
Received May 31, 2021, accepted June 7, 2021, date of publication June 11, 2021, date of current version June 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3088124

Task Offloading and Resource Scheduling
in Hybrid Edge-Cloud Networks
QI ZHANG , LIN GUI , (Member, IEEE), SHICHAO ZHU , AND XIUPU LANG
Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Corresponding author: Lin Gui (guilin@sjtu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61671295, in part by the Shanghai Key
Laboratory of Digital Media Processing and Transmission under Grant 6141B060303, and in part by the National Fundamental Research
Key Project of China under Grant JCKY2017203B082.

ABSTRACT Computation-intensive mobile applications are explosively increasing and cause computation
overload for smart mobile devices (SMDs). With the assistance of mobile edge computing and mobile cloud
computing, SMDs can rent computation resources and offload the computation-intensive applications to
edge clouds and remote clouds, which reduces the application completion delay and energy consumption
of SMDs. In this paper, we consider the mobile applications with task call graphs and investigate the task
offloading and resource scheduling problem in hybrid edge-cloud networks. Due to the interdependency
of tasks, time-varying wireless channels, and stochastic available computation resources in the hybrid
edge-cloud networks, it is challenging to make task offloading decisions and schedule computation fre-
quencies to minimize the weighted sum of energy, time, and rent cost (ETRC). To address this issue,
we propose two efficient algorithms under different conditions of system information. Specifically, with
full system information, the task offloading and resource scheduling decisions are determined based on
semidefinite relaxation and dual decomposition methods. With partial system information, we propose a
deep reinforcement learning framework, where the future system information is inferred by long short-term
memory networks. The discrete offloading decisions and continuous computation frequencies are learned
by a modified deep deterministic policy gradient algorithm. Extensive simulations evaluate the convergence
performance of ETRC with various system parameters. Simulation results also validate the superiority of the
proposed task offloading and resource scheduling algorithms over baseline schemes.

INDEX TERMS Mobile edge computing, task offloading, resource scheduling, optimization algorithm, deep
reinforcement learning.

I. INTRODUCTION
With the ever-increasing growth of smart mobile devices
(SMDs), e.g., smart phones and Internet of Things devices,
various computation-intensive applications are unprece-
dented development such as virtual reality, autonomous driv-
ing, and interactive gaming [1], [2]. Most of the applications
are quite demanding in terms of real-time processing and high
energy efficiency. However, SMDs have limited computation
capabilities and battery capacities, and cannot effectively
execute computation-intensive applications locally. Mobile
cloud computing (MCC) has been considered as a prominent
technology to alleviate the computation workloads of SMDs

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

by offloading applications to remote clouds [3]. However,
offloading applications from SMDs to remote clouds will
incur long backhaul delay, which is usually unacceptable
for latency-sensitive applications. Mobile edge computing
(MEC) [4], [5] is presented to overcome the challenge by
providing cloud computing capability in close proximity
to SMDs. MEC provides low-latency computation service,
whereas MCC has enough computation resources and can
serve more SMDs. Hence, MCC and MEC are complemen-
tary and can assist SMDs in executing computation-intensive
applications cooperatively [6], [7]. In this paper, the hier-
archical MCC and MEC networks are referred to as
hybrid edge-cloud networks. From the perspective of SMDs,
offloading applications to edge clouds and remote clouds
reduces the execution delay and energy consumption but

85350
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-6799-1839
https://orcid.org/0000-0003-3452-3347
https://orcid.org/0000-0003-1776-8983
https://orcid.org/0000-0003-1118-7109

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

increases the monetary cost of using cloud servers [8], [9].
It is crucially important for SMDs to reduce energy, time,
and monetary cost by efficient computation offloading and
resource scheduling schemes.

There are two popular computation offloadingmodels used
in existing literature on MCC and MEC, which are referred
to as binary offloading [10] and partial offloading [11], [12],
respectively. For the binary offloading model, mobile appli-
cations are indivisible and have to be executed as a whole.
As for the partial offloading model, the input data of mobile
applications can be divided into several independent parts and
executed at SMDs and cloud servers in parallel. Nevertheless,
many mobile applications consist of multiple computation
modules [13]–[15]. These computationmodules with specific
functions are referred to as tasks in this paper. For example,
a video classification application from Facebook consists of
multiple tasks including video track, audio track, count seg-
ments and so on [13]. In [14], the vehicular navigation appli-
cation is decomposed into four tasks including controller,
map, traffic and path. In Alibaba data trace, more than 75%
of applications are involved with dependent tasks [15]. The
tasks of an application that can be modeled by a task call
graph are referred to as inter-dependent tasks in this paper.
The dependency among tasks cannot be ignored, because
before one task is executed, all its immediate predecessors
must have already been completed. On the other hand, we can
take advantage of the dependency relationships among tasks
and design efficient task offloading and resource scheduling
schemes to reduce the execution cost of applications.

However, there are still some challenges to address. Firstly,
due to the dependency relationships among tasks, the offload-
ing decision and computation resource scheduling of pre-
vious tasks will make influences on succeeding tasks, that
is, the task offloading and resource scheduling decisions are
coupled among tasks. Secondly, considering the time-varying
property of wireless channels and available computation
resources, the task offloading and resource scheduling is
highly dynamic. The computation tasks of an application
might be executed on multiple computation nodes. Further-
more, offloading tasks to edge clouds and remote clouds
decreases the energy and time cost of SMDs but incurs extra
monetary cost. To balance the cost of energy, time, and rent,
the task offloading and resource scheduling decisions should
be carefully determined.

In this paper, we investigate the task offloading and
resource scheduling problem in hybrid edge-cloud net-
works. The dependency relationships among tasks and the
time-varying property of wireless channels and available
computation resources are taken into consideration. To min-
imize the weighted sum of energy, time, and rent cost,
a mixed-integer nonlinear programming (MINLP) problem
is formulated, which is generally NP-Hard. We propose two
efficient algorithms to solve the MINLP problem under the
conditions of full and partial system information. Specifi-
cally, when full system information is given, the wireless
channel states and available computation resources at each

task’s execution time are known before making task offload-
ing and resource scheduling decisions. In this case, we trans-
form the original problem into an equivalent quadratic
constrained quadratic programming (QCQP) and obtain a
suboptimal solution by semidefinite relaxation (SDR) and
dual decomposition methods. Under the condition of partial
system information, only the system information of current
task is given. Without full system information, we design a
deep reinforcement learning (DRL) framework to learn the
task offloading and resource scheduling decisions. The long
short-term memory (LSTM) networks are further introduced
into the DRL framework to predict the time-series system
states.

A. MAIN CONTRIBUTIONS
In summary, the main contributions of this paper are listed as
follows.

• We investigate the task offloading and resource schedul-
ing problem for inter-dependent tasks in hybrid
edge-cloud networks. The energy consumption, comple-
tion delay, and computation resource rental are jointly
considered. A weighted sum cost minimization problem
is formulated, which is an NP-hard problem with dis-
crete task offloading variables and continuous resource
scheduling variables.

• We propose two efficient algorithms to solve the
weighted sum cost minimization problem under differ-
ent conditions of system information. With full system
information, we present an approximate task offload-
ing algorithm based on SDR technique and then derive
the computation frequencies given offloading deci-
sions. With partial system information, we design a
DRL framework with LSTM networks to predict the
time-varying system information. The discrete offload-
ing decisions and continuous computation frequencies
are learned by a modified deep deterministic policy
gradient algorithm (DDPG).

• We evaluate the convergence of proposed algorithms
and the impacts of system parameters on the weight
sum cost. Numerical results also validate the superiority
of proposed algorithms compared to conventional task
offloading and resource scheduling methods.

The remainder of this paper is organized as follows. We
review the related works in Section II. The system model and
problem formulation are presented in Section III. The task
offloading and resource scheduling algorithm with full sys-
tem information is proposed in Section IV. The task offload-
ing and resource scheduling algorithm with partial system
information is detailed in Section V. Simulation results are
given in Section VI. Finally, we conclude this paper in
Section VII.

II. RELATED WORKS
In recent years, computation offloading in hybrid edge-cloud
networks have attracted significant attention from academia.

VOLUME 9, 2021 85351

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

Wang et al. in [16] considered hierarchical mobile edge com-
puting in IoT networks. To achieve the high computational
throughput and low energy consumption, a large timescale
workload prediction method was presented based on LSTM
networks, while a small timescale optimization algorithm
was proposed to allocate computation and communication
resources. Ahn et al. in [17] introduced an edge-cloud inter-
working framework for video analysis applications. This
framework aimed to minimize the monetary cost of cloud
resource usage while meeting the deadlines for video analysis
applications. In [18], the authors formulated a constrained
multi-objective computation offloading model to minimize
time and energy consumption simultaneously. Three evolu-
tionary algorithms were designed to solve Pareto fronts based
on the push and pull search framework. The authors in [19]
studied the cost-aware computation offloading and resource
allocation problem for latency limited services. A heuris-
tic solution was proposed based on the single-user optimal
solution. The previous works have studied the hierarchical
computation offloading problems under various performance
metrics, such as energy consumption and completion time.
However, most of the existing works on hybrid edge-cloud
networks neglected the differentiated rent cost of edge clouds
and remote cloud. The total cost of energy consumption, com-
pletion time and resource rent has also not been investigated
in these works.

Several recent studies have focused on the depen-
dency relationships among tasks. Wang et al. in [20]
developed a deep sequential model to address the chal-
lenges of task dependency and dynamic scenarios in MEC.
A sequence-to-sequence neural network was utilized to infer
the optimal task offloading policy. [3] and [21] investi-
gated the energy-efficient computation offloading schemes
for mobile cloud computing and multicore-based mobile
devices, respectively. The authors in [3] optimized com-
putation offloading selection, clock frequency control, and
transmission power allocation by using the optimization
decomposition approach. [21] presented a heuristic offload-
ing decision and task scheduling algorithm including the
initial scheduling phase and task reassignment phase. In [22],
the authors studied the target helper selection and bandwidth
allocation scheme for complex task-flows in UAVs-assisted
edge computing. The on-policy and off-policy algorithms
were designed tominimize the averagemission response time
based on multi-agent reinforcement learning. The authors
in [23] investigated the dependent task offloading and service
caching problem in mobile edge computing. For a special
case with a homogeneous MEC, the proposed favorite suc-
cessor based algorithm obtained an approximate solution
with a constant competitive ratio. The existing literature has
designed different task offloading and resource allocation
algorithms for inter-dependent tasks. However, these works
did not consider hierarchical network structures and the mon-
etary cost of using edge servers and cloud servers. Thus,
the mentioned algorithms cannot be applied to the hybrid
edge-cloud networks.

Different from previous works, we consider the depen-
dency relationships among tasks and differentiated rent prices
of edge clouds and remote cloud in hybrid edge-cloud net-
works. To decrease SMDs’ costs of completing applications,
the weighted sum of energy consumption, completion time,
and resource rent is presented as the performance metric.
Considering the novel performance metric, dependency rela-
tionships among tasks, we propose two efficient task offload-
ing and resource scheduling schemes for hybrid edge-cloud
networks with full and partial system information.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM OVERVIEW
As shown in Fig. 1, we consider a hybrid edge-cloud network
with multiple SMDs, edge clouds, and a remote cloud. SMDs
connect to edge clouds through wireless links between access
points (APs) and SMDs. The uploaded data received by APs
can also be forwarded to the remote cloud via the Internet.
The average network throughput between APs and remote
cloud is denoted as Rw. We assume each SMD associates with
one edge cloud and walks randomly in the coverage of this
edge cloud during application execution.

FIGURE 1. The architecture of a hybrid edge-cloud network with five
SMDs, two edge clouds, and a remote cloud.

Each SMD has a computation-intensive application that
can be partitioned into K inter-dependent tasks. Fig.2 gives
an example of a video processing application with multiple
inter-dependent tasks [13]. The dependencies of tasks can
be represented by a task call graph G = (K, E), where K
is the vertex set i.e., task set, and E is the edge set among
tasks. Some previous works have studied the algorithms
for generating task call graphs. For example, the authors
in [13] considered the balance of parallelism and simplic-
ity and proposed a dynamic algorithm to generate task call
graphs for video processing applications. The task call graphs
are designed by professional software designers of appli-
cation service providers according to the functionalities of

85352 VOLUME 9, 2021

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

FIGURE 2. The task call graph of a video processing application.

applications and precedence constraints of tasks, instead of by
SMDs or clouds. When applications are installed on SMDs,
task call graphs are also stored in SMDs. Task call graphs
can be modeled by adjacency matrixes that only take up
a few storage resources of SMDs. As assumed in previous
works [20]–[23], task call graphs are known by SMDs in
this paper and we focus on the task offloading and resource
scheduling scheme for inter-dependent tasks. We denote the
workload of task k as wk . The size of data transmitted from
task j to task k is denoted as dj,k . Each task can be executed
at local, edge cloud or remote cloud, which are denoted by
N = {l, a, r}. Denote x lk , x

a
k , x

r
k ∈ {0, 1} as the offloading

decision variables of task k . x lk = 1, xak = 1 and xrk = 1
indicate task k is executed at local, edge cloud, and remote
cloud, respectively. To guarantee one task is executed only
once, we have x lk + x

a
k + x

r
k = 1.

To simplify the formulation, we introduce two virtual tasks
0 andK+1 for applications as the entry and exit tasks. Task 0
is the immediate predecessor of task 1 and task K + 1 is
the immediate successor of task K . The workloads of task
0 and K + 1 are zeros. The task set is denoted by K =
{0, 1, 2, . . . ,K ,K+1}. Because the applications are initiated
and terminated at SMDs, task 0 and task K + 1 need to be
executed locally, i.e., x l0 = 1, x lK+1 = 1.

B. ENERGY CONSUMPTION MODEL FOR SMDs
The energy consumption of SMDs consists of the energy con-
sumed on local execution and task offloading. Based on the
dynamic voltage and frequency scaling technique [24], SMDs
can adjust CPU-cycle frequencies to decrease the energy
consumption of local execution. Denote the CPU-cycle fre-
quency assigned to task k as fk . The energy consumption of
local execution can be calculated by E lk = κwk (fk)

2, where κ
is the effective capacitance coefficient depending on the chip
architecture [12]. Then the total energy consumption of local
execution can be written as:

El =
∑
k∈K

x lkκωk (fk)
2 . (1)

When task k is offloaded to edge clouds or remote cloud,
frequency division multiple access (FDMA) is used in the
uplink transmission from SMDs toAPs, which fullymitigates
the uplink interference [12]. Assume task j is an immediate
predecessor of task k and it is executed locally. According

to the Shannon formula, the uplink data rate from task j to
task k is

Ruj,k = Wu log2

(
1+

Plhuj,k
n0Wu

)
, (2)

where Wu is the uplink bandwidth, Pl is the transmit power
of SMDs, huj,k is the time-varying uplink channel gain, n0 is
the power spectral density of additive Gaussian noise. The
energy consumption of uplink transmission can be written as

Eu =
∑
k∈K

∑
j∈pred(k)

x lj (1− x
l
k)Pldj,k

Ruj,k
, (3)

where pred(k) denotes the set of immediate predecessors
of task k . The total energy consumption of one SMD when
executing an application is E = El + Eu, i.e.,

E =
∑
k∈K

x lkκωk (fk)
2
+

∑
k∈K

∑
j∈pred(k)

x lj (1− x
l
k)Pldj,k

Ruj,k
.

C. DELAY MODEL FOR COMPLETING APPLICATIONS
Assume that task j is executed at an edge cloud or remote
cloud, task k is an immediate successor of task j and it is
executed locally. Similar to the uplink transmission scheme,
the downlink data rate from task j to task k can be formulated
as

Rdj,k = Wd log2

(
1+

Pahdj,k
n0Wd

)
, (4)

where Wd is the downlink bandwidth, Pa is the transmit
power of APs, hdj,k is the channel power gain from APs to
SMDs. Due to the dependencies among tasks, one task cannot
be executed until all its immediate predecessors have already
been completed. We denote a path of an application as a
sequence of tasks and edges from the entry task to the exit
task. For example, {0, 1, 2, 8, 9} is a path of an application
as shown in Fig.6(a). To derive the completion delay of an
application, we first define the completion delay of a path.
Definition 1: The completion delay of path i is defined as

the sum of execution delay and transmission delay from entry
task to exit task. Suppose the immediate predecessor of task
k in path i is task j, task j and task k are executed at m ∈ N
and n ∈ N . Then, the completion delay of path i is given by

Ti =
∑
k∈pi

wk
fk
+

∑
m∈N

∑
n∈N

∑
k∈pi\{0}

xmj x
n
k dj,kTj,k , (5)

VOLUME 9, 2021 85353

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

where pi is the task set in path i. Tj,k is the transmission delay
per bit of data from j to k, which is calculated as

Tj,k =



1
Ruj,k

, if x lj = 1, x lk = 0

1

Rdj,k
, if x lj = 0, x lk = 1

1
Rw
, if xaj x

r
k + x

r
j x

a
k = 1

1
Ruj,k
+

1
Rw
, if x lj = 1, xrk = 1

1

Rdj,k
+

1
Rw
, if xrj = 1, x lk = 1

0, otherwise.

(6)

Since an application is completed when all tasks are exe-
cuted, the completion delay of an application is equal to the
maximal completion delay of all paths, i.e.,

T = max
i∈I
{Ti}, (7)

where I is the path set of an application.

D. PRICE MODEL FOR TASK OFFLOADING
When tasks are offloaded to edge clouds or remote cloud,
SMDs need to rent computation resources from clouds.
The edge clouds and remote cloud provide computation
resources to SMDs with different prices. We consider a lin-
ear price function to represent the cost of renting compu-
tation resources [25]. Denote the unit price of computation
resources at edge clouds and remote cloud as ηa and ηr ,
respectively. The total payment cost of each SMD about
renting computation resources is given by

C =
∑
k∈K

(xak η
a
+ xrkη

r)fk . (8)

E. PROBLEM FORMULATION
In this paper, we consider the energy-time-rent cost (ETRC)
as the performance metric for each SMD, which is defined
as the weighted sum of the energy consumption, completion
time, and rent cost. We aim to determine where tasks should
be executed and how much computation resources should be
scheduled such that the ETRC of each SMD is minimized.
Based on the above system model, the ETRC minimization
problem for each SMD is formulated as a constrained opti-
mization problem.

P1 : min
x,f

ϕeE + ϕtT + ϕcC (9a)

s.t. T ≤ Tmax (9b)

0 ≤ xnk fk ≤ F
n
k , ∀n ∈ N , ∀k ∈ K (9c)∑

n∈N
xnk = 1, ∀k ∈ K (9d)

x l0x
l
K+1 = 1, (9e)

xnk ∈ {0, 1} , ∀n ∈ N , ∀k ∈ K, (9f)

where x = {xk |k ∈ K} = {xnk |k ∈ K, n ∈ N }, f =
{fk |k ∈ K}. ϕe, ϕt , ϕc are weights of energy consumption,
completion time, and rent cost, respectively. Constraint (9b)
ensures the completion time of an application is bounded
by the deadline Tmax. Constraint (9c) guarantees the com-
putation resource scheduled for each task does not exceed
available CPU cycle frequencies. Constraint (9d) implies that
each task should be executed at only one computation node.
Constraint (9e) ensures that virtual task 0 and K + 1 are
executed at local. Constraint (9f) indicates xnk are binary
variables.

IV. TASK OFFLOADING AND RESOURCE SCHEDULING
WITH FULL SYSTEM INFORMATION
We first study the task offloading and resource scheduling
algorithm with full system information, i.e., the wireless
channel conditions and available computation resources of
all tasks are given. The ETRC minimization problem P1 is
a mixed-integer nonlinear programming problem, which is
NP-hard. In order to reduce the computational complexity,
we first transform P1 into an equivalent QCQP problem.
Then, through the SDR approach, the QCQP problem can
be converted into a standard convex problem which can be
solved using convex optimization toolbox CVX [26]. Finally,
we recover the binary offloading decisions by Gaussian ran-
domization procedure and derive the solution of computation
resource scheduling.

A. EQUIVALENT TRANSFORMATION INTO
A QCQP PROBLEM
The complete time T is a maximum function of multiple
paths, which might be a nonsmooth function. In order to
transform the original nonsmooth objective function to a
smooth one, we first introduce a new slack variable t and
move the path delay Ti from objective function to the con-
straint: Ti ≤ t,∀i ∈ I. Next, we replace the integer con-
straint (9f) with quadratic constraints

xnk (x
n
k − 1) = 0, ∀k ∈ K, n ∈ N .

Let gk = (fk)2, uk = 1
fk
, T uj,k =

1
Ruj,k

, T dj,k =
1
Rdj,k

, Tw = 1
Rw

,

the original problem P1 can be equivalent to the following
problem:

P2 : min
x,f,t

ϕe
∑
k∈K

x lkκwkgk

+ ϕe
∑
k∈K

∑
j∈pred(k)

x lj (1− x
l
k)Pldj,kT

u
j,k

+ ϕt t + ϕc
∑
k∈K

(
xak η

a
+ xrkη

r) fk (10a)

s.t.
∑
k∈pi

wkuk +
∑
m∈N

∑
n∈N

∑
k∈pi\{0}

xmj x
n
k dj,kTj,k

≤ t, ∀i ∈ I (10b)∑
k∈pi

wkuk +
∑
m∈N

∑
n∈N

∑
k∈pi\{0}

xmj x
n
k dj,kTj,k

85354 VOLUME 9, 2021

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

≤ Tmax, ∀i ∈ I (10c)

(fk)2 − gk = 0, ∀k ∈ K (10d)

fkuk = 1, ∀k ∈ K (10e)

xnk (x
n
k − 1) = 0, ∀n ∈ N , ∀k ∈ K, (10f)

(9c), (9d), (9e). (10g)

Then, we transform problem P2 into a standard QCQP
problem. First, we define auxiliary vectors yk and vectorize
the variables and parameters in P2 as follows.

yk =
[
x lk , x

a
k , x

r
k , fk , gk , uk

]
, (11)

y = [y0, y1 · · · , yK+1, t]T . (12)

The objective function in P2 can be rewritten as

yTAey+ yTBey+ yTAcy+ (bt)T y, (13)

where

Ae
=


Ae
0,0

Ae
1,1

. . .

Ae
K+1,K+1

0

 ,

Ae
k,k =

1
2

04×4 aek 04×1
(aek)

T 0 0
01×4 0 0

 ,
aek =

[
ϕeκwk , 01×3

]T
,

Be =


0

0 · · · Bej,k
...

. . .
...

Bek,j · · · 0
0

 ,

Bej,k =
1
2
ϕePldj,kT uj,k

[
0 1 1 01×3

05×6

]
,

Bek,j =
(
Bej,k

)T
,

Ac
=


Ac
0,0

Ac
1,1

. . .

Ac
K+1,K+1

0

 ,

Ac
k,k =

1
2

03×3 ack 03×2
(ack)

T

02×3 03×3

 ,
ack =

[
0, ϕcηa, ϕcηr

]T
, bt =

[
01×6(K+2), ϕt

]T
.

The constrain (10b) in P2 can be rewritten as

yTApiy+ yTBpiy− [e6(K+2)+1]T y ≤ 0, ∀i ∈ I (14)

where

Api =


Api
0,0

Api
1,1

. . .

Api
K+1,K+1

0

 ,

Api
k,k =


1
2

[
05×5 apik
(apik)

T 0

]
, if k ∈ pi

06×6, otherwise.

,

apik = [wk ,wk ,wk , 01×3]T ,

Bpi =


0

0 · · · Bpi
j,k

...
. . .

...

Bpi
k,j · · · 0

0

 ,

Bpi
k,j =

(
Bpi
j,k

)T
,

ek is a [6(K +2)+1]×1 standard unit vector with the k-th
element being 1.

The constrain (10c) in P2 can be rewritten as

yTApiy+ yTBpiy− Tmax ≤ 0, ∀i ∈ I. (16)

The constrain (10d) in P2 can be rewritten as

yT diag(e6k+4)y− (e6k+5)T y = 0, ∀k ∈ K. (17)

The constrain (10e) in P2 can be rewritten as

yTAu
ky = 1, ∀k ∈ K, (18)

Bpi
j,k =



dj,k
2



0
1
Ruj,k

1
Ruj,k
+

1
Rw

01×3

1

Rdj,k
0

1
Rw

01×3

1

Rdj,k
+

1
Rw

1
Rw

0 01×3

03×1 03×1 03×1 03×3


, if k ∈ pi

06×6, otherwise.

(15)

VOLUME 9, 2021 85355

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

where

Au
k =



0
. . .

Au
k,k

. . .

0
0


,

Au
k,k =

1
2

[
05×5 auk
(auk)

T 0

]
, auk = [0, 0, 0, 1, 0]T .

The constrain (10f) in P2 can be rewritten as

yT diag(ej)y− (ej)T y = 0,

∀j ∈ {6k + 1, 6k + 2, 6k + 3}, ∀k ∈ K. (19)

The constrain (9c) in P2 can be rewritten as

0 ≤ yTAn
ky ≤ F

n
k , ∀n ∈ N , ∀k ∈ K, (20)

where

An
k =



0
. . .

An
k,k

. . .

0
0


,

An
k,k =

1
2

03×3 ank 03×2
(ank)

T

02×3 03×3

 ,

ank =


[1, 0, 0]T , if n = l

[0, 1, 0]T , if n = a

[0, 0, 1]T , otherwise.

The constrain (9d) in P2 can be rewritten as

(bsk)
T y = 1, ∀k ∈ K, (21)

where bsk = e6k+1 + e6k+2 + e6k+3,∀k ∈ K.
The constrain (9e) in P2 can be rewritten as

yTAvy = 1, (22)

where Av is a [6(K + 2) + 1] × [6(K + 2) + 1] matrix,
the elements [1, 6(K + 1) + 1] and [6(K + 1) + 1, 1] are
0.5, and other elements are 0.

By further defining z = [yT 11×1]T , P2 is transformed
into the following equivalent QCQP formulation:

P3 : min
z

zTQAz (23a)

s.t. zTQpiz ≤ 0, ∀i ∈ I (23b)

zTQtiz ≤ Tmax, ∀i ∈ I (23c)

zTQg
kz = 0, ∀k ∈ K (23d)

zTQu
kz = 1, ∀k ∈ K (23e)

zTQjz = 0,

∀j ∈ {6k + 1, 6k + 2, 6k + 3}, ∀k ∈ K (23f)

0 ≤ zTQn
kz ≤ F

n
k , ∀n ∈ N , ∀k ∈ K (23g)

zTQs
kz = 1, ∀k ∈ K (23h)

zTQvz = 1, (23i)

z � 0, (23j)

where

QA
=

Ae
+ Be + Ac 1

2
bt

1
2
(bt)T 0

 ,
Qpi =

 Api + Bpi −
1
2
e6(K+2)+1

−
1
2
[e6(K+2)+1]T 0

 ,
Qti =

[
Api + Bpi 0

0 0

]
,

Qg
k =

diag(e6k+4) −
1
2
e6k+5

−
1
2
eT6k+5 0

 , Qu
k =

[
Au
k 0
0 0

]
,

Qj =

diag(ej) −
1
2
ej

−
1
2
eTj 0

 , Qn
k =

[
An
k 0
0 0

]
,

Qs
k =

 0
1
2
bsk

1
2
(bsk)

T 0

 , Qv
=

[
Av 0
0 0

]
.

However, the equivalent QCQP problem P3 is still non-
convex and hard to solve. To make problem P3 tractable,
we adopt the SDR technique and convert P3 into a standard
convex problem.

B. SEMIDEFINITE RELAXATION
Define Z = [zzT](6(K+2)+2)×(6(K+2)+2) and then we have
zTQz = Tr(QZ) with rank(Z) = 1. The non-convex con-
straint rank(Z) = 1 is not considered temporarily and the
problem P3 is relaxed into the following problem:

P4 : min
Z

Tr(QAZ) (24a)

s.t. Tr(QpiZ) ≤ 0, ∀i ∈ I (24b)

Tr(QtiZ) ≤ Tmax, ∀i ∈ I (24c)

Tr(Qg
kZ) = 0, ∀k ∈ K (24d)

Tr(Qu
kZ) = 1, ∀k ∈ K (24e)

Tr(QjZ) = 0,

∀j ∈ {6k + 1, 6k + 2, 6k + 3}, ∀k ∈ K (24f)

0 ≤ Tr(Qn
kZ) ≤ F

n
k , ∀n ∈ N , ∀k ∈ K (24g)

Tr(Qs
kZ) = 1, ∀k ∈ K (24h)

Tr(QvZ) = 1, (24i)

Z[6(K + 2)+ 2, 6(K + 2)+ 2] = 1, (24j)

Z � 0. (24k)

85356 VOLUME 9, 2021

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

Now, we have transformed the original problem P1 to a
convex optimization problem P4, which could be solved in
polynomial time using standard CVX tools [26].

C. EXTRACTING OFFLOADING DECISIONS
Denote the optimal solution ofP4 asZ∗. BecauseZ∗ is solved
by dropping the rank constraint rank(Z) = 1, we need to
recover offloading decisions x of original problem P1 from
Z∗ such that the offloading decisions x are in the feasible
region of P1. If Z∗ is of rank one, the offloading decisions
x are in the feasible region of P1 naturally and we have

Z∗ = z∗z∗T =
[
y∗

1

] [
y∗T 1

]
, (25)

where y∗ =
[
y∗0, y

∗

1 · · · , y
∗

K+1, t
∗
]T . According to the defini-

tion of yk (11), we can extract the optimal offloading decision
x∗k for task k in the diagonal of Z∗ where the subscripts are
from (6k+1) to (6k+3). Computation frequencies f ∗k can be
extracted in the diagonal ofZ∗ where the subscript is (6k+4).

If the rank of Z∗ is larger than one, we propose an algo-
rithm based on Gaussian randomization [27] to obtain the
approximate offloading decisions of P1. First, we extract
3×3 sub-matrixes {Zk |k ∈ [1, 2, . . . ,K]} from Z∗ where the
elements’ subscripts are from (6k + 1) to (6k + 3). Then, for
any k ∈ [1, 2, . . . ,K], we generate V random 3 × 1 vectors
ξ vk from a multivariate Gaussian distribution with zero mean
and covariance Zk , i.e., ξ vk ∼ N(03×1,Zk),∀v ∈ {1, . . . ,V }.
In order to satisfy the constraint (9d) and (9f), we recover the
offloading decision xvk by setting the largest element in ξ vk to
be one, and the other elements are set to be zero.

D. COMPUTATION RESOURCE SCHEDULING ALGORITHM
GIVEN TASK OFFLOADING DECISIONS
When the task offloading decisions xvk = {x

l
k , x

a
k , x

r
k },∀k ∈

K are recovered, we next calculate the corresponding com-

putation frequencies f vk . Let χ
e
=

∑
k∈K

∑
j∈pred(k)

xlj (1−x
l
k)Pldj,k

Ruj,k
,

χ ti =
∑

m∈N
∑

n∈N
∑

k∈pi\{0} x
m
j x

n
k dj,kTj,k , and χck =

xak η
a
+ xrkη

r . Given xvk , the χ
c, χe, and χ t are all constants,

then the problem P2 can be rewritten as follows.

P5 : min
f,t

ϕe

[∑
k∈K

x lkκwk (f
v
k)

2
+ χe

]
+ ϕt t

+ ϕc
∑
k∈K

f vk χ
c
k (26a)

s.t.
∑
k∈pi

wk
f vk
+ χ ti ≤ t, ∀i ∈ I (26b)

∑
k∈pi

wk
f vk
+ χ ti ≤ Tmax, ∀i ∈ I (26c)

0 ≤ f vk ≤ F
n
k , ∀k ∈ K. (26d)

It can be verified that P5 is a convex problem. However,
due to coupling constraints (26b) and (26c), it is complex to

obtain the optimal computation frequencies based on KKT
conditions. Next, we resort to the dual decomposition method
to solve P5. The partial Lagrangian of P5 can be written as

L(f, t, λ) = ϕe
[∑
k∈K

x lkκwk (f
v
k)

2
+ χe

]
+ ϕt t

+ϕc
∑
k∈K

f vk χ
c
k +

∑
i∈I

λi

∑
k∈pi

wk
f vk
+ χ ti − t


+

∑
i∈I

µi

∑
k∈pi

wk
f vk
+ χ ti − Tmax


=

∑
k∈K

[
x lkϕ

eκwk (f vk)
2
+ ϕcf vk χ

c
k

]

+

∑
i∈I

(λi + µi)
∑
k∈pi

wk
f vk
+

(
ϕt −

∑
i∈I

λi

)
t

−

∑
i∈I

µiTmax +
∑
i∈I

(λi + µi)χ ti + ϕ
eχe

= L(f,λ,µ)+ L(t,λ)−
∑
i∈I

µiTmax

+

∑
i∈I

(λi + µi)χ ti + ϕ
eχe,

where λ = {λi|i ∈ I},µ = {µi|i ∈ I} are the Lagrangian
multipliers. The dual function can be obtained as follows.

g(λ,µ) = inf
f
L(f,λ,µ)+ inf

t
L(t,λ)−

∑
i∈I

µiTmax

+

∑
i∈I

(λi + µi)χ ti + ϕ
eχe. (27)

As subproblem P5 is convex and Slater’s condition holds,
strong duality can be guaranteed. Hence we can obtain the
optimal computation resource scheduling by solving the fol-
lowing dual problem.

max
λ,µ

g(λ,µ), s.t. λi, µi ≥ 0, ∀i ∈ I. (28)

Due to the convexity of L(f,λ,µ) and L(t,λ), we can
obtain inff L(f,λ,µ) and inft L(t,λ) by stationary point and
boundary values Fnk . Let the derivative of L(f,λ,µ), L(t,λ)
with respect to f vk , t be zero, we have

2ϕex lkκwk f
v
k + ϕ

cχck −
∑
i∈I(k)

(λi + µi)wk
(f vk)

2 = 0,

ϕt −
∑
i∈I

λi = 0,

VOLUME 9, 2021 85357

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

where I(k) is the path set which includes k-th task. Then we
have

f vk =



min

 3

√∑
i∈I(k)(λi + µi)

2ϕeκ
,F lk

 , if x lk=1

min


√
wk
∑

i∈I(k)(λi + µi)

ϕcηa
,Fak

 , if xak =1

min


√
wk
∑

i∈I(k)(λi + µi)

ϕcηr
,F rk

 , if xrk =1

(29)∑
i∈I

λi= ϕ
t . (30)

To solve the master optimization problem (28) about λ and
µ, we adopt the projected subgradient method to update the
dual variables λ and µ. Firstly, for each i ∈ I, λi and µi are
updated by corresponding subgradients as follows.

λ̃τ+1i = λτi + α
τ
i

∑
k∈pi

wk
f vk
+ χ ti − t

 , (31)

µτ+1i =

µτi + βτi
∑
k∈pi

wk
f vk
+ χ ti − Tmax

+ , (32)

where [x]+ = max{x, 0}, ατi and βτi are the diminishing step
sizes of λi and µi in τ -th iteration respectively and satisfy
the square summable but not summable rule [28]. Secondly,
to guarantee the feasibility of dual variables, the updated λ̃τ+1i
should be projected into the feasible region given in (30). We
calculate the dual variable λτ+1i by minimizing the square of
Euclidean distance between {λ̃τ+1i , i ∈ I} and {λτ+1i , i ∈ I}
in the feasible region as follows.

P6 : min
λτ+1i

∑
i∈I

(
λτ+1i − λ̃τ+1i

)2
(33)

s.t.
∑
i∈I

λτ+1i = ϕt , (34)

λτ+1i ≥ 0, ∀i ∈ I. (35)

This problem is convex and the optimal λτ+1i can
be obtained by Lagrange multiplier method. The partial
Lagrangian of P6 can be written as

L(λ, ν) =
∑
i∈I

(
λτ+1i − λ̃τ+1i

)2
+ ν

(∑
i∈I

λτ+1i − ϕt

)
.

Let ∂L(λ,ν)
λτ+1i

= 0 and ∂L(λ,ν)
ν
= 0, we can obtain

λτ+1i = λ̃τ+1i −
1
|I|

(∑
i∈I

λ̃τ+1i − ϕt

)
, (36)

where |I| is the number of all paths in an application. Due to
λτ+1i ≥ 0,∀i ∈ I, Hence, we have

λτ+1i =

[
λ̃τ+1i −

1
|I|

(∑
i∈I

λ̃τ+1i − ϕt

)]+
. (37)

Based on the above analysis, given the offloading deci-
sion xvk , we can obtain the solution of computation resource
scheduling by (29), (32), and (37) iteratively.

Finally, given the offloading decision {xvk |k ∈ K}, and
corresponding computation frequency {f vk |k ∈ K}, we can
obtain the value of objective function (9a), denoted by U v.
By searching the minimum value of objective function U v

over all V randomizations, we can obtain the solution x, f
to P1. We summary the SDR-based task offloading and
resource scheduling (STORS) algorithm in Alg.1.

V. TASK OFFLOADING AND RESOURCE SCHEDULING
WITH PARTIAL SYSTEM INFORMATION
In Section III, we propose a task offloading and resource
scheduling algorithm given full system information, includ-
ing all states of the channel gain and available computation
resource. However, in practice, it is not trivial to obtain the
accurate full system information in advance. In this section,
we introduce DRL technology to solve the time-dependent
task offloading and resource scheduling problem. We aim to
learn the offloading decisions x and computation frequencies
f only with instantaneous system information of current task.
Due to the offloading decisions x are discrete and com-

putation frequency decisions f are continuous, conventional
reinforcement learning methods, such as Q-learning, DDPG,
are difficult to learn the hybrid action space directly. In this
section, we propose a DRL-based algorithm to solve this
problem. First, we transform the task offloading and resource
scheduling problem into a Markov decision process (MDP)
and define the states, actions, and reward function of the
MDP.

A. MDP MODELING
1) States: The system state sk when executing task k is

jointly determined by the dependencies, workload, data
size of task k , the channel gains, and the available
computation resources, which is defined as follows.

sk = {Gk ,wk ,dj,k ,hjk ,F lk ,F
a
k ,F

r
k } ∈ S,

where Gk is the k-th row of G, which represents the
adjacent relationships of task k . dj,k = {dj,k |j ∈
pred(k)}, hj,k = {huj,k , h

d
j,k |j ∈ pred(k)}.

2) Actions: For each task k , ak = {nk , fk} ∈ A consists of
the offloading decision nk and computation frequency
fk . nk ∈ N indicates the computation node where task
k is executed. By setting xnkk = 1 and other elements
in xk are zeros, xk can be derived from nk . The action
space is hybrid where nk is the discrete action and fk is
the continuous action.

85358 VOLUME 9, 2021

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

Algorithm 1 SDR-Based Task Offloading and Resource
Scheduling Algorithm (STORS)

Input: G,wk , dj,k , huj,k , h
d
j,k ,Pl,Pa,Wu,Wd , n0,Rw,Fnk ,

ηa, ηr , ϕe, ϕt , ϕc,∀k ∈ K,∀j ∈ pred(k)
Output: x, f

Initialization: λ0i =
ϕt

|I| , µ
0
i = 0, ε = 10−2, α0i = 1,

β0i = 1.
1: Solve the optimal solution Z∗ of SDP problem P4.
2: if rank(Z∗) = 1 then
3: for k = 1 to K do
4: Extract x∗k in the diagonal ofZ

∗ where the subscripts
are from (6k + 1) to (6k + 3).

5: Extract f ∗k in the diagonal of Z∗ where the subscript
is (6k + 4).

6: end for
7: Obtain x = {x∗k |∀k ∈ K}, f = {f ∗k |∀k ∈ K}.
8: else
9: Extract 3×3 sub-matrixs {Zk |k ∈ [1, 2, . . . ,K]} from

Z∗ where the elements’ subscripts are from (6k+1) to
(6k + 3).

10: for v = 1 to V do
11: for k =1 to K do
12: Generate ξ vk ∼ N(03×1,Zk).
13: Recover xvk by setting the largest element in ξ vk to

be one and the other elements to be zero.
14: end for
15: repeat
16: Calculate {f vk |∀k ∈ K} and U v

τ via (29) and (9a).
17: Update λ̃τ+1i , µτ+1i and λτ+1i by (31), (32)

and (37).

18: Update step sizes ατ+1i =
α0i
τ
, βτ+1i =

β0i
τ
.

19: until |U v
τ − U

v
τ−1| < ε

20: if U v
τ < U∗τ then

21: Update U∗τ = U v
τ , x = {x

v
k |∀k ∈ K}, f =

{f vk |∀k ∈ K}.
22: end if
23: end for
24: end if
25: return x, f

3) Reward : The reward function maps the state space S
and action space A to a real number, i.e., r : S ×
A → R. To reflect the ETRC of task k in the objec-
tive function (9a), we define the reward obtained from
completing task k as

rk = −ϕex lkκwk (fk)
2

−ϕe
∑

j∈pred(k)

x lj (1− x
l
k)Pldj,kT

u
j,k

−ϕt
(
wk
fk
+ max

j∈pred(k)
{dj,kTj,k}

)
−ϕc

(
xak η

a
+ xrkη

r) fk − ζk [T − Tmax]+, (38)

where ζk is a penalty parameter. When completion
delay T is larger than deadline Tmax, the reward
rk is reduced by ζk [T − Tmax]+, which makes the
DRL-based algorithmmeet the deadline constrain (9b).

B. DRL-BASED TASK OFFLOADING AND RESOURCE
SCHEDULING ALGORITHM
In reinforcement learning, an agent’s behavior is determined
by a policy π , which is a stationary distribution of actions
given states. The goal of one SMD is to learn a policy that
maximizes the expected return from the entry task to exit task
by interacting with the environment. The action-value func-
tion (also named Q function) is used in many reinforcement
learning algorithms to evaluate the performance of a policy.
Before defining the action-value function, we first give the
definition of the return. The return Gk is the total discounted
reward starting from task k ,

Gk =
K+1∑
j=k

γ j−krj, (39)

where γ ∈ [0, 1] is the discounted factor. The action-value
function Qπ (sk , ak) is defined as the expected return begin-
ning from state sk , taking action ak , and following policy π
thereafter, which is given by

Qπ (sk , ak) = Eπ (Gk |sk , ak). (40)

1) ACTOR-CRITIC BASED HYBRID ACTION GENERATION
Because the action ak consists of discrete part nk and con-
tinuous part fk , it is intractable to learn the hybrid action by
existingmethods [20], [24].We divide the hybrid action space
into two parts and propose a modified DDPG algorithm to
determine the offloading decision nk and computation fre-
quency fk . The modified DDPG algorithm is designed based
on the actor-critic architecture [29]. For each task, the actor
is used to generate continuous computation frequency fk by
a deterministic policy network µ(sk |θµ), where θµ is the
parameters of the policy network. The critic evaluates the
output of the actor and also generates the discrete action
nk by an action-value network Q(sk , fk , nk |θQ), where θQ is
the parameters of the action-value network. The action-value
network Q(sk , fk , nk |θQ) takes state sk and computation fre-
quency fk as inputs, and outputs threeQ values related to com-
putation nodes l, a, and r . Then, the computation node with
the maximumQ values is selected as the optimal computation
node, i.e.,

x n̂kk =

{
1, if n̂k = argmax

nk
Q(sk , fk , nk |θQ)

0, otherwise.
(41)

The maximum Q value related to computation node n̂k
represents the evaluation of the learned offloading decision
and computation frequency. Hence, it is reasonable to regard
the maximum Q value as the Q value of the policy µ, i.e.,

Q(sk , fk , n̂k |θQ) = argmax
nk

Q(sk , fk , nk |θQ). (42)

VOLUME 9, 2021 85359

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

2) ACTOR-CRITIC NETWORK UPDATING
Because the computation frequencies f obtained from the pol-
icy network µ are continuous, we update the policy network
µ based on DDPG algorithm [30]. Define the expected return
beginning from entry task as J (µ) = E(G0|µ). According
to the deterministic policy gradient theorem [31], the policy
gradient ∇Jθµ (µ) can be calculated by

∇Jθµ (µ) = E
[
∇fQ(sk , fk , n̂k |θQ)∇θµµ(sk |θµ)

]
. (43)

To guarantee the samples are independently and identically
distributed when updating neural networks, we use a replay
buffer to store the transitions (sk , ak , rk , sk+1) and update the
policy networkµ by samplingmini-batch transitions from the
replay buffer. The sampled policy gradient is given by:

∇Jθµ (µ)≈
1
M

∑
k∈M

[
∇fQ(sk , fk , n̂k |θQ)∇θµµ(sk |θµ)

]
, (44)

whereM is the cardinality ofM, i.e., the number of sampled
transitions.

Next, we elaborate on the process of updating the critic
network. The optimal Q function is the maximum expected
return, which can be reformulated by the Bellman equation:

Q(sk , fk , n̂k)

= E[rk + γ max
nk+1

Q(sk+1, fk+1, nk+1)|sk , fk , n̂k], (45)

where sk+1, fk+1, nk+1 are the state, computation frequency,
and offloading decision of task k + 1, respectively. It implies
the optimal critic policy should maximize the expected
value of rk + γ max

nk+1
Q(sk+1, fk+1, nk+1). Let yk = rk +

γ max
nk+1

Q(sk+1, fk+1, nk+1|θQ) denote the target value in each

iteration. The critic network can be updated by minimizing
the following loss function:

L(θQ) = E[(yk − Q(sk , fk , n̂k |θQ))2]. (46)

Similar to the previous actor network, the critic network
is also updated by sampling mini-batch transitions from the
replay buffer. Then, by differentiating the loss function L(θQ)
with respect to the parameters θQ, the gradient for updating
the critic network is given by

∇θQL(θ
Q) ≈

1
M

∑
k∈M

[(yk − Q(sk , fk , nk |θQ))

∇θQQ(sk , fk , nk |θ
Q)]. (47)

The DRL-based learning framework is shown in Fig.3. As
in DDPG [30], we use Target actor network and Target critic
network to calculate the target Q value Q(sk+1, fk+1, nk+1),
which can stabilize the training process. The architectures
of Target actor network and Target critic network are the
same to actor network and critic network, respectively. The
weights θµ

′

and θQ
′

of target networks are modified by soft
updates, i.e.,

θµ
′

← βθµ + (1− β)θµ
′

, (48)

FIGURE 3. The DRL-based learning framework.

θQ
′

← βθQ + (1− β)θQ
′

. (49)

where β � 1. The solid lines in Fig.3 indicate the actor-critic
based action generation and the dash lines show the process
of actor-critic network updating.

3) NEURAL NETWORK ARCHITECTURE
Due to the temporal dependence, tasks are executed sequen-
tially in time series. One of the widely used methods to
learn the temporal dependence of sequential observations
is the recurrent neural network (RNN) [32], [33]. Because
it contains a self-recurrent loop that facilitates transporting
information from the previous state to the next state. LSTM
is a specially designed RNN model which contains the mem-
ory block for long-timescale prediction, we use the LSTM
model [34] to learn the temporal states of hybrid edge-cloud
networks.

Fig.4 illustrates the neural network architecture of the
actor network. The Input layer is responsible for taking
the state as input and passing them to the following layers.
The LSTM layer is responsible for learning the dynamics
of channel gains and available computation resources, and
predicting them in the near future. The FC layer is responsible

FIGURE 4. The architecture of actor network.

85360 VOLUME 9, 2021

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

for learning the actor policy and mapping the outputs of
LSTM layers to computation frequencies. The Output layer is
responsible for output the learned computation frequencies.

FIGURE 5. The architecture of critic network.

Fig.5 illustrates the neural network architecture of the critic
network, which is similar to the architecture of previous
actor network. The differences between critic network and
actor network are mainly in input and output aspects. The
input of critic network includes state and learned computation
frequency from actor network. The output of critic network
is the Q values with respect to computation nodes.

We summary the DRL-based task offloading and resource
scheduling algorithm (DTORS) in Alg.2. To balance the
exploration and exploitation tradeoff, we utilize the ε-greedy
policy to select the computation nodes. Ornstein-Uhlenbeck
(OU) random noise Ok is added to actor policy for
exploration.

VI. SIMULATION RESULTS
In this section, we first evaluate the convergence performance
of proposed STORS algorithm and DTORS algorithm under
various system parameters, then four task offloading and
resource scheduling schemes are compared with the proposed
algorithms in terms of ETRC performance.

A. SIMULATION SETUP
We simulate a hybrid edge-cloud network with 20 SMDs,
4 edge clouds and a remote cloud. The ETRC performance
is evaluated by calculating the average ETRC of all SMDs.
SMDs are randomly distributed in the coverage of edge
clouds of which the coverage radiuses are 100 meters [35].
SMDs walk randomly in these circle regions and the dis-
tances between SMDs and edge clouds vary randomly from
10 meters to 100 meters. The initial locations of SMDs are
uniformly distributed in these circle coverage regions. The
moving direction is uniformly drawn from [−π, π] at each
time slot. The moving velocity of each SMD is updated by
the Gaussian Markov mobility model [35]: vt+1 = ρvt +
(1 − ρ)v̄ + δ

√
1− ρ2φ, where vt is the moving velocity

at time slot t , ρ ∈ [0, 1] indicates the memory level, v̄ ∈
{2, 3, 4, 5, 6}m/s and δ = 0.2 is the mean value and standard

Algorithm 2 DRL-Based Task Offloading and Resource
Scheduling Algorithm (DTORS)

Input: G,wk , dj,k , huj,k , h
d
j,k ,Pl,Pa,Wu,Wd , n0,Rw,Fnk ,

ηa, ηr , ϕe, ϕt , ϕc,∀j ∈ pred(k)
Output: x, f

Initialize actor network µ(s|θµ) and critic network
Q(s, f , n|θQ) with weights θµ and θQ.
Initialize target actor networkµ(s|θµ

′

) and critic network
Q(s, f , n|θQ

′

) with weights θµ
′

← θµ and θQ
′

← θQ.
Initialize replay buffer < and OU random process O.

1: for episode = 1 to 0 do
2: Receive initial observation state s1.
3: for k = 1 to K do
4: Obtain the offloading decision of task k: fk =

µ(sk |θµ)+Ok according to the current actor policy
µ(sk |θµ) and exploration noise Ok .

5: With probability ε select a random nk , otherwise
select nk = argmax

n
Q(s, f , n|θQ). Calaulate xnk

by (41).
6: Execute action nk , fk , obtain reward rk and next state

sk+1.
7: Store transition (sk , fk , nk , rk , sk+1) in <.
8: Sample a random mini-batch of M transitions from

<.
9: Update actor network and critic network by (44)

and (47).
10: Update the target networks by (48) and (49).
11: end for
12: end for
13: return x, f

variation of velocity, φ followsGaussian distributionN (0, 1).
We generate moving trajectories for SMDs based on the
Gaussian Markov mobility model.

The uplink bandwidthWu and downlink bandwidthWd are
2MHz. The maximum transmit powers of SMDs and APs are
100mWand 1W [24], respectively. The path-loss model from
SMDs to edge clouds is assumed to be 127+30 log10 d , where
d is in kilometers. The small-scale channel power gains are
modeled as independent and identically distributed Rayleigh
fading with unit mean value. The power spectral density
n0 = −174 dBm/Hz [36]. Considering the long propagation
distances between edge clouds and remote cloud, the average
network throughput Rw assigned to each SMD is 5Mbps [7].

The maximal computation resources of SMDs, edge
clouds, and remote cloud are 2 GHz, 20GHz, 100GHz,
respectively. The CPU cycles wk (Mega cycles) and data size
dj,k (KB) of tasks follow Gaussian distributions N (µc, 100)
andN (µd , 50) [3]. The unit price ηr is 0.9×10−10 [37]. The
computing efficiency parameter κ = 10−27 [36]. Without
losing generality, the ratio of ϕe and ϕt is usually set to 1:1
[3], [37]. The value of ϕc is 1 to 5 times that of ϕe [37]. In the
simulations, we first set ϕe = 1, ϕt = 1, ϕc = 5 and evaluate
the ETRC performance under various network parameters.

VOLUME 9, 2021 85361

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

FIGURE 6. Three task call graphs in the simulations.

FIGURE 7. The ETRC v.s. stopping criterion ε,learning rate ε, and batch size M.

In the proposedDTORS algorithm, the LSTM layer and FC
layer have two hidden layers and three hidden layers, respec-
tively. Each hidden layer has 128 neurons. We use Adam
optimizer and set the learning rate as 10−5. The training batch
size is 256 and the memory size is 106. All simulations are
implemented in Python with TensorFlow and performed on a
computer with an Intel Core i7-9700, 3.0GHz processor and
32GB RAM memory.

B. CONVERGENCE PERFORMANCE
We first evaluate the convergence performance of proposed
STORS algorithm and DTORS algorithm. The application
consists of 8 tasks with the general task call graph as shown
in Fig. 6(a).

In Fig.7(a), we plot the varieties of ETRC with the number
of samples V in STORS algorithm under different iteration
stopping criterions ε of Alg.1. When ε is large, we need to
sample more random variables from multivariate Gaussian
distribution to recover task offloading decisions. If a small ε
is used, the ETRC can be converged with a fewer number
of samples. For instance, the ETRC converges to a stable
value after 40 samples when ε = 10−3. When ε = 10−1,
it takes at least 110 samples to reach a stable ETRC. However,
too small ε increases the iteration time for each sampling.
In the following simulations, we set the ε as 10−2 in proposed
STORS algorithm.

Fig.7(b) and Fig.7(c) illustrate the evolution of ETRC
under DTORS algorithm with different learning rates ε and
batch sizes M . It is observed that the DTORS algorithm can

converge to stable values under various learning rates and
batch sizes. However, a too large learning rate or a too small
learning rate leads to higher fluctuation and converges to
a high ETRC. Hence, we set the learning rate as 10−5 in
the following simulations. Fig.7(c) shows the convergence
performance under three batch sizes. When the batch size
is 128, the DTORS algorithm converges to a high ETRC.
When the batch size is 512, the convergence speed of DTORS
algorithm is slower than that withM = 256. We set the batch
size as 256 in the proposed DTORS algorithm.

C. COMPARISONS WITH OTHER TASK OFFLOADING AND
RESOURCE SCHEDULING SCHEMES
In this section, we compare the proposed STORS andDTORS
algorithms with four task offloading and resource schedul-
ing schemes: Exhaustive search, Cloud only, Edge only, and
Local only. Each SMD has an application with a random task
call graph as shown in Fig.6. These three task call graphs
are also used in previous work [24]. The ETRC performance
is evaluated under various system parameters including the
deadline of applications Tmax, the mean value of data size
µd , the mean value of workload µc, the unit price ηa of edge
cloud, the weights ψe, ψt , ψc, and the number of SMDs. The
baseline algorithms are given as follows.

1) EXHAUSTIVE SEARCH
We enumerate all feasible task offloading decisions for
each application. For each offloading decision, the corre-
sponding computation frequencies are obtained according to

85362 VOLUME 9, 2021

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

(29), (32), and (37). Then, we select the optimal offloading
decision and computation frequency which minimize the
ETRC. The Exhaustive search method achieves the optimal
ETRC and provides a lower bound for analyzing the perfor-
mance of other algorithms.

2) CLOUD ONLY
The SMDs’ applications are offloaded to remote cloud and
the total cost of each SMD is ϕeEu + ϕtT + ϕcC . The
computation frequencies of cloud execution are obtained by
minimizing ϕeEu + ϕtT + ϕcC .

3) EDGE ONLY
The applications are executed at edge clouds and the total
cost of each SMD is ϕeEu + ϕtT + ϕcC . The computation
frequencies of edge execution are scheduled with minimal
ϕeEu + ϕtT + ϕcC .

4) LOCAL ONLY
The applications are executed at SMDs and the total cost
includes the energy cost and the delay cost of local comput-
ing, i.e., ϕeEl + ϕtT . The computation frequencies of local
execution are scheduled with minimal ϕeEl + ϕtT .

First, we evaluate the ETRC performance versus the dead-
line of applications with µc = 600 Mcycles and µd =
200 KB in Fig.8. With the increase of deadline, the ETRC
becomes lower, this is because the computation frequencies
leased by SMDs decrease. It is also observed that the pro-
posed DTORS algorithm achieves lower ETRC in compar-
ison to other baseline algorithms, e.g., 17.8%, 25.3% and
43.1% lower ETRC than the Edge only, Cloud only, Local
only schemes when Tmax is 3 seconds. Besides, the proposed
STORS algorithm achieves near optimal performance with
full system information. Hence, the proposed algorithms can
be applied to various applications with different deadlines.

Fig.9 shows the varieties of ETRC with the mean value of
data size under different algorithms with µc = 600 Mcycles,
Tmax = 3. The tasks with larger data size have longer

FIGURE 8. The ETRC v.s. deadline Tmax.

FIGURE 9. The ETRC v.s. the mean value of data size µd .

transmission time when offloaded to edge clouds and remote
cloud. Due to the limited backhaul between APs and remote
cloud, the ETRC obtained by Cloud only scheme increases
linearly with the mean value of data size. The uplink trans-
mission rate is much faster than the backhaul rate, thus the
ETRC of Edge only scheme has little growthwith the increase
of data size. The ETRC of proposed STORS algorithm and
DTORS algorithm increases slowly and can be applied to
different applications with various data sizes. For instance,
when the mean value of data size is 200 Kbytes, the proposed
STORS and DTORS algorithms decrease ETRC by at least
43.3% and 21.7% compared with Cloud only, Edge only, and
Local only schemes.

We also evaluate the ETRC performance versus the mean
value of task workload with µd = 200 KB, Tmax = 3
in Fig.10. When task workload is less than 400 Mcycles,
Local only scheme has less ETRC than Cloud only and Edge
only schemes. When task workload increases with task work-
load, the ETRC under Local only scheme increases rapidly
and becomes larger than that under Cloud only and Edge only

FIGURE 10. The ETRC v.s. the mean value of workload µc .

VOLUME 9, 2021 85363

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

FIGURE 11. The ETRC v.s. price of edge cloud ηa.

schemes. This is because the energy consumption of SMD
grows linearly with task workload and increases at a quadratic
rate with computation frequency. The proposed STORS and
DTORS algorithms utilize the dependency among tasks and
have lower ETRC compared with Cloud only, Edge only, and
Local only schemes.

We compare the ETRC performance under various rent
prices of edge clouds withµc = 600Mcycles,µd = 200 KB,
Tmax = 3 in Fig.11. It is observed that with the increase of
rent price ηa, the ETRCwith Edge only scheme first increases
linearly. As for DTORS algorithm, the ETRC first increases
and then remains stable when ηa > 1.2 × 10−10. That is
because under a large rent price ηa, the computation resources
leased from edge clouds reduce and part of tasks executed
at edge clouds are offloaded to the remote cloud. Moreover,
the proposed STORS and DTORS algorithms can signifi-
cantly decrease the ETRC compared with baseline schemes.
When the price of edge clouds is 1.0 × 10−10, the STORS
algorithm and DTORS algorithm reduce at least 43.9%, and
38.7% lower ETRC than that with Edge only, Cloud only and
Local only schemes.

In Fig. 12, we evaluate the ETRC performance versus the
weight of energy, time, and rent cost with Tmax = 3. First,
Fig.12(a) illustrates the ETRC performance under different
weights of energy consumption ϕe. It can be found that the

ETRC under Local only scheme increases rapidly with ϕe,
whereas the ETRC under Cloud only scheme or Edge only
scheme is almost unchanged. This is because the energy con-
sumption of local computing is much more than that of data
transmission. Under efficient task offloading and resource
scheduling schemes, the ETRC under STORS algorithm or
DTORS algorithm increases slowly and remains stable as the
increase of ϕe. The proposed STORS and DTORS algorithms
achieve at least 43.9% and 22.3% lower ETRC than Edge
only, Cloud only and Local only schemes when ϕe = 1.
In Fig.12(b), we evaluate the performance of ETRC ver-
sus the weight of completion delay ϕt . In comparison with
the Exhaustive search method, the proposed STORS algo-
rithm achieves near-optimal ETRC. The proposed STORS
and DTORS algorithms decrease at least 18.8% and 15.5%
ETRC than Cloud only, Edge only, and Local only schemes
when ϕt = 5. Fig.12(c) depicts the comparison results of
ETRC versus ϕc. We can observe that the ETRC increases
with ϕc under the proposed algorithms, Cloud only scheme,
and Edge only scheme. The growth rates of ETRC under
Cloud only and Edge only schemes are higher than that under
proposed STORS and DTORS algorithms. This is because
the proposed algorithms can reduce the number of tasks
offloaded to clouds and decrease the computation resources
rented from clouds when ϕc is large. Since the computation
resources are not rented from clouds when tasks are executed
at SMDs, the ETRC keeps unchanged with ϕc under Local
only scheme.

The weights ϕe, ϕt and ϕc indicate the preferences of
SMDs for energy, delay and price. In Fig. 13, we plot the vari-
ations of energy consumption, completion time, and rent cost
with weights ϕe, ϕt and ϕc, respectively. We can observe that
energy consumption, completion time and rent cost decrease
as the increase of ϕe, ϕt and ϕc. If an SMD prefers lower
energy consumption, completion time and monetary cost,
larger ϕe, ϕt and ϕc should be selected respectively. For
instance, if SMDs prefer to complete applications, as shown
in Fig.6, by consuming no more than 1 Joule of energy,
the weight ϕe should be larger than 1.0 according to the first
subfigure of Fig.13.

Furthermore, to verify the superiority of proposed algo-
rithms under various network scales, we compare the

FIGURE 12. The ETRC v.s. the weight of energy, time and rent cost.

85364 VOLUME 9, 2021

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

FIGURE 13. The energy, time, rent v.s. ϕe, ϕt , ϕc .

FIGURE 14. The total ETRC v.s. the number of SMDs.

proposed algorithms with baseline schemes under different
numbers of SMDs in Fig.14. We can observe that the total
ETRC of all SMDs increases with the number of SMDs.
The total ETRC of proposed STORS algorithm and DTORS
algorithm increases more slowly than that of Cloud only,
Edge only and Local only schemes. This is reasonable since
the proposed algorithms can schedule tasks in parallel accord-
ing to the interdependency of tasks. The growth rate of
ETRC under the Cloud only scheme becomes faster when the
number of SMDs is larger than 28. This is due to the long
transmission delay between SMDs and remote cloud, SMDs
need to rent more computation resources from remote cloud
to satisfy deadline constraints. The simultaneous resource
requests make remote cloud unable to schedule enough com-
putation resources for each SMD and some SMDs acquire
fewer computation resources, which makes the total ETRC
grow faster.

VII. CONCLUSION
This paper investigated the task offloading and resource
scheduling problem for inter-dependent tasks in hybrid
edge-cloud networks. Under the conditions of full system
information and partial system information, we proposed two
efficient task offloading and resource scheduling algorithms

to minimize the weighted sum of energy, time, and rent cost
for each SMD.With full system information, the task offload-
ing decisions were obtained by semidefinite relaxation and
Gaussian randomization sampling. The corresponding com-
putation frequencies were derived based on the dual decom-
position method. With partial system information, a DRL
framework was designed to learn the discrete task offloading
decisions and continuous computation frequencies. We have
improved the conventional DDPG algorithm by redesigning
the actor network and critic network so as to learn the discrete
action and continuous action simultaneously. Furthermore,
we introduced LSTM layers into actor network and critic
network to better predict the time series system states. Simu-
lation results have demonstrated the convergence of proposed
algorithms on different system parameters. Extensive simu-
lations also verified the proposed algorithms have achieved
near-optimal performance and significantly decreased the
ETRC compared with baselines.

For the future work, we will consider the competition
among multiple SMDs about bandwidth and computing
resources and improve the ETRC performance bymulti-agent
reinforcement learning techniques. In addition, most existing
studies assume that edge clouds have deployed all appli-
cations requested by SMDs. However, considering the lim-
ited storage capacities of edge clouds, it is interesting to
investigate the service caching and task offloading scheme
for mobile edge computing. Another direction is to consider
the wireless interference among SMDs and investigate the
joint bandwidth, transmit power and computation resource
scheduling for hybrid edge-cloud networks.

REFERENCES
[1] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, ‘‘Toward edge intelli-

gence: Multiaccess edge computing for 5G and Internet of Things,’’ IEEE
Internet Things J., vol. 7, no. 8, pp. 6722–6747, Aug. 2020.

[2] Y. Zhang, X. Lan, J. Ren, and L. Cai, ‘‘Efficient computing resource
sharing for mobile edge-cloud computing networks,’’ IEEE/ACM Trans.
Netw., vol. 28, no. 3, pp. 1227–1240, Jun. 2020.

[3] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, ‘‘Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing,’’ IEEE Trans. Mobile Comput., vol. 18, no. 2, pp. 319–333,
Feb. 2019.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEECommun.
Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[5] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation
offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[6] J. Ren, G. Yu, Y. He, and G. Y. Li, ‘‘Collaborative cloud and edge comput-
ing for latency minimization,’’ IEEE Trans. Veh. Technol., vol. 68, no. 5,
pp. 5031–5044, May 2019.

[7] J. Liu, K. Xiong, D. W. K. Ng, P. Fan, Z. Zhong, and K. B. Letaief,
‘‘Max-min energy balance in wireless-powered hierarchical fog-cloud
computing networks,’’ IEEE Trans. Wireless Commun., vol. 19, no. 11,
pp. 7064–7080, Nov. 2020.

[8] T. Q. Dinh, B. Liang, T. Q. S. Quek, and H. Shin, ‘‘Online resource
procurement and allocation in a hybrid edge-cloud computing system,’’
IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2137–2149, Mar. 2020.

[9] T. Cao, C. Xu, J. Du, Y. Li, H. Xiao, C. Gong, L. Zhong, and
D. Niyato, ‘‘Reliable and efficient multimedia service optimization for
edge computing-based 5G networks: Game theoretic approaches,’’ IEEE
Trans. Netw. Service Manage., vol. 17, no. 3, pp. 1610–1625, Sep. 2020.

VOLUME 9, 2021 85365

Q. Zhang et al.: Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks

[10] Y. Dai, K. Zhang, S. Maharjan, and Y. Zhang, ‘‘Edge intelligence for
energy-efficient computation offloading and resource allocation in 5G
beyond,’’ IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 12175–12186,
Oct. 2020.

[11] F. Fang, Y. Xu, Z. Ding, C. Shen, M. Peng, and G. K. Karagiannidis,
‘‘Optimal resource allocation for delay minimization in NOMA-MEC net-
works,’’ IEEE Trans. Commun., vol. 68, no. 12, pp. 7867–7881, Dec. 2020.

[12] J. Zhang, J. Du, Y. Shen, and J. Wang, ‘‘Dynamic computation offload-
ing with energy harvesting devices: A hybrid-decision-based deep rein-
forcement learning approach,’’ IEEE Internet Things J., vol. 7, no. 10,
pp. 9303–9317, Oct. 2020.

[13] Q. Huang, P. Ang, P. Knowles, T. Nykiel, I. Tverdokhlib, A. Yajurvedi,
P. Dapolito, X. Yan, M. Bykov, C. Liang, M. Talwar, A. Mathur,
S. Kulkarni, M. Burke, andW. Lloyd, ‘‘SVE: Distributed video processing
at facebook scale,’’ in Proc. 26th Symp. Operating Syst. Princ., New York,
NY, USA, Oct. 2017, pp. 87–103.

[14] C. Shu, Z. Zhao, Y. Han, G. Min, and H. Duan, ‘‘Multi-user offload-
ing for edge computing networks: A dependency-aware and latency-
optimal approach,’’ IEEE Internet Things J., vol. 7, no. 3, pp. 1678–1689,
Mar. 2020.

[15] L. Liu, H. Tan, S. H.-C. Jiang, Z. Han, X.-Y. Li, and H. Huang, ‘‘Depen-
dent task placement and scheduling with function configuration in edge
computing,’’ in Proc. Int. Symp. Qual. Service, Jun. 2019, pp. 1–10.

[16] Q. Wang, L. T. Tan, R. Q. Hu, and Y. Qian, ‘‘Hierarchical energy-efficient
mobile-edge computing in IoT networks,’’ IEEE Internet Things J., vol. 7,
no. 12, pp. 11626–11639, Dec. 2020.

[17] S. Ahn, J. Lee, T. Y. Kim, and J. K. Choi, ‘‘A novel edge-cloud interworking
framework in the video analytics of the Internet of Things,’’ IEEE Com-
mun. Lett., vol. 24, no. 1, pp. 178–182, Jan. 2020.

[18] G. Peng, H. Wu, H. Wu, and K. Wolter, ‘‘Constrained multi-objective opti-
mization for IoT-enabled computation offloading in collaborative edge and
cloud computing,’’ IEEE Internet Things J., early access, Mar. 22, 2021,
doi: 10.1109/JIOT.2021.3067732.

[19] I. Kovacevic, E. Harjula, S. Glisic, B. Lorenzo, and M. Ylianttila, ‘‘Cloud
and edge computation offloading for latency limited services,’’ IEEE
Access, vol. 9, pp. 55764–55776, 2021.

[20] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, ‘‘Computation
offloading in multi-access edge computing using a deep sequential model
based on reinforcement learning,’’ IEEE Commun. Mag., vol. 57, no. 5,
pp. 64–69, May 2019.

[21] Y. Geng, Y. Yang, and G. Cao, ‘‘Energy-efficient computation offloading
for multicore-based mobile devices,’’ in Proc. IEEE Conf. Comput. Com-
mun. (IEEE INFOCOM), Apr. 2018, pp. 46–54.

[22] S. Zhu, L. Gui, D. Zhao, N. Cheng, Q. Zhang, and X. Lang, ‘‘Learning-
based computation offloading approaches in UAVs-assisted edge comput-
ing,’’ IEEE Trans. Veh. Technol., vol. 70, no. 1, pp. 928–944, Jan. 2021.

[23] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, ‘‘Offloading tasks with
dependency and service caching in mobile edge computing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 32, no. 11, pp. 2777–2792, Nov. 2021.

[24] J. Yan, S. Bi, and Y. J. A. Zhang, ‘‘Offloading and resource allocation
with general task graph in mobile edge computing: A deep reinforce-
ment learning approach,’’ IEEE Trans. Wireless Commun., vol. 19, no. 8,
pp. 5404–5419, Aug. 2020.

[25] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, ‘‘Mobile edge
computing and networking for green and low-latency Internet of Things,’’
IEEE Commun. Mag., vol. 56, no. 5, pp. 39–45, May 2018.

[26] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, ‘‘A rewriting
system for convex optimization problems,’’ J. Control Decis., vol. 5, no. 1,
pp. 42–60, Jan. 2018.

[27] Z.-Q. Luo,W.-K.Ma, A. So, Y. Ye, and S. Zhang, ‘‘Semidefinite relaxation
of quadratic optimization problems,’’ IEEE Signal Process. Mag., vol. 27,
no. 3, pp. 20–34, May 2010.

[28] S. Boyd, L. Xiao, and A. Mutapcic. (2003). Subgradient methods. Stan-
ford Univ., Stanford, CA, USA, Autumn Quarter, Lect. Notes EE392o,
pp. 2004–2005.

[29] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[30] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
in Proc. Int. Conf. Learn. Represent. (ICRL), May 2016, pp. 1–14.

[31] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
‘‘Deterministic policy gradient algorithms,’’ in Proc. Int. Conf. Mach.
Learn. (ICML), 2014, pp. 387–395.

[32] M. Tang andV.W. S.Wong, ‘‘Deep reinforcement learning for task offload-
ing in mobile edge computing systems,’’ IEEE Trans. Mobile Comput.,
early access, Nov. 10, 2020, doi: 10.1109/TMC.2020.3036871.

[33] Z. Yang, Y. Liu, Y. Chen, and N. Al-Dhahir, ‘‘Cache-aided NOMAmobile
edge computing: A reinforcement learning approach,’’ IEEE Trans. Wire-
less Commun., vol. 19, no. 10, pp. 6899–6915, Oct. 2020.

[34] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[35] J. Li, X. Zhang, J. Zhang, J. Wu, Q. Sun, and Y. Xie, ‘‘Deep reinforcement
learning-based mobility-aware robust proactive resource allocation in het-
erogeneous networks,’’ IEEE Trans. Cognit. Commun. Netw., vol. 6, no. 1,
pp. 408–421, Mar. 2020.

[36] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian, ‘‘Dynamic task
offloading and resource allocation for mobile-edge computing in dense
cloud RAN,’’ IEEE Internet Things J., vol. 7, no. 4, pp. 3282–3299,
Apr. 2020.

[37] S.-H. Kim, S. Park, M. Chen, and C.-H. Youn, ‘‘An optimal pricing
scheme for the energy-efficient mobile edge computation offloading with
OFDMA,’’ IEEE Commun. Lett., vol. 22, no. 9, pp. 1922–1925, Sep. 2018.

QI ZHANG received the B.Eng. degree from the
School of Electronics and Information, North-
western Polytechnical University (NPU), Xi’an,
China, in 2015. He is currently pursuing the Ph.D.
degree with the Department of Electronic Engi-
neering, Shanghai Jiao Tong University (SJTU),
Shanghai, China. His research interests include
mobile edge computing, resource management,
and optimization.

LIN GUI (Member, IEEE) received the Ph.D.
degree from Zhejiang University, Hangzhou,
China, in 2002. Since 2002, she has been with
the Institute of Wireless Communication Tech-
nology, Shanghai Jiao Tong University, Shanghai,
China, where she is currently a Professor. Her cur-
rent research interests include HDTV and wireless
communications.

SHICHAO ZHU received the B.E. degree
from the School of Aeronautics, Northwestern
Polytechnical University, Xi’an, China, in 2016.
He is currently pursuing the Ph.D. degree with the
Department of Electronic Engineering, Shanghai
Jiao Tong University, Shanghai, China. His current
research interests include data and computation
offloading in UAV networks and space-air inte-
grated networks, and the application of AI in
wireless networks.

XIUPU LANG received the B.E. degree from
the School of Electronics and Information Engi-
neering, Harbin Institute of Technology, Harbin,
China, in 2018. He is currently pursuing the Ph.D.
degree with the Department of Electronic Engi-
neering, Shanghai Jiao Tong University, Shanghai,
China. His current research interests include soft-
ware defined network design, network virtualiza-
tion, and resources management.

85366 VOLUME 9, 2021

http://dx.doi.org/10.1109/JIOT.2021.3067732
http://dx.doi.org/10.1109/TMC.2020.3036871

