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ABSTRACT Spectrum occupancy prediction is a key enabling technology to facilitate a proactive resource
allocation for dynamic spectrum management systems. This work focuses on the prediction of duty cycle
(DC)metric that reflects spectrum usage (in the time domain). The spectrum usage is typically measured on a
shorter time scale than needed for prediction. Hence, data thinning is required and we apply block averaging.
However, averaging operation results in flattening the DC data and losing essential features to assist deep
neural network (DNN) to predict the spectrum usage. To improve DC prediction after block averaging,
a feature-based deep learning framework is proposed. Namely, long short-term memory (LSTM) and gated
recurrent unit (GRU) are selected and enhanced by using features of the data, such as the variance of DC data
in addition to DC data themself. The proposed model is capable of proactively predicting the spectrum usage
by capturing complex relationships among various input features for the measured spectrum, thus providing
higher prediction accuracy with an average improvement of 5% in RMSE compared with traditional models.
Moreover, to have a better understanding of the proposed model, we quantify the effect of input features
on the predicted spectrum usage values. Based on the most significant input features, a simpler and more
efficient model is proposed to estimate DC with similar accuracy to when using all features.

INDEX TERMS 5G, deep neural networks, explainable AI, GRU, LSTM, occupancy rate, SHAP, short-term
prediction, spectrum awareness, WiFi.

I. INTRODUCTION
Unlike previous generations in wireless communications,
the next-generation wireless networks are expected to be fast
and capable of connecting several billions of devices. Accord-
ing to [1], the global mobile data traffic reached around 33EB
per month in 2019 with the expectation that it will grow to
164EB per month by 2025.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen .

This increase in both user traffic and number of users is
accommodated with highly specialised use cases. In 5G, three
distinct use cases are defined by 3rd Generation Partner-
ship (3GPP), namely enhanced Mobile Broadband (eMBB),
Ultra-Reliable and Low Latency Communications (URLLC),
and massive Machine Type Communication (mMTC). Next-
generation communication systems should be able to handle
extreme use cases that do not fall under the three 3GPP
categories as can be seen in Fig. 1.

Several spectrum usage surveys have shown the
under-utilisation of current spectrum allocation strategies.
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FIGURE 1. Image of technological development toward 6G [15].

Using a dynamic access paradigm would increase spec-
trum efficiency [2]. In this case, the spectrum would be
autonomously assigned based on actual user usage and
demands. On the other hand, this type of approach is highly
dependent on accurate prediction of the temporal spectrum
usage in terms of duty cycle (DC). DC (also known as
occupancy rate) is defined as the fraction of one period in
which the channel is occupied.

In order to efficiently allocate network resources, it is
necessary to proactively predict the network traffic instead of
passively responding as in traditional approaches [3]. Thus,
more advanced network infrastructure is essential to facilitate
proactive spectrum resource allocation.

The problem of traffic prediction is a challenging task.
As several factors could impact the network traffic, including
the number of active users, time and location. Traditionally,
time series temporal analysis and forecasting techniques are
applied to estimate network traffic. However, most of the
conducted studies are based on conventional statistical tech-
niques (a regression approach) such as autoregressive moving
average (ARIMA) [4], fractional ARIMA [5] or seasonal
autoregressive moving average (SARIMA) [6].

Luckily, the advent of artificial intelligence (AI) can help
network operators to automatically and efficiently adjust the
network [7]. AI has been utilised recently for numerous
mobile andwireless communications applications [8], includ-
ing in automatic modulation recognition [9], indoor locali-
sation [10] and path loss exponent estimation in radio wave
propagation [11]. As for next-generation network manage-
ment, it is expected that AI will have an impact on key areas,
such as enhanced service quality, higher network efficiency,
and improved network security. For instance, AI could be
used to detect anomalies in network traffic by identifying
unusual spectrum usages [12]. A comprehensive survey on
deep neural network (DNN) utilisation in smart wireless
networks is presented in [13]. This increase in using AI is
mainly due to the advancement in massively parallel GPU
architecture and high-level languages [14].

This work concernswith the prediction ofDC. Specifically,
this work focuses on the problem of short-term prediction
of DC (i.e., DC is predicted over periods of tens of sec-
onds). In many cases, the spectrum usage is measured on a
shorter time scale than the actual required one. Hence, some
kind of data thinning (or data decimation) is required and

we apply block averaging to achieve it due to its simplic-
ity. However, averaging operation results in flattening the
data and losing essential features to assist DNN to predict
the channel usage. The averaged DC blocks are then used
to predict the next DC block. For instance, the measure-
ments may provide DC estimations over 100 millisecond
time window, but the network requires predictions that are
over 30 seconds. In this case, having accurate DC predictions
at larger time scales provide valuable information on which
channel will be empty for a longer period of time, hence the
selection of channels with less data usage over longer time
periods. Having DC estimation over longer periods improves
spectrum allocation efficiency and reduces the number of
channel hops for the dynamic spectrum access system users.
A feature-based solution with either long short-term memory
(LSTM) or gated recurrent unit (GRU) models is proposed to
improve DC prediction. The proposed method incorporates
various features of DC data as well as original DC data itself
as DNN inputs to improve the DC prediction. Notice that the
proposed LSTM/GRU models differentiate from the typical
LSTM/GRU models commonly employed in the literature in
that they incorporate and exploit features extracted from the
DC dataset to improve the prediction accuracy, while much of
the literature does not include the addition of extra features
from the input dataset and focuses mainly on changing the
DNN model (for example using many hidden layers or using
different deep learning algorithms [16], [17]). Adding several
input features is a subtle but important difference that sig-
nificantly improves the prediction accuracy. Moreover, this
also constitutes a simpler, more practical, more convenient
and also more effective approach than modifying the archi-
tecture of the employed DNN model as typically done in the
literature.

When using several features at the input, an essential ques-
tion arises, what is the effect of each feature at the output,
which features are important. A solution based on SHAP
values (SHapley Additive exPlanations) [18] is proposed to
show the importance of each input feature. We apply SHAP
framework to interpret the proposed DNN models to iden-
tify the most influential features contributing to the model’s
predictions while also quantifying their contribution level for
individual predictions. Based on the obtained importance val-
ues, an efficient deep learning solution based on limiting the
number of input features and only using the most significant
ones is proposed.

The contributions of this work are outlined as follows:
1) In depth investigate, compare and evaluate the forecast

of DC time series data on a number of solo forecast-
ing approaches including ARIMA, seasonal ARIMA
(SARIMA) and deep learning approaches such as mul-
tilayer perceptron (MLP), LSTM and GRU.

2) Investigate the prediction accuracy of original DNN
models for the DC prediction when only DC is avail-
able at the input. Moreover, we show that DNNs
have better learning capability when being exposed to
different types of features at the input combined with
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first difference of the temporal series data to improve
the prediction accuracy.

3) Utilise visualisation technology SHAP values to com-
pare the significance of input features and their impact
on the output of DNN model. Based on the most sig-
nificant features an efficient DNN model is proposed.

The remainder of this paper is organised as follows. First,
Section II provides literature survey for related traffic pre-
diction and explainable AI methods. Section III presents the
measurement system and the problem addressed in this work.
Section IV presents the considered models for time series
prediction with the evaluation metrics to assess the prediction
performance. The hyper-parameters optimisation approach
is described in Section V. Section VI presents dataset pre-
processing and features extractions. Section VII provides
the simulation results for the considered prediction methods.
Finally, Section VIII summarises and concludes this work.

II. LITERATURE REVIEW
A. TRAFFIC PREDICTION
Wireless traffic prediction will have a significant impact on
improving next-generation wireless networks. In the litera-
ture, several studies have been conducted to forecast the traf-
fic occupancy. Majority of the models focus on predicting the
network throughput, such as [17], [19], [20] and [21]. While
in this work spectral occupancy rate is considered instead
of data throughput. For dynamic spectrum access systems,
spectral occupancy is a more important metric to consider,
since it directly relates to the available spectrum resources.
The relationship between traffic and spectrum occupancy
is a complex one and no one-to-one mapping is possible.
Therefore, it is crucial to specifically focus on forecasting
spectrum occupancy.

Recently, several attempts have been conducted to forecast
spectrum usage [22]. In [23], the authors concluded that
for the land mobile radio bands there is no universally best
statistical or machine learning method to predict spectrum
occupancy rate. Thus, a recommender unit based on machine
learning is used to select the best approach to predict spec-
trum occupancy. In [24], the channel occupancy in the form
of binary classification is considered. This is different from
our work, as we try to predict the value of occupancy rate
rather than if the channel was busy or idle. In [16], the authors
predict the spectrum availability following two approaches,
classification and regression. In the classification scenario,
the spectrum band is predicted as either idle or busy. While
in the regression case, the received signal spectral density is
predicted, which is also different from our work, as we try to
predict the value of occupancy rate rather than the received
signal power.

For the time series prediction problem, several studies
concluded that using only traffic information as input feature
is not sufficient, in fact, in [25] it was shown that using
only traffic as input feature for enterprise network traffic
prediction did not provide any advantage over traditional
linear regression methods such as autoregressive integrated

moving average (ARIMA). A solution based on utilising spa-
tial input of several access points was used to improve the net-
work traffic prediction. Similar observations were reported
in [26] and [27]. In [28], statistical input features derived from
the data itself were used to further improve the prediction
accuracy.

Thus, it can be concluded that having more input features
to the neural network such as spatial details of transmit-
ters and users, number of active users, type of device used
for internet or network access and other statistical features
such as the ones described in [29] will impact the predicted
traffic usage. Therefore, we would like to further study the
importance of having more input features on the prediction
accuracy for spectral occupancy. Another question that needs
an answer is which features are important, and how much do
the input features contribute to the forecasting outcome. The
DNN complexity gets higher as the number of input features
increases. This research aims to study these open questions.

B. EXPLAINABLE AI
One notable shortcoming of DNN models is finding a solid
justification for their output. This imposes obstacles to their
large-scale implementation [30]. Therefore, several studies
have been interested in explainable artificial intelligence
(XAI) to improve human ability to understand the process
decisions made by DNNs. The goal is to find the impact of
different input features on the prediction result. In the litera-
ture, several methods have been proposed [31]–[33] and [34].

One approach is to utilise SHAP values [18]. It breaks
down a prediction to show the impact of each feature on
the output. In the literature, SHAP values have been used
to link input features with the model output. In [35], SHAP
is used to improve the detection of adversarial attacks. The
significance of temporal features for land mobile radio bands
using machine learning model was considered in [23] and for
LTE traffic using deep learning model in [36].

In this work, we are going to derive feature importance
for DC prediction using deep learning models and SHAP
values. Based on the most significant features an efficient
DNN model is proposed.

III. MEASUREMENT SETUP AND METHODOLOGY
Spectrum usage measurements took place in WiFi channel 6
(centered at 2427MHz) with a sampling frequency of 20MHz
inside the TUAT university office (indoor environment). The
measurement system included a real-time spectrum analyser
(RSA), an external control trigger, a network-attached stor-
age, a measurement system control computer, a data analysis
computer and a switching hub. The start of capture time is
controlled by an external trigger which is in turn controlled by
the measurement system control computer. All data process-
ing, such as detection and DC calculation, is handled by the
data analysis computer. The measurement system is shown
in Fig. 2. Measurements were recorded for working days only
(i.e. no weekends or holidays WiFi traffic was recorded). The
measurement did not occur in a continuous manner, as only
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FIGURE 2. Measurement system.

working days are considered with a total of 13 days during
February 2020.

DC is measured over a time duration of Ts = 200 ms.
As for signal detection, a constant false alarm ratio (CFAR)
strategy with a false alarm probability of 0.01 is utilised.
In order to find the detection threshold, the RSA’s antenna
was terminated and the noise floor was estimated based on
a dataset of 1 hour. The measurement dataset spanned over
13 days, which provided 5616000 DCs sampled over 200 ms.
It is important to notice that each DC value is based on a large
number of samples (received within 200 ms window). It is
possible to utilise an even smaller time duration (Ts) for the
DC estimation, but this would result in having a larger dataset
with a significant increase in DNN training complexity and
larger storage requirement.

The input measurements consist of the temporally ordered
spectrum usages8 (i.e., DC values) estimated every 200 ms.
In many cases, it is beneficial to obtain 8 estimation over
longer periods. From a regression point of view, the time
resolution of input data should be equal to that of the values
to be predicted. Hence a new spectrum usage (8c) with
estimation window of Tc can be defined as:

8c =

∑K
k=18k

K
, (1)

where, K =
Tc
Ts

and k is the DC index number. In this work,

Tc is selected to be an integer multiple of Ts. In Section VII,
the estimation accuracy of different Tc values is studied.
In order to have a deeper understanding of the measured

dataset. Figs. 3 and 4 show the occupancy rate measurements
and their probability mass function (PMF), respectively for
DC aggregated over Tc = 30 seconds.

IV. PREDICTION METHODS
In this section, the considered prediction techniques are
described.

A. RANDOM WALK/NAIVE PREDICTOR
The randomwalk (RW)model is one of the simplest forecast-
ing models. It assumes that every point yt in the time series
takes an independently and identically distributed value (et )
step away from the previous point [37].

yt = yt−1 + et . (2)

FIGURE 3. Measured occupancy rate.

FIGURE 4. PMF of the measured occupancy rate.

In other words, the future value is equally likely to be
higher or lower than the current one. Thus, RW model pre-
dicts that the future value will be equal to the last observed
value. RW model is considered in this work for comparison
purposes and to show that in specific scenarios more complex
models could perform worse than a simple RW model.

B. ARIMA
The ARIMA model introduced by [38], is a flexible time
series forecast method. It predicts the future values based
on past observations (a linear function of past observations)
and an error. ARIMA describes the time series by three
fundamental aspects

1) Autoregressive terms (AR), the future value (fore-
casted) depends on weighted time-lagged values of
itself.

yt = λ1yt−1 + λ2yt−2 + · · · + λpyt−p, (3)

where λj represents the AR coefficients and p is the
number of previous observations.
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2) Integrated terms (I), considered to make the time series
stationary.

yt = yt − yt−1 − · · · + yt−d , (4)

where d is the order of difference.
3) Moving average terms (MA), regression against past

errors.

yt = 21εt−1 +22εt−2 + · · · +2pεt−q, (5)

where 2j represents the MA coefficients and q is the
number of previous observations. ε is the residuals
from fitting ARIMA model.

Utilising the backward shift operator (Lkyt = yt−k ),
the ARIMA model can be defined as:

(1−
p∑
j=1

λjL j)(1− L)dyt = c+ (1+
q∑
i=1

2iL i)εt , (6)

where c is the constant in ARIMA model. The identifica-
tion of p and q is from auto-correlation function (ACF) and
partial auto-correlation function (PACF). It was found that
ARIMA(4, 1, 1) provided the best fit.

The general ARIMA model can be extended to incorpo-
rate the seasonal (SARIMA) variations in the time series.
SARIMA can be expressed as SARIMA(p, d, q)(P,D,Q)s,
where P, D and Q are the number of seasonal AR terms,
seasonal difference and the number of seasonal MA terms.
The periodicity/seasonality is set by s.

Generally, d+D is equal to or smaller than 2 [39]. In our
case, it was found that SARIMA(4, 1, 1)(1, 1, 1)s provided
the best fit. s takes 1440 when predicting DC over 1 min
(as there are 1440 minutes per day, hence s = 1440).
Thus when forecasting for 1 min, SARIMA model becomes
SARIMA(4, 1, 1)(1, 1, 1)1440.

C. MLP
An MLP network is a feed-forward neural network based on
the backpropagation algorithm. An MLP consists of at least
3 fully connected (dense) layers namely, input layer, hidden
layer(s) and output layer [40]. Each of the network layers
includes a single or multiple neurons. The mathematical rep-
resentation of a neural output is given as:

ym = ψ

(
n∑
i=1

wixi + b

)
, (7)

where w and x with different subscripts are the weights of
transformation and input to neurons respectively and b is
the bias. ym is the neuron output. n is the number of inputs
to a neuron and ψ(.) is the non-linear activation function.
The activation function is used to describe the non-linear
properties between neuron input and output. In this work it
is assumed that ψ(.) is a ReLU activation function which is
defined as ψ(z) = max(0, z). Using ReLU function in the
hidden layers provides several advantages over other activa-
tion functions such as sigmoid or tanh including the increase
in training speed and reducing the likelihood of vanishing
gradient [41].

D. LSTM
The LSTM network is a variation of recurrent neural net-
works (RNNs) which is typically used for time series data
types. It was first proposed in [42] as an improvement over
RNN to solve long-term dependency. The LSTM includes an
input layer, hidden layer(s) and an output layer. LSTM was
proposed to solve the problem of long-term dependencies by
adding an adaptive memory unit (cell state). The cell state
unit value is only changed in a linear manner as can be seen
in Fig. 5.

FIGURE 5. LSTM cell.

A standard LSTM layer includes three gates, an input
gate (it ), a forget gate (ft ) and an output gate (ot ). The input
gate decides the amount of input xt to the control unit ct .
The forget gate adjusts the value of the previous control unit
ct−1. The output gate controls the extent to which the value in
memory is used to compute the output activation block. The
gates are implemented with a sigmoid function which outputs
a value between 0 and 1 to control information flow in an
LSTM layer. An output value of 0 means no input passing
through the gate, where an output of 1 means all the input is
passing through the gate. The mathematical representation of
the gates is given as:

Input gate : it = σ
(
W i
x · xt +W

i
h · ht−1 + bi

)
, (8)

Forget gate : ft = σ
(
W f
x · xt +W

f
h · ht−1 + bf

)
, (9)

Output gate : ot = σ
(
W o
x · xt +W

o
h · ht−1 + bo

)
, (10)

whereWx ,Wh and b are the input weights, recurrent weights
and the biases in an LSTM cell, respectively. σ is the sigmoid
function. xt and ht−1 are the input and the preceding hidden
cell state values, respectively. Before generating the hidden
cell state ct a temporary value ĉt is generated first as follows:

Temporary cell state : ĉt= tanh
(
W c
x ·xt+W

c
h · hi−1 + bc

)
,

(11)

where tanh is the hyperbolic tangent. The updated hidden
state is obtained from:

Cell state : ct = it � ĉt + ft � ct−1, (12)

where � denotes the element-wise multiplication. Finally,
the output of the LSTM block can be expressed as:

LSTM block output : ht = ot � tanh(ct ). (13)
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From the above expressions, it can be concluded that the
gates play a vital role in controlling the historical information
travelling in the LSTM networks.

E. GATED RECURRENT UNIT (GRU)
The GRU is another RNN variant [43]. The main difference
between GRU and LSTM is the GRU has only two gates,
reset and update gates whereas an LSTM has three gates
(namely input, output and forget gates). A GRU cell controls
information flow similar to an LSTM cell, but without having
to use a memory unit. It exposes the full hidden content
without any control.

FIGURE 6. GRU cell.

For a time series dataset prediction, GRU has comparable
performance to LSTMbut it is computationallymore efficient
(has a less complex structure). The GRU structure can be seen
in Fig. 6 and the gate parameters rt and zt are given as:

Reset gate : rt = σ
(
W r
h · ht−1 +Wrx · xt + br

)
, (14)

Update gate : zt = σ (Wzh · ht−1 +Wzx · xt + bz) , (15)

where, σ is the sigmoid activation function.

Memory : ĥt = tanh (Whh(rt � hi−1)+Whx · xt + bh) , (16)

The output of the GRU block can be expressed as:

Final output : ht = (1− zt )� ht−1 + zt � ĥt , (17)

F. PERFORMANCE EVALUATION METRICS
In order to assess the suitability of the proposed models in
predicting the DC, several metrics to measure the forecasting
accuracy are considered. One of the most popular metrics is
the root mean square error (RMSE) [44]. It can be defined as:

RMSE =

√√√√ 1
N

N∑
k=1

(
yk − ŷk

)2
, (18)

where yk and ŷk are the actual and predicted DC values,
respectively. N is the number of predictions. The RMSE
provides a higher weight for large errors because of the square
term. This makes it more appealing for applications where
large errors are not desirable.

Another important considered metric is the R Squared (R2)
metric or the coefficient of determination [45]. The R2 takes

FIGURE 7. Grid search flowchart [28].

values of the range between −∞ and 1 making it easier to
interpret. Values of R2 closer to 1 indicate that the model
accounts for most of the variance in the dataset.

R2 = 1−

∑N
k=1

(
yk − ŷk

)2∑N
k=1 (yk − ȳk)

2
, (19)

where ȳk is the mean of the actual DCs.
The mean average percentage error (MAPE) [46], pro-

vides an accuracy measure in terms of relative error. It is
given by:

MAPE =
1
N

N∑
k=1

∣∣∣∣yk − ŷkyk

∣∣∣∣, (20)

In this work, the RMSE,R2 andMAPEmetrics will be used
to assess the performance of prediction algorithms.

V. HYPER-PARAMETERS OPTIMISATION
The hyper-parameters selection is an essential task in the
design of DNNs. But the selection of optimum hyper-
parameters is typically not possible [47], thus the grid-search
(GS) approach is used to find the optimum parameters. In this
section, we consider the optimisation grid search utilised for
MLP and LSTM neural networks.

A. GRID SEARCH
The performance of a DNN is highly influenced by the selec-
tion of the hyper-parameters. In order to properly tune the
DNN, an exhaustive grid-search is utilised to find the optimal
hyper-parameters’ values. Fig. 7, demonstrates the flowchart
of the proposed GS algorithm. The architecture of MLP is
utilised for explanation purposes. Nevertheless, the same con-
cept is also applicable to LSTM networks. A total of 256 (44)
possible combinations for each DNN model are searched
thoroughly using GS. The following hyper-parameters are
optimised:

1) The first hyper-parameter to optimise is the depth of the
neural network (i.e., the number of hidden layers). The
number of hidden layers is set to 1, 2, 3, and 4. Adding
more layers increases the model’s ability to interpret
inputs to outputs, but would result in overfitting with
the training dataset if too many layers were added.
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2) The number of neurons or selecting the width of the
neural network. In theory, a very wide neural network
with a single hidden layer can obtain the same accuracy
as a multi-layer deep neural network at the expense
of increasing the complexity of training. In this work,
the widths of 10, 30, 50 and 80 are considered for all
hidden layers.

3) The activation function transforms the summed
weighted inputs to the output. The following linear
and non-linear activation functions are considered in
this work: sigmoid, ReLU, tanh and linear which are
applied to the third layer (output layer). As for the case
of hidden layers, the activation function for MLP is
selected to be always ReLU and for LSTM and GRU,
a tanh activation function is selected.

4) The last hyper-parameter is the dropout rate. Dropout is
used as a regularisation method where some number of
layer output is randomly ignored. The dropout is only
applied to neurons of the hidden layer. The dropout rate
is selected to have values of 1.0, 0.9, 0.75, and 0.5,
where 1.0 means no dropout is considered.

TABLE 1. Hyper-parameters settings for the grid search.

Table 1 summarises the considered hyper-parameters for
LSTM. The reason for selecting the MSE loss function is that
the MSE loss function is used to ensure the trained model has
no outlier predictions with large errors. As can be appreciated
from Fig. 4, the DC distribution is highly skewed where the
high DC values (between 0.6 and 1) have a small proba-
bility of occurrence and should be considered as outliers.
In resource allocation, high DC values are important (since
these moments are those where a more proactive resource
allocation is required). Therefore, errors coming from these
outliers should be weighted more (a larger error will provide
a larger penalty). Hence, the MSE is selected instead of other
loss functions such as mean absolute error (MAE) which
provides equal error weights.

The selection of DNN models for MLP and LSTM can be
summarised as follows First, grid search of hyper-parameters
as shown in Fig. 7 is applied. The top 4models with the small-
est average errors (in terms of RMSE, R2 and MAPE) are
selected and the box plot is generated based on the selected
models. The model with the highest consistency is selected
(i.e., smallest median error and variance). The same model
is considered for both LSTM and GRU as the two models

are associated with time series prediction and we wanted to
compare their accuracy.

VI. DATASET PREPROCESSING AND
FEATURES EXTRACTION
This section describes the dataset preparations for supervised
DNN as well as features extraction for improved prediction
accuracy. Normalisation and scaling are usually applied to
time series datasets before the training step so they have
values between 0 and 1. This has the advantage of speeding
up the convergence [48].

A. WALK FORWARD VALIDATION
The supervised training dataset is made using the sliding
window validation approach. The dataset is divided into slid-
ing windows. Each time step of the training dataset will be
walked one step at a time (one step here is a single DC value).
The sliding window size is set to the number of historical
DC measurements. The walk forward could be thought of
as in a real-life scenario where at every time a spectrum
measurement is done and used to forecast the following DC.

B. FEATURES ENGINEERING
Features engineering is the process of extracting features
from the raw dataset via pattern discovery [49]. In many
cases, the estimated spectrum usage window needs to be
longer than the original dataset. In a time series dataset,
this means the original data set needs to be averaged and
downsampled (i.e., block averaging). The problem becomes
more significant as the window size increases (with both K
and Tc being larger) as averaging would flatten the input
dataset rendering a proactive prediction significantly more
complex. A solution based on including several input features
besides the downsampled DC (8c) is proposed to enable a
proactive prediction.

In this work, we employ several statistical and information-
theoretic measures recommended in [28], [29] and [50] to
capture the relationship between past and future DC val-
ues (8c). The engineered features are calculated for each
block of duration Tc. For instance, the sample variance

is found as from Var(8) =
∑K

k=1(8k−8c)2

K . Other fea-
tures include, slope between the last two DC components
(slope = 8K − 8K−1), last DC value (i.e., 8K ), skewness
(3rd moment) and kurtosis (4th moment).

The autocorrelation function of the series (x_acf1),
the first-differenced series (diff1_acf1), the twice-differenced
series (diff2_acf1) and residuals autocorrelation (e_acf1).
The sum of squares of the first 10 autocorrelation coefficients
for series is x_acf10, for the first difference diff1_acf10,
for the second order difference diff2_acf10 and residuals
e_acf10. The spectral entropy is the Shannon entropy. The
crossing_points is the number of times the temporal data-set
crosses the median line. For flat_spots, the temporal data-
set is divided into ten equally blocks then the largest run-
length represents the value of flat_spots. The nonlinearity
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coefficient (nonlinear) is estimated from a modified
Teräsvirta’s test [51], it will have large values when the
temporal data-set is nonlinear and small values when linear.

The strength of linearity and the strength of curvature are
estimated from the coefficients of the orthogonal quadratic
regression. The x_pacf5, diff1x_pacf5 and diff2x_pacf5,
where pacf5 stands for the sum of the first 5 partial autocor-
relation coefficients for the temporal data-set, the differenced
series and the second-order differenced data-set, respec-
tively. As for lumpiness and stability estimation, the tempo-
ral data-set is divided into tiled (non-overlapping) windows,
the lumpiness is the variance of the mean of the tiled win-
dows and stability is the variance of the variance of the tiled
windows.

The arch_stat is the R2 value of an autoregressive model
of order specified as lags estimated from the Lagrange Mul-
tiplier test of Engle for autoregressive [52]. The measure of
trend strength (trend) is found from Seasonal-Trend decom-
position using LOESS [53]. Finally the variance of the leave-
one-out variances of the remainder provides the strength of
spikiness. Hence the input vector to the DNN will have the
shape of z× a, where z is the number of look back points and
a = 28 is the number of input features. Table 2 summarises
the included input features.

Even though [50] included several other statistical and
information-theoretic features, from our experience we found
them to have a minimal impact on the obtained results. Also,
including not useful features will only impact the model
training duration without improving the prediction accuracy.
Thus, they will not be included. The computed input features
are estimated for each DC block. More details on the consid-
ered features can be found in [28], [29] and [50].

C. MODEL INTERPRETATION
Explainable AI (XAI) is an emerging research field in
machine and deep learning with the purpose of offering trans-
parent interpretability for models. XAI main aim is to allow
users to trust and manage successfully next-generation AI
solutions [30].

One XAI approach is to utilise SHAP values to break down
predictions to show the impact of each input feature on the
output. SHAP is a unified approach to explain the output of
any machine learning model. SHAP connects game theory
with local explanations. The need to explain the output is
important for DC prediction to limit the required parameters
for accurate prediction and thus reducing model complexity.
For the prediction problem, a variation of the original SHAP
method called the DeepExplainer is optimised for explaining
DNN models. More details on SHAP implementation can be
found at [54].

VII. EXPERIMENTAL EVALUATION
A. MODELS EVALUATION
In this work, Python 3 language is used alongside Keras [55]
API with TensorFlow [56] as backend. We tested the

TABLE 2. Considered input features.

performance of the Adam [57] and Nadam [58] optimisers
and our results indicated that Adam tends to provide slightly
better accuracy. Therefore, Adam is the optimiser that is
used in this work. Noteworthy, Adam optimiser is by far
the most commonly utilised optimiser in the current deep
learning domain [8]. Given that neural networks models are
stochastic, hence, different weights will result at each training
time even when the same model configuration is utilised.
In order to address themodel accuracy evaluation, eachmodel
configuration is evaluated multiple times (10 times in our
case) with the same random seed values (from 1 to 10). The
reported accuracy is averaged across the evaluations. A mini-
batch size of 128 is used for the training and the learning
rate = 0.001. All simulations were conducted with a maxi-
mum number of epochs set to 300. From the 13 measurement
days, 6 days were used for training, 2 days for validation and
5 days for testing. An early stopping algorithm is utilised to
prevent overfitting (during training stage) with an early stop
value of 10 iterations [59]. At each prediction point, we firstly
assume that 10 previous DC measurements are present when
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FIGURE 8. Accuracy for multiple MLPs (MLP1 4× 50 tanh, MLP2 4× 80 tanh, MLP3 4× 30 tanh, MLP4 2× 50 tanh), with Tc = 30 seconds and only
DC as input feature. (a) RMSE, (b) R2, (c) MAPE.

FIGURE 9. Accuracy for multiple LSTMs (LSTM1 = 4× 50 sigmoid, LSTM2 4× 80 sigmoid, LSTM3 3× 80 sigmoid, LSTM4 4×80 tanh), with
Tc = 30 seconds and only DC as input feature. (a) RMSE, (b) R2, (c) MAPE.

TABLE 3. Best hyper-parameters for MLP and LSTM.

making the prediction (note that later a 15 measurements/lags
will be considered as it provided better prediction accuracy).
The results from ARIMA and DNNs are presented and com-
pared in this section to predict the occupancy rate for different
Tc values. The model performance was assessed by calculat-
ing RMSE, R2 and MAPE metrics for the testing dataset.

First, we would like to investigate the impact of hyper-
parameters optimisation on DNN performance. Figs. 8 and 9
show the prediction accuracy in terms of RMSE, R2 and
MAPE for MLP and LSTM, respectively. The best four
models with the highest average accuracy are selected to be
plotted in order to investigate which model performs bet-
ter. Tc is set for 30 seconds and only DC input feature is
considered at the input layer for DNN models. The middle
line inside each box represents the median accuracy value
and the lower and upper edges represent the first (Q1) and
third (Q3) quartiles, respectively. The end of whiskers shown

on the lower and upper sides are the minimum and maximum
values, respectively. Accuracy values larger than Q3 + 1.5
(Q3−Q1) or smaller than Q1− 1.5(Q3−Q1) are considered
as outliers [60]. Fig. 8 shows the performance of four MLP
models with different architectures. The first consideredMLP
(MLP1) contains 4 hidden layers, 50 neurons in each layer
and tanh activation function at the output layer. MLP2 con-
tains 4 hidden layers, 80 neurons in each layer and tanh acti-
vation function at the output layer. MLP3 contains 4 hidden
layers, 30 neurons in each layer and tanh activation function at
the output layer. MLP4 contains 2 hidden layers, 50 neurons
in each layer and tanh activation function at the output layer.
MLP1 is found to provide the best outcome with no dropout
for all of the considered metrics (i.e., RMSE, R2 and MAPE).
As can be appreciated, MLP1 andMLP2 have similar median
values, but with smaller variance and less complexity for
MLP1. This observation is consistent for RMSE, R2 and
MAPE. Thus MLP1 configuration will be considered in the
rest of this work and will be referred to as only MLP instead
of MLP1.
The considered configurations for LSTM shown in Fig. 9

are as follows: LSTM1, LSTM2 and LSTM4 contain 4 hidden
layers with 50, 80 and 80 neurons and sigmoid, sigmoid
and tanh activation functions, respectively. LSTM3 contains
3 hidden layers with 80 neurons and sigmoid activation
function. As can be concluded, LSTM4 provided the highest
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TABLE 4. Comparison for LSTM and different input features.

TABLE 5. Comparison for LSTM and different lags size.

accuracy for the three metrics when compared to other LSTM
models. Thus, LSTM4 configuration will be considered in the
rest of this work and will be referred to as only LSTM instead
of LSTM4. For GRU, a similar configuration is adopted
to compare the performance with the LSTM architecture.
Table 3 summarises the best hyper-parameters settings for
MLP and LSTM.

Table 4 shows a comparison between different LSTMmod-
els against different Tc durations. 10 historical points (lags)
are considered available at the model input with LSTM con-
figuration as in LSTM4. Only DC stands for only having DC
values at the input of the DNN. With features means beside
the DC values, all statistical and information-theoretic are
considered (explained in detail in Section VI-B). Taking first
difference means, the input data have been differenced for
prediction (i.e., the prediction will calculate the differenced
DC 8c,t − 8c,t−1 value then correct it before estimating
the accuracy metrics). Features and first difference means all
input features and differenced DC values are considered.

As can be shown Table 4, for short-term DC prediction
(Tc < 3 min), the proposed model of including first differ-
ence and several input features performs the best in terms
of RMSE and R2 when compared with other approaches.
As for MAPE, considering only the first difference with
no input features will have better predictions. While this
result contradicts with RMSE and R2 values, it suggests that
including features and first difference minimises large errors
as RMSE and R2 provide a higher penalty for larger errors.
Thus, including both input features and first difference are
considered.

While it is suggested in the literature that only using fea-
tures without taking difference is sufficient, Table 4 demon-
strates otherwise. In order to obtain the best performance
out of the LSTM model for dynamic access system, both
statistical features and taking the first difference are required
to improve the prediction accuracy. This observation holds
for short DC prediction (Tc < 3 min).

FIGURE 10. Prediction for Tc = 30 seconds.

Next, the effect of different lags (how many DC steps are
available for each prediction) is investigated. Table 5 is con-
sidered for LSTM with first difference and all input features.
When lags = 2, the model only has access to two previous
DC values when trying to predict the future one. As expected,
for this case, the accuracy is the worst for all three metrics.
While having a large number of lags = 20, the prediction
accuracy starts to degrade. The best performance is obtained
when 15 lags are available at the input. Thus, it can be
concluded that having 15 observations provides a reasonable
trade-off between model complexity and accuracy and it will
be considered in the rest of this work.

Next, we would like to compare the performance of pro-
posed and normal deep neural networks with traditional
ARIMA and SARIMA. The RW results are provided to
serve as a baseline for obtained accuracy of different predic-
tion methods. For ARIMA configuration, ARIMA(4,1,1) is
found to provide the highest accuracy. While for SARIMA
(4, 1, 1)× (1, 1, 1)s provided the best results as explained in
Section IV-B. Table 6, shows the prediction accuracy for all
the considered methods in this work for different Tc values.
ARIMA and SARIMA are generated using MATLAB [61].
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TABLE 6. The achieved performance metrics, Table 6(a), 6(b) and 6(c) shows the RMSE, R2 and MAPE metrics, respectively.

FIGURE 11. Prediction for Tc = 30 seconds.

SARIMA accuracy is only provided for Tc ≥ 1 minutes as
prediction with SARIMA requires a substantially long time
when using large seasonality values. For instance, for predic-
tion with Tc = 1 minute, the seasonality will be 1440 for
SARIMA.

As can be appreciated, ARIMA and SARIMA have similar
prediction accuracy with a slight advantage for ARIMA. This
is as ARIMA is more suited for short prediction periods,
short-term prediction is more random and high DC values
occur mostly in short bursts, making seasonality relationship
insignificant. SARIMA performs better for larger Tc ≥ 5
minutes values which are out of the scope of this work.

MLP, GRU and LSTM stand for using DNN models
with only DC available at the input. While GRU-proposed
and LSTM-proposed have all input features (statistical and
information-theoretic) at the DNN input. An interesting

FIGURE 12. Prediction for Tc = 3 minutes.

observation is that using GRU and LSTM alone does not
provide any benefit over ARIMA. But adding several engi-
neered input features improves the prediction accuracy for
both LSTM and GRU by an average of 5% for RMSE
metric when Tc = 30 seconds as an example. The pro-
posed GRU and LSTM have similar performances with a
slight advantage to LSTM in terms of accuracy for RMSE
and R2. But GRU generally has better accuracy in terms of
MAPE. It can be concluded that the proposed feature-based
LSTM and GRU architectures provide better performance for
short-term prediction, as they provide an advantage when
doing short-term prediction. This can be explained as the
network traffic is correlated over short durations, therefore,
having more features assist the model to improve prediction
accuracy.

Figs. 10 and 11 show the forecasts of the considered mod-
els over Tc = 30 seconds for different time indices. As can
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FIGURE 13. Relative importance of each feature used for prediction in case of no difference is
considered for LSTM model with 15 lags and Tc = 30 seconds.

FIGURE 14. Relative importance of each feature used for prediction in
case of no difference is considered.

be seen, the proposed feature-based models (for both LSTM
and GRU) show better ability to adapt to sharp fluctuations in
the actual DC (measured) than ARIMA, MLP, original GRU
and LSTM. This makes the proposed model suitable for DC
predictions with high fluctuations.

Fig. 12 shows the forecasts of the considered models over
Tc = 3 minutes. The measured DC shows a small volatility
trend. Nevertheless, the proposed LSTM and GRU methods
still perform well.

B. EXPLAINABLE ARTIFICIAL INTELLIGENCE
In order to get an overview of the impact of various input
features for the model, we have plotted the SHAP values
for all input features used at the DNN input. Fig. 13 shows
the absolute feature importance for all steps, the y-axis is
the importance of each feature and their total sum is 1. The
input features are sorted from left to right in a descending
order of importance. The most important feature is past DC
values to determine futureDC values (i.e., (8c,t−1 . . . 8c,t−L)

to decide 8c,t , where L is number of lags), followed by
(diff1_acf1). Fig. 14, shows the SHAP values sorted accord-
ing to importance (from top to bottom) for the case of
first step only (first lag). Only 12 input features are plotted
as the rest of the features have a negligible contribution.
Fig. 14 shows the distribution of impacts for every feature
on the model output. The colour represents the feature value
(red means high, blue means low). This reveals for example,
high historical DC values (shown in red) tend to increase the
predicted DC value. Fig. 14 also implies that larger linearity,
variance and last value tend to increase the predicted DC
value of the DNN model. While smaller linearity, variance
and last value tend to decrease the predicted DC value.
Fig. 15 shows the absolute feature importance with the

first difference DC and taking the effect of all lags. The
most important feature is also past DC values to determine
future DC values. But this time, it has 20% importance
instead of 35%. The decrease in DC importance is shared by
other features, by having their importance slightly increased.
Moreover, linearity and last value (8k ) are the second and
third features in importance, respectively. While in Fig. 13,
diff1_acf1 and var features are the second and third features
in importance. As it can be concluded from Figs. 13 and 15,
taking the first difference changes the relationship between
historical and future DC values, thus features importance
would vary based on the considered preprocessing approach.

Fig. 16 shows the SHAP values sorted according to impor-
tance for the case of taking first difference DC for the first
step only and for 12 input features. Fig. 16 implies that high
historical DC values (shown in red) tend to result in a decrease
of the predicted DC. This is explained as the model tries to
predict the differenced DC (8c,t−8c,t−1). Thus, it has a neg-
ative effect on the predicted values. Fig. 16 also implies that
large linearity values increase the predicted differenced DC,
while large values of x_acf1 reduce the predicted differenced
DC values.
Based on features with importance of 5% or larger from

Fig. 15, we use them as input features (5 features namely DC,
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FIGURE 15. Relative importance of each feature used for prediction in case of first order difference is
considered for LSTM model with 15 lags and Tc = 30 seconds.

FIGURE 16. Relative importance of each feature used for prediction in
case of first order difference is considered.

linearity, last_val, diff1x_pacf5 and x_acf1) for the LSTM
model to predict the differenced DC. This approach provides
the benefits of reducing the DNN complexity from using all
input features.

The complexity of a DNN can be measured by differ-
ent approaches. One approach is based on the number of
trainable parameters in a DNN [62]. Here, the complexity
is measured as a function of trainable parameters, since the
algorithm runtime scales linearly with it. Thus, less number of
parameters means a less complex DNN. The second proposed
method (LSTM-proposed 2) reduces the number of trainable
parameters by 4% from when all input features are used
(LSTM-proposed) as can be seen in Table 7.

Another important complexity parameter is the time com-
plexity of a DNN. In general, time complexity can be divided
into training (offline) and prediction (online) times. The pre-
diction time also includes any preprocessing or data cleaning.
For dynamic spectrum access systems, prediction time is
more essential as once the DNN model is trained, it can be
used directly with no changes to the architecture. In practice,

TABLE 7. Proposed models complexity and accuracy.

FIGURE 17. Prediction for Tc = 30 seconds.

new DC measurements will be available from sensors. The
first step is to do preprocessing and features extraction.
Shorter preparation time means the faster the data will be
available at the DNN input. For the case of considering
all 28 input features, the preprocessing time is an average
of 9.3 seconds. While when only considering the top 5 fea-
tures, the required time is 2.98 seconds. Hence a shorter
time for data preparation. This indicates the importance of
understanding each feature’s contribution to the prediction
outcome to select only useful features. The execution time
for this part was conducted using Google Colaboratory [63]
and [64].

Lastly, Fig. 17 shows the performance of the second pro-
posed model based on 5 input features (LSTM-proposed 2)
versus normal LSTM (Only DC at input) and LSTM with
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all input features (LSTM-proposed). The second proposed
model shows the ability to adapt to high fluctuations in a
similar manner to having all input features but with less
complexity.

VIII. CONCLUSION
A proactive spectrum usage estimator is essential for flexible
next generation-systems. In this work, a feature-based DNN
for short-term DC prediction is proposed and investigated.
Several prediction durations for DC are investigated and
analysed using several performance assessment metrics to
have a full understanding for the performance of the con-
sidered prediction methods. First, we studied the prediction
accuracy of several DNN models (MLP, LSTM and GRU)
and showed that the MLP model had the worst performance
among the considered DNN models and LSTM/GRU are
more suited for time series data. Then, we showed that using
deep learning algorithms directly (only DC at the input for
the DNN) does not provide noticeable prediction improve-
ment with respect to ARIMA/SARIMA models. Moreover,
only considering the first difference still does not provide
significant improvement to the prediction accuracy over tra-
ditional temporal prediction algorithms such as ARIMA.
The best performance from LSTM/GRU is obtained when
both the first difference and engineered input features are
considered. Thus, several engineered input features are con-
sidered at the input of LSTM and GRU to improve the
prediction accuracy. Moreover, to increase the trust in the
obtained results from DNN, SHAP values are used to demon-
strate the contribution of each input feature on the resulting
DNN output (i.e., DC). While previous occupancy rate has
the highest weight in deciding future values of occupancy
rate, including other input features also contribute to fur-
ther improving the prediction accuracy and makes the DNN
model more versatile in handling large variations in DC
values. Finally, based on the level of importance, a simpli-
fied model was shown to provide comparable accuracy to
using all input features. Future work will include the inves-
tigation of other deep learning models such as Bi-LSTM
and Bi-GRU with multiple input features and the analysis
of their potential capability to improve the DC prediction
accuracy.
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