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ABSTRACT In this paper, a novel and robust algorithm is proposed for adaptive beamforming based on
the idea of reconstructing the autocorrelation sequence (ACS) of a random process from a set of measured
data. This is obtained from the first column and the first row of the sample covariance matrix (SCM) after
averaging along its diagonals. Then, the power spectrum of the correlation sequence is estimated using the
discrete Fourier transform (DFT). The DFT coefficients corresponding to the angles within the noise-plus-
interference region are used to reconstruct the noise-plus-interference covariance matrix (NPICM), while
the desired signal covariance matrix (DSCM) is estimated by identifying and removing the noise-plus-
interference component from the SCM. In particular, the spatial power spectrum of the estimated received
signal is utilized to compute the correlation sequence corresponding to the noise-plus-interference in which
the dominant DFT coefficient of the noise-plus-interference is captured. A key advantage of the proposed
adaptive beamforming is that only little prior information is required. Specifically, an imprecise knowledge
of the array geometry and of the angular sectors in which the interferences are located is needed. Simulation
results demonstrate that compared with previous reconstruction-based beamformers, the proposed approach
can achieve better overall performance in the case of multiple mismatches over a very large range of input
signal-to-noise ratios.

INDEX TERMS Autocorrelation sequence, covariance matrix reconstruction, discrete Fourier transform,
spatial sampling.

I. INTRODUCTION
To enhance the desired signal arriving from the target
direction while suppressing interfering signals from other
directions, adaptive beamforming techniques have been
widely applied in radar, sonar, seismology, radio astron-
omy, medical imaging, wireless communications, and other
fields [1]. Conventional adaptive beamformers assume accu-
rate knowledge of the antenna array, of the actual array
manifold, and that there is no desired signal component in the
training sample used to estimate the noise-plus-interference
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covariance matrix (NPICM). However, in practical appli-
cations, these ideal assumptions are almost impossible
to satisfy. Adaptive arrays are highly sensitive to vari-
ous mismatches, including antenna array calibration errors,
incoherent local scattering, wavefront distortion and
direction-of-arrival (DoA) error. Any such model mismatch
will cause a conventional adaptive beamformer to suffer
severe performance degradation. Moreover, the presence
of the desired signal in the training snapshots will result
in significant self-nulling of the desired signal, causing
the output signal-to-interference-plus-noise ratio (SINR) to
decrease [2], [3].
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Over the past decades, a large number of robust adaptive
beamforming approaches have been proposed, which can
mitigate the effects of model mismatches and improve the
robustness of beamformers. In [4], [5], the diagonal loading
method was used to reduce the sensitivity to the desired
signal. The main shortcoming of this approach is that it is not
clear how to determine optimal values of the diagonal loading
level for different scenarios. In [6], eigen-subspace decom-
position and projection techniques were used to improve the
robustness of adaptive beamforming at high signal-to-noise
ratios (SNRs). However, these methods suffer from serious
performance degradation at low SNRs, where the desired
signal subspace may be contaminated by the noise subspace,
and they have high computational complexity, especially for
a large array [7]. In [8] and [9], a worst-case-based technique
was proposed to achieve good performance. However, with
this approach, it is very difficult to obtain the steering vector
(SV) mismatch and the error bound in practical applications.
Moreover, at high SNRs, the performance of this method
will severely degrade in the presence of array SV errors.
The uncertainty set-based algorithms estimate the desired
signal SV based on the elliptical and spherical uncertainty
set of the (signal-of-interest) SOI steering vector by solving
an optimization problem [10]. However, their performance
is mainly determined by the uncertain parameter set and
it is difficult to select the optimal factor in practice [11].
In addition, the design of adaptive beamforming techniques
based on these principles has some drawbacks such as their
ad hoc nature, high probability of subspace swap at low SNR,
presence of the SOI component in the sample covariance
matrix (SCM) and high computational complexity.

In the last decade, a new approach has been put forward
in which the impact of the SOI component is removed from
the SCM by reconstructing the NPICM. The NPICM in [12]
is reconstructed based on the Capon spectral estimator by
integrating over an angular sector that excludes the DoA of
the SOI, while the desired signal SV is estimated by solving
a quadratically constrained quadratic programming (QCQP)
problem. This method shows reasonable performance, but
is sensitive to large DoA mismatches [13], [14]. Several
NPICM-based beamformers were then proposed, such as
low-complexity methods that reconstruct the NPICM by sub-
tracting the reconstructed DSCM from the SCM [15], and the
sparse reconstruction method [16].

In [17], an annular uncertainty set was used to constrain
the SVs of the interferences during NPICM reconstruction.
The performance of this approach is very close to that of the
beamformer in [12]. However, because the NPICM is recon-
structed by integrating over a complex annular uncertainty
set, this approach has a great disadvantage in computational
complexity. Several weighted subspace-fitting-based NPICM
reconstruction beamformers were proposed [18], which are
especially designed to mitigate the effect of sensor position
errors by compensating for the estimated sensor position
errors in the NPICM reconstruction.

The beamformer in [19] utilises the same approach in [12]
to reconstruct the NPICM while it uses correlations between
the presumed steering vector of the SOI and the eigenvec-
tors of the sample covariance matrix to estimate the desired
signal SV. Thus, this approach cannot eliminate the subspace
swap error in the case of low SNRs. In [20] a robust beam-
forming algorithm has been developed based on the IPNC
matrix reconstruction using spatial power spectrum sampling
(SPSS). This method has lower computational complexity,
but its performance is degraded as the number of sensors
is decreased. The algorithm in [21] jointly estimates the
theoretical IPNC matrix using the eigenvalue decomposition
of the received signal covariance matrix and the mismatched
steering vector using the output power of the beamformer.
In [22] a procedure analogous to those of [12] and [23] is
used to reconstruct the IPNC matrix and the desired sig-
nal steering vector estimation. However, the accuracy of
the interference steering vector estimation is related to an
ad hoc parameter. The results of [12] demonstrate that the
resulting Capon beamformer allows for good performance
in the case of SOI array steering vector errors. However,
the analysis did not account for typically present interference
array steering vector errors or arbitrary SOI array steering
vector mismatches [24]. Besides, the accuracy of the Capon
spatial spectrum degrades severely when coherent signals
(with line spectra) exist [25]. In order to avoid this problem,
a very recent algorithm in [26] based on the NPICM and
DSCMwas proposed which estimates all interference powers
as well as the desired signal power using the principle of
maximum entropy power spectrum with low computational
complexity. In [27], an new algorithm is proposed based on
the steering vector estimation utilizing gradient vector which
is orthogonal to assumed steering vector. Then, the IPNC
matrix is reconstructed by estimated interference steering
vectors and corresponding powers. Although this method
is robust against some mismatches, it computational com-
plexity is high. The beamformer in [28] utilizes subspace
orthogonality to reconstruct the NPICM. In [29], a design
of SOI power estimator to formulate the SV optimization
problem with an uncertainty set constraint is proposed which
is different from the conventional Capon estimator in which
the desired signal SV is optimized with the Capon power
estimator.

Motivated by the above fact, in this paper, different
from the previous NPICM reconstruction methods, we first
develop a method based on the idea of reconstructing the
autocorrelation sequence (ACS) of a random process from a
set of measured data, and then taking the Discrete Fourier
Transform (DFT) to obtain an estimate of the power spec-
trum, which is denoted reconstruction based on the DFT
(REC-DFT). The reconstructed sequence is obtained from the
first column and the first row of the SCM after averaging
all of its diagonals. The DFT coefficients corresponding to
the angles within the noise-plus-interference region are used
to reconstruct the NPICM, while the DSCM is estimated by
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identifying and removing the noise-plus-interference compo-
nent from the SCM.

The paper’s contributions can be summed up as follows:
1. A low computational complexity robust adaptive beam-

forming, called REC-DFT, based on the autocorrelation
sequence of a random process is developed.

2. The NPICM is reconstructed directly and without the
need to estimate the power of the interferences and the
corresponding array steering vectors.

3. The DSCM is reconstructed based on the elimination of
the noise-plus-interference components from SCM and
the desired signal SV is estimated by multiplication of
the reconstructed DSCM the assumed SV.

4. We demonstrate that the suppression of interference
is significantly enhanced by the proposed REC-DFT
beamforming method compared to the existing meth-
ods in the literature.

II. THE SIGNAL MODEL AND BACKGROUND
Consider a uniform linear array (ULA) consisting of N sen-
sors that receive L + 1 narrowband far-field sources. The
N × 1 complex array observation data vector at the kth snap-
shot can be expressed as

x(k) = xs(k)+ xl(k)+ n(k), (1)

where xs(k) = s0(k)as, xl(k) =
∑L

l=1 sl(k)al are the compo-
nents of the desired signal and the interferences. The additive
Gaussian noise vector n(k) is spatially independent from the
interferences and desired signal. Also, s0(k) is the waveform
of the desired signal, and as is the actual SV of the SOI.
Furthermore, al is the interference signal SV and sl(k) is the
corresponding waveform at the kth snapshot. The array SV
corresponding to the direction of the signals is defined as

a(θ ) =
[
1, e−jθ , · · · , e−j(N−1)θ

]T
, (2)

where θ = π sinφ (assuming half-wavelength sensor spac-
ing), φ is the angle of arrival and (·)T denotes transposition.
For the rest of paper, it is assumed that, a(θl) = al and
a(θs) = as where θl and θs denote the DoA of the interference
and SOI signal, respectively.
To quantitatively measure the interference suppression capa-
bility of adaptive beamformers, the output SINR is defined
as

SINR ,
σ 2
s |w

Has|2

wHRipnw
, (3)

where w = [w1, · · · , wN ]T , (·)H and σ 2
s = E{|s0(k)|2}

are respectively the beamformer weight vector, the Hermitian
transpose operator and the desired signal power while E{·}
stands for the statistical expectation operator. Also, Ripn is
the NPICM which is given by

Ripn , E
{
(xl(k)+ n(k))(xl(k)+ n(k))H

}
= Ri + Rn =

L∑
l=1

σ 2
l ala

H
l + σ

2
n I, (4)

where σ 2
l (l = 1, . . . ,L) is lth interference power and

σ 2
n denotes the noise power, and I is an identity matrix of

order N.
The standard beamformer intends to maintain the SOI

without any distortion while the noise-plus-interference com-
ponents are suppressed, thereby the output SINR is maxi-
mized. The beamformer can be expressed as

min
w

wHRipnw s.t. wHas = 1 (5)

The optimal solution to (5) are the weights of the standard
Capon beamformer

wopt =
R−1ipnas

aHs R
−1
ipnas

. (6)

In practical applications, the actual SV of the SOI,
as, and the actual NPICM, Ripn are unavailable. Therefore,
as is usually replaced by the assumed SV, ās, and Ripn can be
replaced by the SCM [1]

R̂ =
1
K

K∑
k=1

x(k)xH (k), (7)

The total number of snapshots is K . Also, it is well known
that, the SCM converges to the theoretical covariance matrix,
when K →∞ is reached, as

R = Rs + Ripn = σ
2
s asa

H
s +

L∑
l=1

σ 2
l ala

H
l + σ

2
n I, (8)

where Rs = σ
2
s asa

H
s is the DSCM.

III. NPICM RECONSTRUCTION
In this section, we first describe analytically the
NPICM reconstruction technique using the Capon spec-
trum estimation. Then, we develop a new robust adaptive
approach (REC-DFT) that achieves near-optimal perfor-
mance by addressing both the inaccurate covariance matrix
problems as well as the SV mismatches.

A. CAPON BASED MATRIX RECONSTRUCTION
It is clear that the most important issue with NPICM recon-
struction is the accuracy of the power spectrum estimate.
Inaccuracies in the power spectral estimate result in distorted
angular positions of interference signals, as well as their
powers, which eventually lead to their insufficient suppres-
sion. The use of the Capon spectrum estimation method
to reconstruct the NPICM was introduced in [12]. Despite
the many papers that built on NPICM reconstruction using
the Capon estimator [30], it has never been demonstrated
that the reconstruction based on the Capon estimator could
be approximately equal to the NPICM. Although such a
result is expected, it is not tractable to find an analyti-
cal proof, even if the theoretical Ripn is replaced with the
estimated R̂ipn. To emphasize this, we present a some-
what heuristic argument demonstrating that the reconstruc-
tion methodology is sensible. To reconstruct the NPICM,
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we assume that there is one interference signal with SV al ,
and that the SOI signal does not exist in the training data.
Hence, for this case, we can rewrite the theoretical covariance
matrix as follows

R(c) = σ
2
n IN + σ

2
l ala

H
l . (9)

Moreover, there is a proof that the optimal weight vector
does not change the optimal output SINR, even if the NPICM
is replaced by the theoretical, R(c) [1]. Based on the Capon
estimator, authors in [12] proposed an algorithm to recon-
struct the NPICM as follows

R(c)ipn =

∫
2ipn

ρ(θ )a(θ )aH (θ )dθ

=

∫
2ipn

a(θ )aH (θ )

aH (θ )R−1(c) a(θ )
dθ, (10)

where ρ(θ ) is the power spectrum in the noise-plus-
interference spatial domain and 2ipn ∪ 2s = [−π, π]. It is
assumed that the angular sector of the interferences,2ipn and
the location of the desired signal region, 2s are distinguish-
able. Also,2ipn is approximated by a summation by sampling
over 2ipn with step 1θ as

R(c)ipn =

P∑
p=1

a(θp)aH (θp)

aH (θp)R−1(c) a(θp)
1θ. (11)

We can express the inverse of the covariance matrix in (9)
using the application of the matrix inversion lemma
(Woodbury) as shown below

R−1(c) =
1
σ 2
n

(
IN −

alaHl
γ + ‖al‖2

)
, (12)

where ‖al‖2 = N and γ = σ 2
n /σ

2
l . The denominator of (11)

is re-written by substituting of (12) as follows

aH(θp)R−1(c) a(θp) =
1
σ 2
n

(
N −
|aH (θp)al |2

γ + N

)
. (13)

Note that ‖al‖2 = ‖a(θp)‖2 = N . It should be mentioned
that an analytical evaluation of the summation in (11) may
be difficult. A rough estimation is achieved when the inner
product in (13) is approximated as

|aH (θp)al |2 '

{
N 2, θp = θl

0, θp 6= θl
(14)

It is assumed that the approximation is correct if, the angles
{θp}

P
p=1, are chosen in such a way that only one of them

coincides with the interference direction, θl , (It means that
the other angles, θp 6= θl fall outside the main-beam of the
function |aH(θp)al |2 ) and, the number of sensors, N is large
enough. Hence, this approximation is utilized to compute the
summation in (11) as follow

R(c)ipn '
σ 2
n

N

∑
θp 6=θl

a(θp)aH (θp)1θ +
(σ 2

n + Nσ
2
l

N

)
alaHl 1θ

=
σ 2
n

N

∑
θp∈2ipn

a(θp)aH (θp)1θ + σ 2
l ala

H
l 1θ. (15)

Since the size of the set 2s is much smaller than the size
of 2ipn (measuring ‘‘size’’ in terms of sum of lengths of the
intervals that compose the sets, i.e., the Borel measure), it can
be shown that [31]∫
2ipn

a(θp)aH (θp)dθp u
∫
[−π,π ]

a(θp)aH (θp)dθp = 2πIN

(16)

so that the summation can also be approximated by (16). The
same considerations about the size of2s and2ipn also allow
us to approximate 1θ ≈ 2π

N , resulting in

R(c)ipn '
2π
N
σ 2
n IN +

2π
N
σ 2
l ala

H
l =

2π
N

R(c). (17)

when the original NPICM in (9) is Compared with (17), it can
be seen that the reconstruction matrix, R(c)ipn only multiplies

the true matrix, R(c) by a factor
2π
N

.

The disadvantages of NPICM reconstruction based on
Capon are due to the approximation of the integral (10) of
the rank one matrices a(θ )aH (θ ) (weighted by the corre-
sponding incident power from direction θ ) with a summation
that requires a large number of computation to be able to
synthesize powers from signals accurately [14], [25], [32].
However, as we show in this paper, the proposed REC-DFT
method estimates the NPICM without the need to estimate
the interferences and the corresponding array SVs, result-
ing in an algorithm with an overall low complexity that is
very competitive when compared with other methods in the
literature.

B. PROPOSED REC-DFT APPROACH
In order to achieve the optimal solution of the beamformer
depicted in (6), we need to estimate the NPICM and the
desired signal SV. In this section, we utilize a low-complexity
spatial sampling process to reconstruct the robust adaptive
REC-DFT beamformer with highly accurate SINR. Let us
consider the theoretical autocovariance sequence (ACS), (8),
for single interference as

R = σ 2
s asa

H
s + σ

2
l ala

H
l + σ

2
n I = Rs + Ripn (18)

where as = [1, e−jθs , · · · , e−j(N−1)θs ] and al =

[1, e−jθl , · · · , e−j(N−1)θl ]. On the other hand, a covariance
matrix is a Hermitian matrix with variances in the diagonal
elements and covariances in the off-diagonal elements. If the
signals xn(k) obtained at each antenna are gathered in the
vector x(k) = [x0(k) x1(k) . . . xN−1(k)]T then the SCM R̂,
(7) can be written as follows

R̂ =


R̂(0, 0) · · · R̂(0,−(N − 1))
R̂(1, 0) · · · R̂(1,−(N − 1))
...

. . .
...

R̂(N − 1, 0) · · · R̂(N − 1,−(N − 1))

 (19)
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This paper introduces a new approach for ULA (with iden-
tical spacing of sensors) in order to reconstruct the NPICM
based on DFT coefficients of the auto correlation sequence
of the measured data. Then, the power spectrum is estimated
using the discrete Fourier transform. The whole spirit of the
purpose is based on the ACS or the covariance function of the
array observation vector. Thus, we need to obtain the corre-
lation sequence of the received signal. This is achieved from
the first column and first row of the SCM, where averaging
the diagonals of this matrix improves the estimation of the
correlation sequence as follows

r̂(n) =
1

N − |n|


∑N

k=−n+1
R̂(k, n+ k) n < 0∑N−n

k=1
R̂(k, n+ k) n > 0

(20)

where the estimated correlation sequence of the received
signal is denoted as r̂(n) for n = 0,±1, . . . ,±(N − 1).
Here, diagonal refers to not only the main diagonal, but all
diagonals parallel to the main diagonal. The nth diagonal
above the main diagonal may be expressed as [r̂(k, k +
n)]k=1,··· ,N−n, for n = 1, · · · ,N − 1, and the nth diag-
onal below the main as [r̂(k, k − n)]k=n+1,··· ,N , for n =
1, · · · ,N − 1. It should be noted that the SCM is Hermi-
tian. However, it is not Toeplitz in general, meaning that the
averages of the diagonals below the main diagonal are not
equal to the averages of the diagonals above it. Therefore,
it is statistically more sound to use the first column as well as
the first row.

By decomposing (20) as

[r̂s(n); n = −(N − 1), · · · , (N − 1)]

≈ c σ̂ 2
s [e
−j(N−1)θs · · · , 1 . . . ej(N−1)θs ]

= c σ̂ 2
s [e

jnθs; n = −(N − 1), · · · , (N − 1)] (21)

and

[r̂l(n); n = −(N − 1), · · · , (N − 1)]

≈ c σ̂ 2
l [e
−j(N−1)θl · · · , 1 . . . ej(N−1)θl ]

= c σ̂ 2
l [e

jnθl ; n = −(N − 1), · · · , (N − 1)] (22)

then, we can write

r̂(n) ≈ c (σ̂ 2
s e

jnθs + σ̂ 2
l e

jnθl + σ̂ 2
n δn) (23)

where c is the constant number which comes from taking
average of every diagonal of SCM. Also, the spatial power
spectrum of the received signal in terms of the autocor-
relation coefficients and as a continuous function of the
direction θ [33] is estimated as

P̂(θ ) =
N−1∑

n=−(N−1)

r̂(n)e−jnθ , −π ≤ θ ≤ π, (24)

By replacing (23) into (24), the spatial power spectrum can
be derived as follows,

In practice, calculating the spatial power spectrum, P̂(θ ),
over the entire range of directions (−π, π) is nearly impos-
sible. Therefore, in order to compute P̂(θ ), the direction

variable must be sampled. If we take NDFT samples in each
period of P̂(θ ), the spacing between angle points will be
1θ = 2π/NDFT. Therefore, the central angles of the set of
bins that we obtain will be θi = 2π i/NDFT, where we can
select i = (−NDFT/2), . . . , (NDFT/2) − 1. NDFT is selected
in such a way that the array’s angular resolution is larger than
the angular span of a bin.

Moreover, it is known that, given the power spectrum,
the autocorrelation sequence may be determined by taking
the inverse discrete Fourier transform (IDFT) of P̂(θ ). How-
ever, from (25), as shown at the bottom of the next page,
it can be seen that the estimated power spectrum has two
parts: the spatial power spectrum of the desired signal, P̂s(θ ),
and the noise-plus-interference section, P̂ipn(θ ). Therefore,
in order to compute the correlation sequence associated with
the NPICM, it is needed to find the IDFT of the noise-plus-
interference section while zeroing the power spectrum in the
direction of the SOI as follows

r̃ipn(n) =
1

NDFT

∑
θi∈2ipn

P̂ipn(θi)ejnθi , (26)

The angle bins, which are in the noise-plus-interference
region, 2ipn, capture the dominant DFT coefficients.
For the sake of simplicity, we consider the sequence

r̃ipn(n) = r̃n and construct the corresponding N ×N Toeplitz
matrix R̃ipn = [r̃k−j; k, j = 0, 1, · · · ,N − 1] as

R̃ipn =


r̃0 r̃−1 r̃−2 · · · r̃−(N−1)
r̃1 r̃0 r̃−1 · · · r̃−(N−2)
r̃2 r̃−1 r̃0 · · · r̃−(N−3)
...

...
...

. . .
...

r̃(N−1) · · · · · · · · · r̃0

 (27)

Moreover, the most important issue with NPICM recon-
struction is the accuracy of the power spectrum estimate.
The Capon spectral estimator, employed by the NPICM
re-construction based methods, is not very accurate due to
the summation approximation of the integral. This approxi-
mationmay not capture the spectrum depending on the choice
of the angular grid (sampling angles). The DFT coefficients
capture all the spectral components in the received signal
(as far as the truncated ACS can reveal), whereas in the Capon
estimate only the integral form can capture the spectrum. This
leads to a more accurate representation of the power spectrum
by the available autocorrelation matrix estimate (REC-DFT),
and therefore a more accurate reconstruction of the NPICM.

IV. THE DESIRED SIGNAL SV ESTIMATION
In this section, we describe a simple method in which the
actual SV is estimated based on the DSCM. To obtain a
good estimate, we propose using a priori knowledge that the
impinging angle of the desired signal is outside 2ipn.
Using (8), the DSCM is estimated by subtracting the noise-

plus-interference signal component from the SCMas follows:

R̃s = R̂− R̃ipn. (28)
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However, it is known that the estimated DSCM R̃s, is con-
taminated by the white noise that are the residual components
which can be expressed as

R̃s = σ
2
n(res)I+ σ̃

2
s asa

H
s , (29)

where σ 2
n(res) and σ̃

2
s are the residual noise and the desired

signal power, respectively, while the SOI’s SV is denoted
by as. The basic idea of the proposed desired signal
SV estimation is based on multiplication of the reconstructed
DSCM and the assumed SV of the SOI, where it is estimated
as follows

ãs = R̃sās = (σ 2
n(res)I+ σ̃

2
s asa

H
s )ās

= σ 2
n(res)ās + σ̃

2
s (a

H
s ās)as, (30)

where ās stands for the assumed SV of the desired signal.
In (30) the residual term σ 2

n(res)I represents the noise power
that falls within the desired signal’s angular sector which has
not been accounted for in R̃ipn, and therefore has not been
subtracted from the total covariance matrix. Since the angular
sector of the desired signal, 2s, is much smaller than the
wholeDoA range of 2π , the noise power in this sector ismuch
smaller than the total noise power. Hence, the norm of the
residual term σ 2

n(res)‖ās‖
2 can be expected to be much smaller

than the power of the signal term σ̃ 2
s |a

H
s ās|. This can be better

understood by noting that ‖ās‖2 = ‖as‖2 = N for ideal form
of the SV, and |aHs ās| ≈ N if ās is close to as. Then it is
sufficient that σ 2

n(res) � N σ̃ 2
s , which can be satisfied even for

low SNR values. The accuracy of the SV estimate (30) can be
investigated by calculating the beamformer SINR using this
estimate as follows.

In the derivation of the SINR for the beamformer based
on the SV estimate in (30), the assumption is made that the
NPICM is exact (i.e. R̃ipn = Ripn ). This assumption may
be justified by noting that the exclusion of the desired signal
angular sector in the reconstruction of Ripn is negligible if
this sector is much smaller than the total 2π range. Then,
the SINR becomes

SINR = σ 2
s

|ãHs R
−1
ipnas|

2

ãHs R
−1
ipnãs

. (31)

In the ideal case with ãs = as, the optimum SINR is given
by

SINRopt = σ
2
s |a

H
s R
−1
ipnas|. (32)

By direct substitution of (30) into (31) and using the
approximation (1+ x)−1 ≈ 1− x for |x| � 1, we can write

SINR = σ 2
s |a

H
s R
−1
ipnas|

{
1− ε2

·

[ |āHR−1ipnā||a
H
s R
−1
ipnas| − |ā

HR−1ipnas|
2

|āHas|2|aHs R
−1
ipnas|

2

]}
, (33)

where ε = σ 2
n(res)/σ̃

2
s is assumed to be much less than one.

Now, an insight into the dependence of the reduction in SINR
on the error in the presumed SV ās can be obtained by consid-
ering the single interference case. In this scenario, we exploit
the NPICM defined in (18) where Ripn = σ 2

l ala
H
l + σ

2
n I.

The inverse of the NPICM can be obtained as (12). Therefore
by utilizing this inversion, the numerator of the expression
within the square brackets in (33) becomes

|āHR−1ipnā||a
H
s R
−1
ipnas| − |ā

HR−1ipnas|
2

=
1
σ 4
n

(
N 2
− |āHas| +

2
N + γ

<

{
(āHas)(aHs al)(a

H
l ā)

}
−

N
N + γ

(|āHal |2 + |aHs al |
2)
)
, (34)

where<{·} indicates the real part of a complex number. If the
SVs have the ideal form, it can be easily shown that

āHs as =
N−1∑
q=0

e−jq(θs−θ̄ ) =
1− ejN (θ̄−θs)

1− ej(θ̄−θs)

=

ej
N
2 (θ̄−θs)

(
2j sin(N2 (θ̄ − θs))

)
ej

1
2 (θ̄−θs)

(
2j sin( 12 (θ̄ − θs))

) , (35)

and then we can write

|āHs as|
2
=

sin2
(N
2 (θ̄ − θs)

)
sin2

( 1
2 (θ̄ − θs)

) . (36)

where θ̄ is the DoA corresponding to the presumed SV, ās.
Using the following Taylor series expansion of the rhs of (36)

P̂(θ ) = σ 2
n +

N−1∑
n=−(N−1)

(
σ 2
s e

jn(θs−θ ) + σ 2
l e

jn(θl−θ )
)

= σ 2
n + σ

2
s e
−j(N−1)(θs−θ )

2N−2∑
n=0

ejn(θs−θ ) + σ 2
l e
−j(N−1)(θi−θ )

2N−2∑
n=0

ejn(θl−θ )

= σ 2
s
sin[(N − 1

2 )(θs − θ )]

sin[ 12 (θs − θ )]
+ σ 2

l
sin[(N − 1

2 )(θl − θ )]

sin[ 12 (θl − θ )]
+ σ 2

n

= P̂s(θ )+ P̂ipn(θ ) (25)
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with 8 = θ̄ − θs, assumed to be much smaller than one,
we can write that

|āHs as|
2
=

sin2(N8/2)

sin2(8/2)
≈ N 2

−
1
24
N 2(N 2

− 1)82. (37)

Now, if the interference DoA is sufficiently separated from
the DoAs of ās and as, the contributions of the terms in (34)
involving the interference SV al become negligible compared
to the first two terms. Thus, (34) can be re-written as

|āHs R
−1
ipnās||a

H
s R
−1
ipnas| − |ā

H
s R
−1
ipnas|

2

≈
1
σ 4
n

(
N 2
− |āHs as|

2
)
. (38)

By exploiting (37) and replacing (38) in (33). we have

SINR ≈ σ 2
s |a

H
s R
−1
ipnas|

(
1−

1
12
ε282). (39)

The residual noise power in the desired signal angular sec-
tor may be taken to be proportional to the width of this sector,
assuming that the noise is spatially white. Then, the residual
noise power can be expressed as

σ 2
n(res) =

Ns
NDFT

σ 2
n (40)

whereNs is the number of frequency bins in the desired signal
angular sector. Hence, we have

ε =
σ 2
n(res)

σ̃ 2
s
≈

Ns
NDFT × SNR

(41)

Since, Ns � NDFT, ε may be expected to be much smaller
than one even for low SNR values.

Comparing (32) with (39), it is observed that the SV ãs is
a good estimate for the desired signal SV.

Using the corrected SV of SOI (30), ãs and NPICM (27)
into (6), the weight vector of the proposed beamformer is
given as

wprop =
R̃−1ipnãs

ãHs R̃
−1
ipnãs

(42)

Algorithm 1 summarizes the steps to obtain the proposed
adaptive beamforming weights.

V. COMPUTATIONAL COMPLEXITY
We compare the computational complexities of the different
methods, as summarized in Table 1. Our main contribution
consists in developing a fast and numerically stable tech-
nique for NPICM reconstruction and the SOI steering vec-
tor estimation. Given an array of N elements, K (number
of snapshots) and Q (the number of uniform samples in
the noise-plus-interference angular sector), the computational
complexity for computing the NPICM (27) is O(NDFTN 2)
where NDFT = Q = 38 and the SOI steering vector estima-
tion needsO(KN 2) with K ≤ N ≤ Q, the overall complexity
of REC-DFT is O(QN 2).

In [6], the shrinkage method is used to compute the covari-
ance matrix, which has a complexity of O(KN ), whereas

Algorithm 1 Proposed REC-DFT Adaptive Beamforming

1: Input: Array received data vector {x(k)}Kk=1,
2: Initialize: Compute the SCM
R̂ = (1/K )

∑K
k=1 x(k)x

H (k); NDFT = 38; 1θ = 2π
NDFT

;
3: For n = −(N − 1) : (N − 1)
4: For k = 1 : N − n

5: r̂(n) =
1

N − |n|

∑N−|n|
k=1 R̂(k, n+ k)

6: End For
7: End For
8: For i = 1 : 1θ : NDFT
9: θ (i) = (−π/2)+ (i− 1)(π/NDFT)
10: If θ (i) ∈ 2ipn then
11: For n = 1 : length(n)
12: P̂(θ (i)) =

∑N−1
n=−(N−1) r̂(n)e

−jnθ (i)

13: End For
14: End If
15: End For
16: Compute correlation sequence, r̃ipn(n) = r̃n, using (26)
17: Construct the NPICM based on R̃ipn = [r̃k−j; k, j =
0, 1, · · · ,N − 1]
18: Estimate the DSCM as R̃s = R̂− R̃ipn

19: Calculate estimation of the desired signal SV ãs = R̃sās
20: Design proposed beamformer using (42)
21: Output: Proposed beamforming weight vector wprop

the SV estimation has a complexity of O(N 3). As a result,
the total complexity is O(N 3). The beamforming method
in [20] has a complexity of O(QN 3). The beamformers
in [19], [22] have a complexity of O(QN 2) to reconstruct
the NPICM, while the complexity of the beamformer in [22]
to estimate the desired signal SV is dominated based on
solving a quadratically constrained quadratic programme
(QCQP) which is O(N 3.5). The beamformer in [26], needs
O(QN 2) and O(SN 2) complexity for NPICM reconstruc-
tion and the SV estimation, respectively, where S is the
number of sampling points of the desired signal angular
sector. The computational complexity for the reconstruc-
tion of the signal covariance matrix for the beamformer
in [34] is higher, due to the matrix inversion and eigen-
decompositionO(SN 3). The only algorithm with comparable
complexityO(N 3) is [6], but the performance of the proposed
algorithm is considerably superior, as shown in the next
section.

The conclusion, when comparing the methods based on the
computational complexity in Table 1, is that the proposed
REC-DFT method has significantly lower complexity as
compared to the other beamformers (while the performance
is similar or better, as shown in the next section).
It is worth noting that, since some references did not provide
values for the parameter of Q and S, the values used for
the tested beamformers and the proposed REC-DFT method
given in Table 1 are the lowest quantities that result in the best
performance for each algorithm in the simulations.
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TABLE 1. Computational complexity.

VI. SIMULATIONS
In this section, the performance of the proposed REC-DFT
algorithm is validated by computer simulations. We consider,
a ULA with N = 30 sensors with half-wavelength spaced.
A complex additive white Gaussian noise in each sensor,
is modeled as a zero mean and unity variance. The signal
sources consist of one SOI and two interferers where the
nominal SOI direction is kept at θ̄s = 0o, and the nominal
interference DoAs are fixed at {θ̄1, θ̄2} = {40o,−50o}. For
each interfering signal, the interference-to-noise ratio (INR)
in a single sensor is equal to 30dB. In each scenario, 100 inde-
pendent simulation runs have been performed to show the
results. The SNR is fixed at 10dB when comparing the per-
formance of adaptive beamforming algorithms in terms of the
number of snapshots. The number of snapshots is fixed to be
K = 30 when comparing the performance versus SNR.

The proposed REC-DFT beamformer was compared
with the covariance matrix reconstruction based on the
Capon spectrum and the SV estimation presented in [19]
(REC-CC), the covariance matrix reconstruction based
on maximum Entropy presented in [26] (REC-MEPS),
the covariance matrix reconstruction and the SV estimation
presented in [6] (REC-ES), the covariance matrix recon-
struction based on interference SV estimation presented
in [22] (REC-Re), the covariance matrix reconstruction
based on spatial power spectrum sampling presented in [20]
(REC-SPSS) and the covariance matrix reconstruction based
on orthogonal subspace in [34] (REC-OS).

The SOI’s angular sector and the interference are set as
2s = [θ̄s−4◦, θ̄s+4◦]2ipn = [−90◦, θ̄s−4◦)∪(θ̄s+4◦, 90◦],
respectively. In the beamformer REC-Re, the upper bound
of the norm of the SV mismatch is set to ε =

√
0.1. For

the eigenspace-based beamformer [6] (REC-ES), the energy
percentage is set as ρ = 0.9. In the REC-SPSS beamformer,
1 = sin−1(2/N ) is used to find the width of the dithering
area. To solve all convex optimization problems the Matlab
CVX toolbox [35] is used.

A. MISMATCH DUE TO RANDOM SIGNAL LOOK
DIRECTION
We consider a scenario with random look direction error in
the first example. For each simulation run, it is assumed
that DoA of the interferences and the desired signal follow a
uniform distribution in [−4o, 4o]. It means that the direction
remains fixed from snapshot to snapshot while varies from

run to run. That is, the DoAs of two interferences are varied
in [36o, 44o] and [−54o,−46o] and the actual DoA of the SOI
is uniformly distributed in [−4o, 4o].
The output SINR of the tested methods versus the input

SNR is shown in Fig. 1. Since the proposed beamformer
has essentially the same performance as [19], [22] and [26],
their deviations from the optimal SINR are shown in Fig. 2.
It shows that the proposed REC-DFT beamformer has almost
the same performance as the REC-MEPS andREC-CC beam-
formers. Since the proposedmethod avoids reconstructing the
NPICM using the estimated SVs and corresponding powers,
then it achieves almost near-optimal SINR for a large range
of SNRs. Fig. 3 depicts the output SINR of the tested beam-
formers versus the snapshots. Comparing the output SINRs
between the proposed method REC-DFT and the other meth-
ods, it can be seen that the proposed method achieves similar
robustness against signal direction error, but with a substan-
tially lower complexity for the computation of the NPICM.

FIGURE 1. Output SINR versus SNR in case of random look direction error.

B. MISMATCH DUE TO INCOHERENT LOCAL SCATTERING
In the second example, a scenario with an incoherent local
scattering of the desired signal is considered. The signal is
assumed to have a time-varying spatial signature, and the
SV of the desired signal is modeled as

a(k) = s0(k)a(θ̄s)+
4∑

r=1

sr (k)a(θr ), (43)

where s0(k) and sr (k) (r = 1, 2, 3, 4) are independent and
identically subject to the complex Gaussian distribution with
zero mean. The DoAs {θr } are independently drawn in each
simulation run from Gaussian distribution with θ̄s mean and
standard deviation 2o. Note that θr and θ̄s vary from run
to run while keeping unchanged from snapshot to snapshot.
Simultaneously, the random variables s0(k) and sr (k) change
both from run to run and snapshot to snapshot. This is the
scenario of incoherent local scattering [36], where the DSCM

84852 VOLUME 9, 2021



S. Mohammadzadeh et al.: Robust Adaptive Beamforming Based on Low-Complexity DFT Spatial Sampling

FIGURE 2. Deviation from optimal SINR versus SNR in case of random
look direction error.

FIGURE 3. Output SINR versus number of snapshots in case of random
look direction error.

Rs is not a rank-one matrix anymore and the output SINR
should be rewritten in a general form

SINRopt =
wHRsw
wHRi+nw

, (44)

which is maximized by the weighted vector [37]:

wopt = P{R−1i+nRs} (45)

where P{·} represents the principal eigenvector of a matrix.
Fig. 4 and Fig. 5 depict the output SINR of the tested
beamformers versus the SNR and the deviation of the tested
method from the optimal SINR respectively. The superior
performance is due to the accurate estimation of the desired
signal SV and NPICM. In order to reconstruct the DSCM,
we use a low-complexity algorithm to remove the interference
and noise components from the sample covariance matrix.
The eigenvector corresponding to the largest eigenvalue in
DSCM contains the most information which is achieved by
multiplication of the assumed SV. The obtained SV is referred

FIGURE 4. Output SINR versus SNR in case of incoherent scattering.

FIGURE 5. Deviation from optimal SINR versus SNR in case of incoherent
scattering.

to as the desired signal SV. The output SINR versus the num-
ber of snapshots is plotted in Fig. 6. It is seen that the REC-
DFT has higher accuracy SINR for SNR less than −10 dB
compared to the REC-CC and REC-MEPS beamformers.
Also, it is seen that the performance of the proposed method
(REC-DFT) is almost the same as that of REC-CC for SNRs
larger than 0 dB. However the proposed REC-DFT method
requires lower computational cost.

C. ARRAY SV ERROR DUE TO WAVEFRONT DISTORTION
In this example, a scenario is considered that the desired
signal SV is distorted by wave propagation in which the
medium is not uniform in character or content (inhomoge-
neous). The mismatch specifically states that the compo-
nents of the presumed SV stack up the incremented phase of
distortion independently. Assuming that in each simulation
run, the phase increments are fixed and are independently
chosen from a Gaussian random generator with zero mean
and standard deviation of 0.04.
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FIGURE 6. Output SINR versus number of snapshots in case of incoherent
scattering.

Fig. 7 shows the output SINR of the beamformers versus
the input SNR. Fig. 8 illustrates the deviation from optimal
output SINR versus the input SNR. It is distinct from the
figures that the proposed beamformer achieves the better per-
formance while the REC-CC and REC-MEPS demonstrate
the acceptable performance against the wavefront distortion.
The performance of the output SINR of all tested methods
versus the number of snapshots is given in Fig. 9. Similar
to the previous scenarios, the proposed beamformer keeps
its performance against mismatch which demonstrates the
higher accuracy of the desired signal SV estimation and the
NPICM reconstruction.

D. COHERENT LOCAL SCATTERING ERROR
In the fourth example, we investigate a scenario in which the
assumed signal array is a plane wave impinging from θ̄s = 0◦,
whereas the actual SV of SOI is composed of five signal paths
as

âs = ās +
4∑
i=1

ejϕib(θi). (46)

The SV corresponding to the direct path is denoted
as ās and {θi}, represents the ith coherently scattered path
which are generated in the same manner as the scenario in
section (VI-B). In each simulation run, the parameter {ϕi}
depicts the path phases that are drawn uniformly from the
interval [0, 2π ]. Also, {θi} and {ϕi} vary from run to run while
keeping unchanged from snapshot to snapshot. Note that the
SNR in this example is defined by taking into account all
signal paths.

In Fig. 10, the performance versus SNR with a fixed
number of snapshots is shown. Furthermore, the perfor-
mance difference of the proposed beamformer and REC-
MEPS and REC-CC is compared in Fig. 11. It is shown that
the proposed method outperforms other tested beamformers
in terms of robustness against local scattering mismatch,
which is primarily due to a more accurate estimation of the

FIGURE 7. Output SINR versus SNR in case of wavefront distortion.

FIGURE 8. Deviation from optimal SINR versus SNR in case of wavefront
distortion.

FIGURE 9. Output SINR versus number of snapshots in case of wavefront
distortion.

NPICM and SV of the SOI. We can see that the REC-SPSS
beamformer has nearly the same performance as the other
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FIGURE 10. Output SINR versus SNR in case of coherent scattering.

FIGURE 11. Deviation from optimal SINR versus SNR in case of coherent
scattering.

FIGURE 12. Output SINR versus number of snapshots in case of coherent
scattering.

scenarios because this method only integrates the interference
region rather than the signal region. The performance of the

algorithm will remain unchanged as long as the interference
region does not contain the SOI. In the REC-CC beamformer
the performance is degraded since it cannot eliminate the sub-
space swap error in the case of low SNRs. Other algorithms,
on the other hand, clearly suffer significant performance
losses because the SV of the desired signal is influenced by
the local scattering error.

Also, Fig. 12 shows the performance of the proposed
REC-DFTmethod with fixed SNRwhile the number of snap-
shots K is changed. We notice that the proposed REC-DFT
beamformer is also robust against this kind of uncertainty for
whole range of the snapshots.

VII. CONCLUSION
In this paper, we have introduced REC-DFT to reconstruct
the IPNC matrix based on the idea of reconstructing the
autocorrelation sequence of a random process from a set
of measured data. The DFT of the correlation sequence is
employed to estimate the power spectrum of the signals.
A significant advantage of the proposed robust REC-DFT
adaptive beamforming is that only little prior information is
required. An imprecise knowledge of the angular sectors in
which the interferences are located is sufficient for the pro-
posed REC-DFT algorithm. Simulation results demonstrate
that the proposed REC-DFT method has excellent perfor-
mance, in many situations superior to that of other methods,
while requiring lower computational complexity.
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