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ABSTRACT Tomographic Gamma Scanning (TGS) is one of the most important non-destructive analyzed
techniques for radioactive waste drums. By reconstructing the radioactivity distribution image, it can accu-
rately realize the qualitative, quantitative, and positioning analysis of the radionuclides in the drum. However,
the time consuming of the scanning is long and the reconstructed image is rough, which limits its good
application in the practical assay of the waste drum. In this work, the total variational minimization (TVM)
method was applied to improve the iterative process of the conventional algorithms of maximum likelihood
expectation maximization (MLEM) and algebraic reconstruction technique (ART), then the MLEM-TVM
andART-TVM reconstruction methods were developed. The transmitted experiments were carried out where
four kinds of materials were arranged in a segment whose densities ranging from 1.04 g/cm3 to 2.02 g/cm3

and a 152Eu isotope was set up as a transmission source. Compared with the traditional algorithms MLEM
and ART, the MLEM-TVM and the ART-TVM algorithms have a better performance on the accuracy and
the signal-to-noise ratio, and the MLEM-TVM algorithm achieves the best results, which means the quality
of the reconstructed image is improved. The accuracy and effectiveness of the TVMmethod used in the TGS
image reconstruction are verified in the work, and moreover, it can save the scanning time and enhance the
TGS image resolution through sparse projection sampling.

INDEX TERMS Image reconstruction, radioactive wastes, tomographic gamma scanning, total variation
minimization.

I. INTRODUCTION
Nuclear energy is clean energy compared with thermal power
generation, but nuclear power plants will produce a large
amount of low and intermediate-level solid radioactive waste
with a specific concentration of radionuclides less than
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4× 106 Bq/kg and 4× 1010 Bq/kg, respectively [1]. Radioac-
tive waste is different from ordinary garbage because it
contains radionuclides and needs to be packaged in special
nuclear waste drums to reduce radiation hazards and pro-
tect the environment. Before classifying and disposal of the
radioactive waste, the radiation level must be assessed, so the
spatial distribution of radionuclides and their radioactivities
in the waste drums should be determined [2], [3]. Considering
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the radioactive hazards of the radioactive waste, gamma-
ray-based non-destructive assay (γ -NDA) is a commonly
used technique [4], [5]. The γ -NDA for radioactive waste
drums including Segmented Gamma Scanning (SGS) and
Tomographic Gamma Scanning (TGS) [6], [7]. The SGS pro-
cess is convenient and efficient, but it is difficult to accurately
analyze non-uniform materials [8]. In contrast, the TGS can
accurately reconstruct the medium and radioactivity distribu-
tion of the non-uniform drum through three-dimension scan-
ning, so it is more advanced than the SGS [9], [10]. The active
(transmission) map, that is the medium distribution reflected
by the linear attenuation of the medium, is the basis of the
attenuation correction for the radioactivity evaluation [11].
Therefore, an image reconstruction algorithm plays an essen-
tial role in the TGS.

The image reconstruction methods can be divided into two
categories: resolving reconstruction and statistical iterative
reconstruction [12]. Resolving reconstruction methods repre-
sented by filtered back-projection (FBP) have fast computed
speed but bad signal-to-noise properties, and require com-
plete projections which are time-consuming [13]. However,
the iterative reconstruction method, such as algebraic recon-
struction technique (ART), maximum likelihood expectation
maximization (MLEM), shows strong noise suppression per-
formance and is suitable for incompletely sampling by solv-
ing the equations set established by projection data [14], [15].
In addition, some intelligent algorithms are applied in image
reconstruction [16], but there is no report on the TGS image.
Therefore, the iterative algorithm is the most popular in the
problem of TGS image reconstruction [17], [18].

In the industry and commercial field, one high pure ger-
manium (HPGe) with high energy resolution is commonly
used as a gamma-ray detector in the TGS system which is
confronted with problems of long measurement time and
low image resolution that limits its applications in prac-
tice [19], [20]. To improve the image quality, it is neces-
sary to increase the number of voxel grids per unit area
of a segment, which means increasing the number of pro-
jections and scanning time. It should be balanced between
image resolution enhancement and time reduction. In 2006,
Donoho et al [21] proposed the Compressed Sensing (CS)
theory, which utilized random sampling to obtain discrete
samples of the signal and can reconstruct the original sig-
nal perfectly under the condition that the practical sampling
rate is much smaller than the Nyquist sampling rate. The
CS has been successfully applied in the fields of medical
imaging, optical imaging, capacitance chromatography imag-
ing, et al [22], [23]. For a radioactive waste drum with
non-uniform distribution of media, the gamma-ray intensity
attenuation by approximate-density materials in a small pixel
is less different. Therefore, the transmission image of TGS
is locally smooth after the finite-difference transformation
and it satisfies the sparseness condition of CS law [21].
On the other hand, if the number of projections is much less
than the number of the voxel grids, the image reconstruction
equations set is underdetermined. The conventional iterative

reconstruction algorithms are hard to get high-quality images.
L. Rudin, et al. [24], [25] proposed the total variation mini-
mization (TVM) method following the CS theory to remove
noise and blur in an image but preserving edges. The TVM
provided a novel tool for image restoration and de-noise [26].
In a word, among the various CS methods, the total variation
minimization (TVM) is one of the frequently-used means to
solve the problem of sparse reconstruction [27], [28].

In this work, based on the MLEM and ART algorithms,
the TVM is applied to improve the iterative process of recon-
structing the TGS image. It is anticipated to save the scanning
time by the means of sparse projections and improve the
quality of image combining with the advantages of statistical
iterative algorithms and the TVM. Finally, TGS transmission
detection experiments are carried out, and the validity and
accuracy of the methods are verified and discussed.

II. MATERIALS AND METHODS
A. MLEM ALGORITHM
The gamma-ray with energy E passing through a material
follows the law of exponential attenuation, that is

I (E) = I0 (E) · exp [−u (E) x] , (1)

where I0(E) is the initial intensity of gamma-ray, I (E) is
the gamma-ray intensity after attenuation by materials, u(E)
is the linear attenuation coefficient which is related to the
energy, and x is the transmitting length. Therefore, the TGS
transmission measurement of nuclear waste drums can be
described as:

Ii (E) = I0 (E) · exp

− N∑
j=1

uj (E) xij

 , (2)

where uj(E) is the linear attenuation coefficient of the j-th
voxel, j ∈ [1,N ], xij is the transmitting track length of the
gamma-ray passing through the j-th voxel when the detector
at the i-th position, i ∈ [1,M ], and N is the total number of
voxels in a segment and M is the total number of detection
positions.

If letting

Vi (E) = −ln
[
Ii (E)
I0 (E)

]
, (3)

then

Vi (E) =
N∑
j=1

uj (E) xij. (4)

Therefore, the matrix form of Eq. (2) is expressed as
follows:

X · U = V , (5)

where X is a M × N system matrix, U = (u1, u2, . . . , uj, . . . ,
uN )T, V = (v1, v2, . . . , vi, . . . , vM)T.
The reconstruction of the TGS transmission image is to

solve the U of Eq. (5) when X and V have been known.
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MLEM is a statistical iterative method for image reconstruc-
tion with maximizing the likelihood function based on the
assumption of Poisson noise [29], [30]. The iterative form of
the MLEM algorithm is:

u(k+1)j =
u(k)j∑
i
xij

∑
i

xij
vi∑

j
xiju

(k)
j

, (6)

where k is the iteration number, and iε[1,M ], jε[1,N ].

B. ART ALGORITHM
ART is based on relaxation methods for solving systems of
linear equalities or inequalities [31]. The ART algorithm is
expressed in:

u(k+1)j = u(k)j + λ

vi −
N∑
j=1

xiju
(k)
j

N∑
j=1

x2ij

xij, (7)

where λ is the relaxation factor, 0 < λ < 2, and it will affect
the reconstructed image quality. Generally, the larger the
relaxation factor, the faster the convergence, but the greater
the image noise.

The iterative process of MLEM and ART algorithms can
be described as follows.

Step 1, assuming an initial image, u(1)j = 0.
Step 2, estimating the projections through forward projec-

tion measurements, v̂i =
∑N

j=1 xiju
(k)
j .

Step 3, comparing the calculated projection with the actual
projection, 1i =

vi
v̂i
in MLEM, or 1i = vi − v̂i in ART.

Step 4, calculating correction value for the j-th pixel, Cj =
1

N∑
i=1

xij

N∑
i=1

xij1i in MLEM, or Cj =
1i
M∑
j=1

x2ij

xij in ART.

Step 5, correcting the j-th pixel, u(k+1)j = u(k)j
∗Cj in

MLEM or u(k+1)j = u(k)j + λCj in ART.
Step 6, the result of the k-th iteration is used as the initial

value for the k + 1-th iteration, and the process of step 2 ∼
step 5 is looped until the specified number of iterations is met.

Only the pixels that γ -rays pass through are iteratively
corrected, while the pixels that do not pass γ -rays are not
corrected. Therefore, the ART and MLEM algorithms cannot
accurately reconstruct when aiming at the problem of under-
determined equations for reconstructing TGS images.

C. MLEM-TVM AND ART-TVM ALGORITHMS
When U is the linear attenuation coefficient distribution
image, and um,n represents the pixel value of them-th row and
n-th column of the image, and the finite-difference transform
is defined in:

∇(um,n) =
√
(um,n − um−1,n)2 + (um,n − um,n−1)2. (8)

For the finite-difference transform image that is the gradi-
ent image, the integral of the L1-norm of which is the total

variation (TV) [32]. It is considered as the objective function.
The TV of U can be expressed in:∥∥um,n∥∥TV = ∫∫ ∣∣∣∣∂u∂x

∣∣∣∣+ ∣∣∣∣∂u∂y
∣∣∣∣dxdy ≈∑

m,n

∣∣∇um,n∣∣
=

∑
m,n

√
(um,n − um−1,n)2 + (um,n − um,n−1)2.

(9)

Taking the non-negative image value as the basic condition
of constraint, the reconstructed image is obtained by solving
the following objective function:

min
f
‖U‖TV , s.t. V = XU, (10)

The solution to minimizing the TV is the image value that
needs to be reconstructed. The TV gradient formula of image
U is:
∂ ‖U‖TV
∂um,n

≈
2um,n − um−1,n − um,n−1√

ε + (um,n − um−1,n)2 + (um,n − um,n−1)2

−
um,n+1 − um,n√

ε + (um,n+1 − um,n)2 + (um+1,n − um+1,n−1)2

−
um+1,n − um.n√

ε + (um+1,n − um,n)2 + (um+1,n − um+1,n−1)2
,

(11)

where the ε is a minimal positive value introduced for avoid-
ing 0 in the denominator, and usually it was taken an experi-
ential value of 10−8.

The gradient descent method was used to solve the Eq
(10) that is the total variation minimization (TVM) process,
expressed as follows:
(1) The TV gradient of the image is:

EG(k)
=
∂ ‖U‖TV
∂um,n

|U=U (k)
TVM
. (12)

(2) The direction of TV gradient is:

Ĝ(k)
=
EG(k)

| EG(k)|
. (13)

(3) The iterative scheme along the direction of TV gradient
descent is:

U(k+1)
TVM = U(k)

TVM − αdA(k)Ĝ
(k), (14)

where α is an adjustment factor, 0.1 < α < 0.5, dA(k) is
the correction factor, and k is the iteration number of the
TVM process. When the adjustment factor α is too small,
the reconstructed image has serious noise and poor spatial
resolution. When the α is too large, the reconstructed image
tends to be blurred because it is too smooth and the spatial
contrast decreases. The iteration number k will influence
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FIGURE 1. Program flow of ART-TVM or MLEM-TVM algorithm, in which δ

was set as 10−3.

the reconstructed image quality and the convergence speed.
When the k is too small, there are obvious artifacts in the
reconstructed image, and as the k increases, the reconstructed
image quality is improved, but the convergence is slow.

According to the above algorithms, the transmission image
reconstruction of TGS based on TVM iteration was proposed.
The program flow is shown in Fig. 1.

Actually, the algorithms can be simply summarized as two
steps:

Step 1, ART or MLEM algorithm was adopted to recon-
struct an initial TGS image.

Step 2, the TVM process was executed to optimize the
quality of the reconstructed image.

III. EXPERIMENTS
The TGS system is developed by ourselves with the following
components: a transmission source 152Eu (2.485 × 108 Bq),
HPGe gamma-ray spectrometer, collimators of source and
detector, a rotating platform of waste drum and controlling
system, as Fig. 2 shows. The energy resolution of the HPGe
is 1.9 keV @ 1.332 MeV and it is calibrated using a 60Co
source. In the present work, one segment samples were
designed, and four kinds of waste materials were simulated
with different densities: polyethylene (S1) with a density
of 1.04 g.cm−3, plastic (S2) with a density of 1.41 g.cm−3,
cullet with a density of 1.44 g.cm−3 (S3), and concrete (S4)
with a density of 2.02 g.cm−3. The size of the TGS system
and the random distribution of the materials in the drum are
arranged in Fig. 3.

In order to improve the spatial resolution and quality of
the image, 12 rings × 72 angles = 864 grids based on

FIGURE 2. TGS system.

FIGURE 3. Size of the TGS system and the distribution of the materials in
the drum.

FIGURE 4. TGS transmission scanning process and voxel division model.

polar coordinates were figured to divide the segment shown
in Fig. 4b. In the scanning experiments, angle and horizontal
sparsifications were applied for reducing the measurement
time. Four horizontal positions and 24 rotation positions of
the detector were set up as shown in Fig. 4a. 96 transmission
gamma spectra were measured by a HPGe detector with
30 seconds per position, so 96 projections were obtained for
the segment, that is the measurement time for 96 projections
is 1/9 of the 864 grids.

IV. RESULTS AND DISCUSSION
As a way of contrast, the attenuation coefficients of
polyethylene, plastic, cullet and concrete were measured
using a 152Eu source and its 6 characteristic gamma-ray
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FIGURE 5. Reference images of the transmission.

energies of 0.122 MeV, 0.344 MeV, 0.779 MeV, 0.964 MeV,
1.112 MeV and 1.408MeV were investigated.

The reference images of the transmission with the four
materials are shown in Fig. 5, in which the pixel values of
the four materials equal in the segment.

As above mentioned, there are 96 projection values for
the same gamma-ray energy, but the transmission map has
864 pixels. The equations set are underdetermined in which
864 unknowns must be figured the attenuation coefficients
according to the distribution of the materials out from the
96 equations. Therefore, in this work, the TGS image recon-
struction is an issue of sparse image reconstruction. For
comparison, ART, MLEM, ART-TVM, and MLEM-TVM
algorithms were used to solve the equations to reconstruct
the TGS image. As a matter of experience, the number of
iterations k in MLEM algorithm (Eq. (6)) was set to 20, and
the relaxation factor λ in ART algorithm (Eq. (7)) was set to
0.5, and the adjustment factor α in TVM (Eq. (14)) was set to
0.2. The results with 6 energies of 152Eu are shown in Fig. 6,
where (a), (b), (c), (d) correspond to the ART, MLEM, ART-
TVM, andMLEM-TVM algorithms, respectively. The recon-
struction platform was Matlab 2018b on a laptop computer
with a processor of i7-CPU.

Apparently from Fig. 6, it can be judged that the images
(a) and (b) reconstructed by the ART and MLEM algorithms
were rough. The images had serious artifacts and the media
shape cannot be distinguished well although the image space
resolution was improved. The quality of transmission images
(c) and (d) reconstructed by ART-TVM and MLEM-TVM
algorithms were significantly better than the images (a) and
(b), and the quality of reconstructed images (d) by the
MLEM-TVM algorithm was the best relatively and almost
free of artifacts. The shape, distribution, and density of the

medium in the drum reflected by the image can be well dis-
tinguished, and they are consistent with Fig. 3. Aiming at the
problem of solving the severely underdetermined equations
to reconstruct the transmission image, the iterative algorithm
based on the TVMhas an obvious optimization effect than the
traditional iterative algorithm. The iterative process of TVM
makes the artifacts in the area with approximate attenuation
converge to the actual distribution, thereby reducing the scat-
tered artifacts. The comparison between (c) and (d) shows
that the performance of the MLEM-TVM algorithm is bet-
ter than that of the ART-TVM algorithm, which illustrated
the importance of the initial image that the TVM iteration
process relies upon and the initial image quality obtained
by the MLEM algorithm is higher than that by the ART
algorithm.

In order to objectively judge the pros and cons of different
algorithms to reconstruct the TGS image, the mean square
error (MSE) and the signal-to-noise ratio (SNR) were utilized
to evaluate the reconstructed image. The calculations of MSE
and SNR are shown in Eq. (15) and Eq. (16), respectively.

MSE =
1
MN

M∑
m=1

N∑
n=1

(µRec(m, n)− µRef (m, n))2 (15)

SNR = −10 log[

M∑
m=1

N∑
n=1

(µRec(m, n)− µRef (m, n))2

M∑
m=1

N∑
n=1

(µRef (m, n))2
]

(16)

In the formulas, µRec(m, n) and µRef(m, n) respectively
represent the reconstructed value and reference value of
the m-th row and n-th column of the reconstructed image.
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FIGURE 6. Reconstruction images using (a) ART, (b) MLEM, (c) ART-TVM, and (d) MLEM-TVM algorithms with 6 energies.

The MSE and SNR of the TGS transmission images with the
above four algorithms are shown in Fig. 7.

The data in Fig. 7 quantitatively verified that compared
with the conventional ART and MLEM algorithms the MSE
was conspicuously decreased and SNR was increased over

2 times combined with the TVM, and the MLEM-TVM
algorithm had the minimum MSE and maximum SNR. For
one algorithm, the MSE was decreased with the increase
of energy, indicating that the reconstructed values are more
accurate with the increase of energy. On the other hand,
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FIGURE 7. (a) MSE and (b) SNR of the TGS transmission images with the ART, MLEM, ART-TVM and MLEM-TVM.

SNR remained relatively stable, and there was no obvious
upward or downward trend, which shows that the same image
reconstruction method under different energy has little effect
on the SNR.

V. CONCLUSION
Non-destructive imaging of low- and medium-level nuclear
waste drum is an important means for nuclear waste
detection. In this work, combined with the TVM method,
the MLEM-TVM and the ART-TVM algorithms were pro-
posed and applied to reconstruct the TGS transmission
image. The experimental results show that compared with
the traditional iterative algorithm, the MLEM-TVM and the
ART-TVM algorithms acquired better outcomes, and the
quality of the reconstructed image is higher, and the recon-
structed image is more agreed with the actual contents in the
drum. Meanwhile, the results reflect the importance of the
initial image quality that the TVM iteration process relies on.
The image value obtained by the MLEM algorithm is better
than the ART algorithm, which makes the MLEM-TVM
achieve the best optimization effect.

In summary, utilizing the TVMmethod have the following
advantages than the traditional algorithms:

(1) The artifacts of the reconstructed image are reduced.
(2) The reconstructed values are more accurate.
(3) The SNR of the reconstructed image is enhanced.

Therefore, when solving the underdetermined equations of
TGS, the iterative algorithm based on the TVM method has
obvious superiority, and the present work verifies the accu-
racy and effectiveness of the method used for radioactive
waste drum samples. Joined the division approach of voxels
and sparse projection sampling, the method can effectively
improve the TGS image resolution and reduce the measure-
ment time.
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