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ABSTRACT It is difficult for existing deep learning-based satellite on-orbit anomaly detection methods
to define the residual-based detection threshold and identify false anomalies. To solve the above prob-
lems, this paper proposes both a detection threshold determination and dynamic correction method and a
causality-based false anomaly identification and pruning method. We use the GRU (Gated Recurrent Unit)
to model and predict the telemetry parameters to obtain the residual vector; determine and dynamically
correct the threshold according to the prescribed false positive rate; propose an improved multivariate
transfer entropy method to identify the causal relationships between the telemetry parameters; and, based
on the causality, determine whether the detected parameter anomalies are false. Experiments show that the
precision, recall, and F1-score of themethod proposed in this paper are superior to the current typical method,
and the false positive rate is significantly reduced, demonstrating the effectiveness of the proposed method.

INDEX TERMS Dynamic threshold, causality pruning, anomaly detection, GRU, on-orbit satellite.

I. INTRODUCTION
Domestic and foreign aerospace practices show that regard-
less of how strict the measures that are taken in the devel-
opment stage are, on-orbit satellite failures are unavoidable.
On-orbit satellites are affected by their working environment
and their own conditions, and anomalies often occur in var-
ious subsystems or devices. Telemetry data come from the
real-time state of a satellite collected by various sensors,
which is a true reflection of the satellite’s working state. The
processing and analysis of telemetry data are effective means
for monitoring the state of satellites and for carrying out the
long-term management of on-orbit satellites [27].

Anomaly detection (AD) is a vast area of research given its
diverse applications [13], [34]. The fixed threshold method is
currently the most commonly used satellite anomaly detec-
tion method in engineering [37], but due to the large number
of telemetry parameters and the influences of unknown fac-
tors such as the space environment, it is difficult to set an
appropriate threshold for each parameter, and it is difficult
to guarantee the rationality of the detection threshold [38].
Anomaly detection based on expert experience [2], [24], [36]
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can target only known anomalies or faults. Due to the com-
plexity of the satellite system and the changeable operating
environment, unexpected failures often occur, and they are
difficult to detect based on expert experience.

In recent years, with the accumulation of spacecraft tele-
metry data and the continuous development of data mining
technology, data-driven spacecraft anomaly detection meth-
ods have become a research hotspot [14], [17], [26], [35].

Song et al. [31] proposed an improved GNG method
based on incremental learning for online anomaly detection.
Pilastre et al. [28] proposed an anomaly detection method
based on sparse representation and dictionary learning for
discrete data and continuous data. Nachman et al. [23] pro-
posed a new unsupervised density estimation (ANODE) tech-
nique for anomaly detection. Although these methods have
achieved good results in the detection of satellite on-orbit
anomalies, when these methods define the detection thresh-
old, they are all defined based on manual experience. This
sometimes causes the threshold to be unreasonably deter-
mined, causing a large number of misjudgements or missed
judgements.

In addition to the definition of the threshold, the pruning of
false anomalies is another problem to be solved. In anomaly
detection, few references consider anomaly pruning.
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Hundman et al. [15] proposed the use of LSTM and non-
parametric thresholds for spacecraft anomaly detection and
proposed an anomaly pruning method. [32], [37] also used
these methods for anomaly pruning. However, the pruning
methods were judged only from the perspective of the param-
eters themselves and did not consider the correlation between
the telemetry parameters.

In addition, due to the large amount of telemetry data,
an ordinary satellite may generate 85 TB of data per day [15],
and the training of existing data-driven models is very
time-consuming.

To solve the above problems of data-driven methods,
this paper proposes a satellite on-orbit anomaly detection
method based on a dynamic threshold and causality prun-
ing. First, a single-channel GRU model is used to pre-
dict the telemetry parameters, and the residual vector is
obtained. According to the predicted residual, a method
for determining and correcting the threshold according to
the false alarm rate is proposed. In order to reduce false
anomalies, an improved multivariate transfer entropy method
is proposed to identify the causal relationships between
telemetry parameters and prune false anomalies accord-
ing to causality, effectively reducing the false positive
rate. Experiments show that compared with other methods,
themethod proposed in this paper achieves a higher precision,
recall, and F1-score, which verifies the effectiveness of this
method.

The contributions of this paper are as follows:

1) This paper proposes an improved multivariate trans-
fer entropy method to judge the causal relationships
between the telemetry parameters in a satellite sys-
tem. The main improvement to the original model is
reflected in the judgement of causality.

2) This paper proposes a method to dynamically define
the threshold based on the prediction residuals.

3) This paper proposes an anomaly pruning method
based on the causal relationships between telemetry
parameters.

4) Combining the above methods, this paper proposes a
satellite on-orbit anomaly detection method based on a
dynamic threshold and causality pruning.

The structure of the remainder of this paper is as follows.
Section I is the introduction, which describes the status of
satellite on-orbit anomaly detection research and analyses
the problems of satellite on-orbit anomaly detection meth-
ods. Section II introduces the framework of the algorithm
in this paper. Section III proposes an improved multivari-
ate transfer entropy method to identify the causal relation-
ship between telemetry parameters. Section IV introduces
the satellite on-orbit anomaly detection method based on a
dynamic threshold and the causality pruningmethod in detail.
Section V uses actual telemetry data to verify the method
proposed in this paper. Section VI summarizes the method
proposed in this paper and proposes issues that need further
research.

II. SATELLITE ON-ORBIT ANOMALY DETECTION METHOD
BASED ON A DYNAMIC THRESHOLD AND
CAUSALITY PRUNING
The satellite on-orbit anomaly detection method proposed in
this paper is shown in Fig.1. The whole method is divided
into two parts: offline and online. The GRU modelling and
detection threshold determination, causality identification
and causality pruning rules are included in the offline execu-
tion part; the detection threshold correction, online anomaly
detection, and causal pruning components are included in the
online execution part.

FIGURE 1. Satellite on-orbit anomaly detection framework.

This paper uses the GRU to model and predict teleme-
try parameters. The GRU (Gated Recurrent Unit) [5] is a
kind of Recurrent Neural Network (RNN), like LSTM (Long
Short-Term Memory) [12]; the GRU has also been proposed
to solve the problems of long-term memory and gradients in
back propagation. Compared with LSTM, the GRU model is
simpler and has the same predictive ability and higher com-
putational efficiency, which is conducive to building a larger
model [4]. When the algorithm is offline, a single-channel
GRU model is established for each telemetry parameter, and
the established GRU model is used to predict the telemetry
data offline and online. After the residual vector of the offline
prediction is obtained, the initial detection threshold is deter-
mined according to the method of automatically defining
the threshold proposed in this paper. After the residuals of
the online prediction are obtained, the current threshold is
corrected using the method proposed in this paper, and online
anomaly detection is performed according to the corrected
threshold. For states above the threshold, they are initially
marked as abnormal. Then, causality pruning is used to fur-
ther judge them, and the abnormalities after pruning are the
real anomalies.

III. CAUSALITY IDENTIFICATION
A. RELATED WORK
Causality modelling is currently a difficult problem in the
field of data modelling and machine learning. At present,
the most commonly used causality modelling method is
the Granger causality model [9], [16]. However, the classic
Granger causality model is linear and is not suitable for
nonlinearmodels. [3], [8] improved thismethod and proposed
a nonlinear Granger causality model. However, these models
are designed for specific scenarios, and deviations from the
assumptions will lead to false causality.
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Schreiber [29] proposed the transfer entropy method based
on information theory to identify the causality between
parameters. Compared with the Granger causality model,
transfer entropy is applicable to linear or nonlinear systems,
and there is no need to make specific assumptions about the
causality between parameters. In addition, the causality based
on the transfer entropy is not symmetrical and therefore more
reasonable. Since transfer entropy was proposed, it has been
applied to many fields, such as economy [22], biology [33],
and fault propagation [20].

Although many methods for identifying the causality
between parameters based on classic transfer entropy have
been proposed, there are still many problems. First, the exist-
ing methods use a one-to-one approach to determine the
causal relationships between parameters, which is not only
complicated to calculate but also causes redundant causal
relationships. Second, it is assumed that the causal relation-
ship between two parameters, such as α and β, are being
judged. If the transfer entropy of α to β is greater than the
transfer entropy of β to α, then α is the cause of β. This
discrimination method is actually illogical, especially when
the transfer entropy of α to β is not much different from the
transfer entropy of β to α. This discrimination method will
cause false causality.

In order to solve the above problems, this paper
draws inspiration from multivariate transfer entropy theory
proposed by Lizie et al. [21] and proposes an improved
multivariate transfer entropy method to identify the
causal relationships between high-dimensional telemetry
parameters.

B. CAUSALITY IDENTIFICATION BASED ON IMPROVED
MULTIVARIATE TRANSFER ENTROPY
Transfer entropy is a nonparametric method proposed by
Schreiber [29] to measure the directed information flow in
a random process.

Let X = (xn, n = 1, 2, . . . ,N ) and Y = yn, n = 1,
2, . . . ,N be two random processes, X be a Markov process
of order k , and Y be a Markov process of order l, namely:

p (xn+1 | xn, . . . , x1) = p
(
xn+1 | x(k)n

)
(1)

p (yn+1 | yn, . . . , y1) = p
(
yn+1 | y(l)n

)
(2)

x(k)n = (xn, xn−1, . . . , xn−k+1)

y(l)n = (yn, yn−1, . . . , yn−l+1)
The transfer entropy is defined as:

TY→X (k, l)=
∑

p
(
xn+1, x(k)n , y(l)n

)
log

p
(
xn+1 | x

(k)
n , y(l)n

)
p
(
xn+1 | x

(k)
n

)
(3)

TX→Y (k, l)=
∑

p
(
yn+1, x(k)n , y(l)n

)
log

p
(
yn+1 | x

(k)
n , y(l)n

)
p
(
yn+1 | y

(l)
n

)
(4)

Lizie et al. [21] proposed multivariate transfer entropy to
find the causal parameter of each parameter in the system.
Assuming that the parameter set in the system is D, there are
three main steps in multivariate entropy transfer:

1) Initialize the causal parameter set VX of a specific
parameter to an empty set.

2) For each parameter in D\VX , calculate the amount of
information they contribute to X , find the parameter
Z that contributes the most information, and judge
whether it passes the maximum statistical test [25].
If the parameter passes the test, add this parameter to
VX and repeat this step until D\VX is an empty set
or the maximum contribution information [25] fails the
maximum statistical test.

3) PruneVX . That is, use the minimum statistical test [25]
to test and delete redundant variables in VX .

An obvious problem with the above-mentioned multivari-
ate entropy transfer method is the misjudgment of causality.
In multivariate transfer entropy, as long as the information
provided by the variable Z to X is significant (that is, for
∀Z ∈ VX , TZ→X |VX \Z is significant [25]), Z is added to the
set of causal parametersVX . This leads to a problem: if TZ→X
is significant and TX→Z is also significant, then X and Z are
causally related to each other, which is illogical. From the
perspective of information flow, if one parameter is the causal
parameter of another parameter, then the amount of informa-
tion it contributes to this parameter is much greater than the
amount of information that this parameter contributes to it.
This difference in the information contribution is reflected in
the difference in the transfer entropy, and the difference in
the transfer entropy is called the directional transfer entropy
(DTE). In order to judge whether the difference in the DTE is
significant, this paper proposes a mean statistical test method
to judge whether the directional transfer entropy between two
parameters is significant so as to judge whether there is a
causal relationship between the two parameters and the direc-
tion of the causal relationship. The definition of directional
transfer entropy is shown in (5):

TEZ→X = TZ→X − TX→Z (5)

Assuming that test Z is the causal parameter of X , calcu-
late TEZ→X . If TEZ→X is less than zero, then Z is not the
causal parameter of X . If TEZ→X is nonzero, perform a mean
statistical test to judge whether TEZ→X is significant.

Assuming that the initial causal parameter set of param-
eter X that is obtained when using the multivariate transfer
entropy method is C, the steps of the mean statistical test are
as follows:

1) For each variable c ∈ C, For each variable c ∈ C,
represents the candidate set of the dependent
variable; S surrogate time series C ′j,1, . . . ,C

′
j,S are

generated; and the corresponding transfer entropy dif-
ferences TEC ′j,1→X ,T EC ′j,2→X , . . . ,T EC ′j,S→X are cal-
culated. The number of S must be greater than or equal
to 1/αmax, where αmax represents the significance level.
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2) Among all candidate causal variables, calculate the
following for each surrogate time series: TE∗s :=
mean

(
TE1,s,T E2,s, . . . ,T En,s

)
, where n represents

the number of candidate dependent variables, which
is also the number of comparisons. The obtained
TE∗1 ,T E∗2 . . . ,T E∗S represent the distribution of the
mean statistical value.

3) Calculate the p-value of TZ→X as the score greater than
the surrogate mean statistical value of TZ→X .

4) If the p-value is less than αmax, then TZ→X is
significant.

The mean statistical test shows that only when TZ→X is
larger than TX→Z can the variable Z be regarded as the causal
parameter of X in a system.

Combining the original multivariate transfer entropy
method and the mean statistical test, an improved multi-
variate transfer entropy algorithm is proposed. Experiments
show that the improved multivariate transfer entropy method
can effectively identify the true causality between telemetry
parameters.

IV. THRESHOLD DETERMINATION AND CAUSALITY
PRUNING METHOD
A. RELATED WORK
In the existing time series anomaly detection methods, it is
ultimately necessary to define a threshold, that is, to obtain
an anomaly index. If the anomaly index is higher than the
threshold, it is judged as an anomaly. Therefore, the selection
of the threshold is a particularly important step in anomaly
detection. At present, there are three main methods for defin-
ing the detection threshold. One method is to define the
threshold based on experience [6], [10], [19], [28], [31], [39].
This method is the most widely used. In essence, this kind of
method artificially defines a threshold and then calculates the
anomaly score through various methods. Once the anomaly
score exceeds the threshold, it is marked as an anomaly.
The main disadvantage of this method is that the threshold
needs to be artificially defined. The defined threshold is
very subjective and cannot be changed as the data change.
The second method is to assume that the data obey a special
distribution, such as a Gaussian distribution. Once it is found
that the detected data do not follow this distribution, they are
judged as abnormal [1], [7], [18]; however, this method is not
practical. In reality, time series data are high-dimensional,
unstable, and heterogeneous, and it is unrealistic to assume
that the data obey a special distribution. The thirdmethod is to
automatically define the threshold. [30] proposed the SPOT
and DSPOT methods to automatically define the threshold
according to Extreme Value Theory [11], but this method is
difficult to solve, the calculation is unstable, and it is some-
times impossible to obtain a suitable threshold. [15] proposed
a nonparametric method for dynamically defining thresholds,
but this method requires artificially setting the initial thresh-
old range. If the initial threshold is unreasonable, the final
detection threshold will also be unreasonable, causing many
false positives or underreporting.

In order to solve the above problems of threshold defini-
tion, this paper proposes a method to automatically define the
threshold. In this method, only the range of false alarm rates is
required to obtain the appropriate threshold. Compared with
other methods, this method is simple to calculate, there is
no need to have any prior knowledge about the data, and the
threshold can also change as the false alarm rate changes.

B. THRESHOLD DETERMINATION AND CORRECTION
BASED ON THE FALSE ALARM RATE
The detection threshold is automatically defined according
to the residual vector e predicted by the GRU. This method
is simple to calculate, the threshold can be obtained by only
giving the false alarm rate, and the threshold can be modified
according to the detection situation. The steps of the method
of automatically defining the threshold based on the false
alarm rate are as follows:

1) Assume that the acceptable false alarm rate range is
P1 ∼ P2. That is, within each sliding window T ,
the false alarm rate is required to be between P1 ∼ P2.
Using the obtained residual vector e, (6) is calculated.

P1 ≤ P(e < ε) ≤ P2 (6)

From this, the value range of the final threshold ε can
be obtained as ε ∈ [ε1, ε2].

2) After obtaining the threshold value range, select a
threshold value that minimizes (7) from this range as
the final threshold value.

ε = argmin(ε) =

∑n
i=1 (ean − ε)

ean
(7)

ean = {e ∈ e | e > ε}, where n is the number of
anomalous points.

The implementation steps of this method are shown in
Algorithm 1.

Experiments show that in addition to quickly determining
the detection threshold, this method can also correct the
threshold in real time based on the detected alarm rate. The
threshold correction strategy is as follows.

When performing anomaly detection, within the time win-
dow T , if the ratio of detected anomalies is not within
P1 ∼ P2, the threshold setting is considered to be unrea-
sonable and needs to be corrected. The correction is made
according to the method of automatically defining the thresh-
old proposed in this paper, as Algorithm 2 shows.

C. ANOMALY PRUNING BASED ON CAUSALITY
False anomalies are a phenomenon that often occur in
anomaly detection. In order to judge whether the detected
anomaly is a real anomaly from the perspective of the system,
we propose an improved multivariate transfer entropy algo-
rithm to identify the causality between telemetry parameters.
When an anomaly is detected, only the causal parameter
of the parameter that is also anomalous can be regarded
as a real anomaly; otherwise, it will be regarded as a false
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Algorithm 1 cal_threshold
1: procedure cal_threshold(e, P1, P2)
2: ε1← cal (P (e < ε1) ≥ P1)
3: ε2← cal (P(e < ε) ≤ P2)
4: for i in [ε1, ε2] do
5: judge← 1000
6: ean← 0
7: acc← 0
8: finalε ← 0
9: for j in e do

10: if e[j] > i then
11: ean← ean + 1
12: acc← acc+ (e[j]− i)
13: end if
14: end for
15: if accean < judge then
16: judge← acc

ean
17: finalε ← i
18: end if
19: end for
20: end procedure

Algorithm 2 update_threshold
1: procedure update_threshold(e, ε, P1, P2)
2: anomalies← 0
3: for i in e do
4: judge← 1000
5: ean← 0
6: acc← 0
7: finalε ← 0
8: if e[i] > ε then
9: anomalies← anomalies+ 1
10: finalε ← i
11: end if
12: end for
13: if P1 ≤ ( anomalies / len(e)) ≤ P2 then
14: finalε ← ε

15: else
16: finalε ← calthreshold (e, P1,P2)
17: end if
18: end procedure

anomaly. The specific anomaly pruning steps are shown
in Algorithm 3.

V. EXPERIMENTS
A. INTRODUCTION OF DATASET
To verify the effectiveness of themethod in this paper, we take
the telemetry data of 17 parameters of a star (denoted as
the A star), identify the causality, establish a GRU model
for each parameter, and perform anomaly detection based
on the actual telemetry data. The relevant data are described
in Table 1. Fig.2 shows the data of some telemetry parameters.
IN7, VN2, and TN10 are the telemetry data of the current,

Algorithm 3 prun_fpr
1: procedure prun_fpr(z_label, x_label)
2: for i in x_label do
3: if x_label[i] = 1 then
4: if z_label[i] = 0 then
5: x_label[i]← 0
6: end if
7: end if
8: end for
9: end procedure

TABLE 1. Telemetry data information of the A satellite.

FIGURE 2. Example of telemetry data.

voltage, and temperature, respectively, which contain anoma-
lous states. The figure shows not only that there is not only a
large amount of telemetry data but that the data also change
irregularly, and it is difficult to model the data using general
methods.

The parameter settings of theGRUmodel used in this paper
are shown in Table 2. The GRU model includes two hidden
layers, and each layer includes 128 units.

TABLE 2. Model parameters.

B. EXPERIMENT 1: CAUSALITY IDENTIFICATION
Using the original and improved multivariate transfer entropy
methods, the causality of the 17 parameters of the A Star
was identified. The results are shown in Table 3, Table 4
and Fig.3. The tables and figure show that there is a signif-
icant difference between the results of the improved method
in Fig.3(b) and the original method in Fig.3(a). In general,
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TABLE 3. Telemetry Parameters Causality Table of the A satellite (the
Original Multivariate Transfer Entropy).

TABLE 4. Telemetry Parameters Causality Table of the A satellite (the
Improved Multivariate Transfer Entropy).

FIGURE 3. Causality network.left: (a) The Original Method right: (b) The
Improved Method Causality network.

the improved multivariate transfer entropy method obtains
fewer causal relationships, and there are no mutually causal
parameters.

The analysis shows that it is sometimes difficult to obtain
the effective causality using the original method, and the
results are sometimes obviously incorrect. For example, Psan
and Psas are the two parameters of the solar array output
power. There is no causal relationship, but there is a very
strong correlation. The original multivariate transfer entropy

method recognizes this correlation as mutual causality, which
is inconsistent with the facts. The reason for this is that
Psan and Psas are highly correlated, so the transfer entropy
between the two are not considerably different. In the origi-
nal multivariate transfer entropy method, both can pass the
causality test, which leads to the phenomenon of mutual
causality. However, their directional transfer entropy is small,
so the causal relationship existing between them can be elimi-
nated accordingly. This shows that only when the information
flow of one parameter to another parameter is much larger
than the information flow of another parameter to this param-
eter can it be reasonably considered that there is a causal
relationship between these two parameters.

C. EXPERIMENT 2: ANOMALY DETECTION AND PRUNING
After dynamically defining the threshold and marking the
points above the threshold as anomalous, we pruned the
anomalies through the causal relationship between the
telemetry parameters. Identifying the causal relationships
shows that VN2 is the causal parameter of TN10. Therefore,
when there is an anomaly in TN10 but no anomaly in VN2,
it is regarded as a false anomaly and needs to be pruned.When
an anomaly occurs in TN10, VN2 is also anomalous, and it is
regarded as a real anomaly, as shown in Fig.4.

FIGURE 4. Anomaly detection and pruning example.

D. EXPERIMENT 3: THRESHOLD CORRECTION
To verify the effectiveness of the threshold correction method
proposed in this paper, the threshold correction process in
a certain period of time for parameter TN10 is selected
for an illustration, as shown in Fig.5. In this experiment,
T = 500 because in the process of sampling telemetry
data, the sampling frequency is 1 minute, and T = 500
is approximately 8 hours to update the threshold. During
the experiment, it is found that updating the threshold every
8 hours is a reasonable choice; if the interval is too short or
too long, the detection effect will not be very good. In the time
period from 1 to 500, because the initial threshold leads to a
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FIGURE 5. Threshold correction example.

TABLE 5. Comparison of Anomaly Detection Results.

FIGURE 6. Performance comparison.

low false alarm rate, the threshold needs to be further reduced
in the next time window to obtain Threshold 1. Furthermore,
Threshold 1 causes the false alarm rate within the time period
of 501-1000 to be too high, so the threshold needs to be
modified to obtain Threshold 2. Threshold 2 causes the alarm
rate to be too high, so it is necessary to increase the threshold
to obtain Threshold 3. This process proves the effectiveness
of the threshold correction method proposed in this paper.

E. EXPERIMENT 4: ALGORITHM PERFORMANCE
COMPARISON
The comparison between the performance of this method and
that of other methods is shown in Table 5 and Fig.6. The
evaluation indicators are defined as follows:

precision =
TP

TP+ FP

recall =
TP

TP+ FN

FPR =
FN

FN + TP

Table 5 and Fig.6 show that compared with other methods,
the precision, recall, F1-score and FPR of the method pro-
posed in this paper are improved comparedwith those of other
typical methods. In particular, the FPR dropped significantly,
which illustrates that the causality-based anomaly pruning
strategy can greatly reduce the false positive rate and reduce
the cost of anomaly detection.

After experimental verification, when modelling telemetry
data using the GRU for training, the average training time
of each epoch is 15.6 s, while the average training time of
each epoch of classic LSTM is 35.8 s, and the training time
of the GRU is obviously much shorter than that of the LSTM
model; therefore, the GRU is more suitable for telemetry data
modelling.

VI. CONCLUSION
This paper proposes a satellite on-orbit anomaly detec-
tion method based on automatically defined thresholds and
causality pruning, and the results verify that the GRU model
can predict telemetry data more accurately than the existing
typical models. In addition, this paper proposes a method
to automatically define the detection threshold based on the
false positive rate. This method does not need to possess any
prior knowledge about the data; it can define the appropriate
detection threshold, and it includes a threshold correction
strategy. This paper proposes a method of identifying the
causal relationships between telemetry parameters and uses
the causal relationships between them to carry out anomaly
pruning. Compared with those of other methods, the recall
and precision of this method are improved, and the false
positive rate is significantly reduced.

The shortcoming of the single-channel GRU model is that
it is not sufficiently sensitive to anomalies. When an anomaly
occurs, the prediction performance of the normal state is poor,
resulting in a small prediction residual under an abnormal
state. In future research work, new models will be considered
to improve the performance of model predictions and the
sensitivity of the model to anomalies, and we will consider
adding causal features to the predictive model to improve the
model’s sensitivity to anomalies.
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