaluation and Prediction. Amsterdam, The Netherlands: Elsevier,
2003, pp. 305–330.

[20] Psutil Documentation, Psutil, 2009–2021. Accessed: Apr. 25, 2021.
[Online]. Available: https://psutil.readthedocs.io/en/latest/

[21] R. Love, Linux Kernel Development, 3rd ed. Reading,MA, USA: Addison-
Wesley, 2010, p. 33.

[22] The Linux Man-Pages Project, Hkernel.Org Doc Man-Pages 2021.
Accessed: Apr. 25, 2021. [Online]. Available: https://www.kernel.org/
doc/man-pages/

[23] Frequency Management and Thermal Control, Raspberry Pi Foundation.
Accessed: Apr. 25, 2021. [Online]. Available: https://www.raspberrypi.
org/documentation/hardware/raspberrypi/frequency-management.md

[24] (2021). Python 3.9.4 Documentation,Python.Org, 2021. Accessed:
Apr. 25, 2021. [Online]. Available: https://docs.python.org/3/

[25] (2020). Understanding Denial-of-Service Attacks, Us-Cert.Cisa.Gov,
November 04, 2009. Accessed: Apr. 25, 2021. [Online]. Available:
https://us-cert.cisa.gov/ncas/tips/ST04-015

[26] H. C. A. van Tilborg and S. Jajodia, Eds., Encyclopedia of Cryptography
and Security. Boston, MA, USA: Springer, 2011.

[27] S. Biswas, M. Sohel, M. M. Sajal, T. Afrin, T. Bhuiyan, and M. M. Hassan,
‘‘A study on remote code execution vulnerability in web applications,’’ in
Proc. Int. Conf. Cyber Secur. Comput. Sci., Oct. 2018, pp. 1–8.

[28] E. Fazeldehkordi, O. A. Akanbi, A. Study, and H. Attack, A Study of Black
Hole Attack Solutions. Amsterdam, The Netherlands: Elsevier, 2016.

ABDULMOHSAN ALOSEEL received the B.S.
degree in management information systems (MIS)
from King Faisal University, in 2006, and the
M.S. degree in computer and network security
fromMiddlesexUniversity, London, in 2015. He is
currently pursuing the Ph.D. degree in cyberse-
curity of embedded systems with the School of
Aerospace, Transport andManufacturing (SATM),
Cranfield University.

SABA AL-RUBAYE (Senior Member, IEEE)
received the Ph.D. degree in electrical and elec-
tronic engineering from Brunel University Lon-
don, U.K. She is currently a Senior Lecturer,
a DRATeC Fellow, and leading connected sys-
tem research group with the School of Aerospace,
Transport and Manufacturing, Cranfield Univer-
sity, U.K. She is participating in developing indus-
try standards by being an Active Voting Member
of IEEE P1920.2, standard for Vehicle-to-Vehicle

Communications for Unmanned Aircraft Systems and IEEE P1932.1 stan-
dard of License/Unlicensed Interoperability. She has published many papers
in IEEE journals and conferences and a recipient of the Best Technical Paper
Award twice published in IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,
in 2011 and 2015, respectively. Her main research interests include, but
not limited to UAV connectivity, communication networks, artificial intel-
ligence, and safety and security of autonomous vehicle. She is a Chartered
Engineer (C.Eng.), a member of IET, and a Certified Unmanned Aircraft
System (UAS) Pilot. She has been the general co-chair, the TPC co-chair,
and has held other leading roles for many international conferences. She has
organised and chaired the 6G Network Workshop in IEEEICC2020.

ARGYRIOS ZOLOTAS (Senior Member, IEEE)
received the B.Eng. degree (Hons.) from the Uni-
versity of Leeds, the M.Sc. degree (Hons.) from
the University of Leicester, and the Ph.D. degree
from Loughborough University. He was with the
University of Lincoln, the University of Sussex,
Loughborough University, and Imperial College
London. He was a Visiting Professor with Greno-
ble INP, from May 2018 to June 2018. He is
currently a Reader with Cranfield University. His

research interests include advanced control, systems autonomy, and applied
AI. He is a fellow of HEA.

HONGMEI HE (Senior Member, IEEE) received
the Ph.D. degree in computer science from Lough-
borough University, in 2006. She had rich post-
doctoral experience at different universities, such
as the University of Bristol, from January 2007 to
March 2011, the Ulster University of Ulster, from
April 2011 to December 2011, and the University
of Kent, from January 2012 to October 2013. She
was a Lecturer in AI and cybersecurity with Cran-
field University, from October 2013 to Novem-

ber 2020. Before coming to the U.K., she was a Senior Embedded System
Engineer at the Motorola Design House, Shenzhen, China. She is currently
a Senior Lecturer with the School of Computer Science and Informatics,
De Montfort University. Her current research interests include AI, cover-
ing AI for cognitive cybersecurity, and safety and security of autonomous
systems. She is a Working Group Member of IEEE Technical Ethics
P7000 Standard. She actively serves as the Chapter Secretary for the IEEE
U.K. and Ireland RAS Chapter. She is the Chair of the task force, ‘‘Artificial
Intelligence and Edge Computing for Trustworthy Robots and Autonomous
Systems,’’ at theAdaptiveDynamic Programming andReinforcement Learn-
ing Technic Committee (ADPRLTC) of IEEE Computational Intelligence
Society.

CARL SHAW received the Ph.D. degree in physics
from Queen’s University Belfast, in 1997. He then
worked in U.K. defense before leaving for the pri-
vate sector, where he worked in the semiconductor
industry at STMicroelectronics. Throughout this
period, he worked on the electronic design, sys-
tem architecture, and software of embedded sys-
tems. For the last 16 years, he has been active in
software and hardware security. He is currently
a Co-Founder of Cerberus Security Laboratories

Ltd., a U.K. security consultancy, where he advises global multinationals on
electronic product cybersecurity and works closely with academic institu-
tions researching secure hardware and embedded systems.

VOLUME 9, 2021 103229

http://dx.doi.org/10.1145/996566.996771
http://dx.doi.org/10.1016/j.tcs.2018.12.002
http://dx.doi.org/10.1155/2019/9629381
http://dx.doi.org/10.1007/978-3-319-75880-0_2
http://dx.doi.org/10.1109/ACCESS.2020.3045972
http://dx.doi.org/10.1109/65.283931
http://dx.doi.org/10.1109/ICCES48766.2020.9137987
http://dx.doi.org/10.1109/ICCES48766.2020.9137987
http://dx.doi.org/10.1109/ICCSP48568.2020.9182197
http://dx.doi.org/10.1109/ICCSP48568.2020.9182197

