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ABSTRACT The selection of a meta-learner determines the success of a stacked ensemble as the
meta-learner is responsible for the final predictions of the stacked ensemble. Unfortunately, in imbalanced
classification, selecting an appropriate and well-performing meta-learner of stacked ensemble is not straight-
forward as different meta-learners are advocated by different researchers. To investigate and identify a
well-performing type of meta-learner in stacked ensemble for imbalanced classification, an experiment
consisting of 19 meta-learners was conducted, detailed in this paper. Among the 19 meta-learners of
stacked ensembles, a new weighted combination-based meta-learner that maximizes the H-measure during
the training of stacked ensemble was first introduced and implemented in the empirical evaluation of this
paper. The classification performances of stacked ensembles with 19 different meta-learners were recorded
using both the area under the receiver operating characteristic curve (AUC) and H-measure (a metric
that overcomes the deficiencies of the AUC). The weighted combination-based meta-learners of stacked
ensembles have better classification performances on imbalanced datasets when compared to bagging-based,
boosting-based, Decision Trees, Support Vector Machines, Naive Bayes, and Feedforward Neural Network
meta-learners. Thus, the adoption of weighted combination-based meta-learners in stacked ensembles is
recommended for their better performance on imbalanced datasets. Also, based on the empirical results,
we identified better-performingmeta-learners (such as the AUCmaximizingmeta-learner and the H-measure
maximizing meta-learner) than the widely adopted meta-learner – Logistic Regression – in imbalanced
classification.

INDEX TERMS Class imbalance, H-measure, imbalanced classification, meta-learner, stacked ensemble,
stacking, super learning.

I. INTRODUCTION
A dataset is class imbalanced if the number of instances
in one class is greatly outnumbered by another class [1],
[2]. The classification task on a class imbalanced dataset is
referred to as imbalanced classification. The topic of imbal-
anced classification is a valuable research hotspot in the
literature [1]. The class with a higher number of instances is
referred to as the majority class, whereas the class with fewer
instances is recognized as the minority class. Imbalanced
classification has many real-world applications such as early
prediction of cardiac arrest in sepsis patients [3], software
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defect prediction [4], dropout prediction in massive open
online courses (MOOCs) [5], etc. A poor performance model
may result in serious consequences such as monetary loss and
poor medical treatment timing. Thus, high-performance pre-
diction models are anticipated for many real-world applica-
tions. Unfortunately, the classification task is subjected to the
problem of performance degradation on imbalanced datasets.
In order to tackle the problem of suboptimal performance
in imbalanced classification, various classification methods,
including ensemble learning approaches, are proposed among
researchers.

Ensemble learning is also known as multiple classifier
systems (MCS) [6]. MCS improves the performances of indi-
vidual classifiers by combining several classifiers to obtain
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a new classifier system that outperforms every single clas-
sifier [7]–[9]. In the literature [10], ensemble learning is
categorized into homogeneous and heterogeneous ensembles.
The homogeneous ensemble consists of classifiers from the
same learning algorithm, whereas the heterogeneous ensem-
ble has diverse classifiers from different learning algorithms.
Since diversity is an important criterion for the success of
an ensemble, the heterogeneous ensemble can improve the
performance of an ensemble by promoting classifier diver-
sity within the ensemble. In this paper, we are particularly
interested in Stacked Generalization (SG) [11] or stacked
ensemble, an ensemble that is commonly used to formulate
a heterogeneous ensemble [9], [12].

The stacked ensemble, which is increasingly popular in
imbalanced classification, has its peculiarity, i.e., a train-
able meta-learner is required, compared to bagging and
boosting. The final prediction of a stacked ensemble is
equivalent to the output of its meta-learner [9], which
means that the imbalanced classification performance of
a stacked ensemble depends on the selection of its meta-
learner. Based on the literature review of stacked ensembles
in imbalanced classification (Section II-C), a variety of algo-
rithms, including Logistic Regression, Decision Tree [13],
Naive Bayes, Neural Network, Bagging [14], Support Vector
Machine (SVM) [15], RandomForest [16], eXtremeGradient
Boosting (XGBoost) [17], Light Gradient Boosting Machine
(LightGBM) [18], etc., are employed as the meta-learners
of stacked ensembles. In other words, different researchers
advocate different meta-learners for stacked ensemble in
imbalanced classification (please refer to Table 1). In short,
this research is motivated by the fact that the meta-learner
is responsible for the success (i.e., imbalanced classification
performance) of a stacked ensemble. However, the selection
of meta-learner is not a straightforward task as different
researchers promote different meta-learners. Hence, to select
and configure the meta-learner of stacked ensemble based
on knowledge and evidence of imbalanced classification,
a number of meta-learners were empirically evaluated on
imbalanced datasets in this paper.

Based on the literature review in Section II-E, the
H-measure, which overcomes the deficiencies of the area
under the receiver operating characteristic curve (AUC), was
adopted as the evaluationmetric in the empirical evaluation of
meta-learners. However, considering that the AUC is widely
adopted in imbalanced classification research, the AUC was
also included, i.e., both the H-measure and AUCwere used as
the experiment’s performance evaluation metrics. Inspired by
the importance of H-measure in the literature (Section II-E),
a newH-measuremaximizingmeta-learner of stacked ensem-
ble was also implemented and evaluated in the experimental
evaluation. This new H-measure maximizing meta-learner
has never been explored and no published articles in this area
can be found in the literature.

To the best of our knowledge, this research paper is the first
empirical evaluation paper on the implementation and evalu-
ation of the stacked ensemble with different meta-learners,

including the H-measure maximizing meta-learner on imbal-
anced datasets. Furthermore, this paper is also the first imbal-
anced classification research that evaluates a wide range
of meta-learners and reports their performance using both
AUC and H-measure metrics. More importantly, the findings
concluded from this research may support the researchers in
terms of the selection of meta-learner in stacked ensemble for
imbalanced classification.

The outline of this paper is organized as follows. Section II
introduces the related literature about imbalanced classifica-
tion problems, the stacked ensemble and its meta-learners in
imbalanced classification, the machine learning algorithms
utilized in base learning and meta-learning of stacked ensem-
bles in the experiment, and the performance evaluation crite-
ria. Section III describes the experimental settings, including
the datasets used, the hyper-parameters of base learners and
meta-learners in stacked ensembles. Section IV shows the
experimental results and related descriptive and statistical
analyses. Section V presents the conclusion.

II. LITERATURE REVIEW
This section reviews the literature of imbalanced classifi-
cation from five main aspects, i.e., the problems and diffi-
culties in imbalanced classification, the concept of stacked
ensemble, stacked ensembles’ meta-learners in imbalanced
classification, the classification algorithms used in base learn-
ing and meta-learning of stacked ensembles in the empirical
evaluation, and the performance evaluation criteria.

A. PROBLEMS AND DIFFICULTIES IN IMBALANCED
CLASSIFICATION
The main problem of imbalanced classification is the sub-
optimal classification performance on imbalanced datasets.
There noticed the issue of performance degradation for
all degrees of class imbalance in imbalanced datasets
[19]–[21]. Several difficulties, including standard classifica-
tion algorithms and inappropriate global learning metrics,
were responsible for the performance degradation in imbal-
anced classification [1], [21], [22].

Standard classification algorithms are designed based on
the assumptions that the class distribution is balanced and
the misclassification costs are equal [23]–[25]. When these
standard classification algorithms are applied to imbalanced
datasets, there is a bias towards the majority instances, lead-
ing to suboptimal classification performance. For example,
in a standard rule learning algorithm, classification rules that
classify the rare minority instances are often not generated
because the minority instances are infrequently available in
imbalanced datasets [23].

A metric can be used as the performance evaluation met-
ric (the former) in the experimental evaluation and as the
global learning metric (the latter) during the training of a
classification algorithm. If an inappropriate metric is used as
the experimental evaluation metric (the former), a misleading
evaluation of classifiers can occur. Meanwhile, as reported
in the literature [1], if an inappropriate metric is used as
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FIGURE 1. Framework of stacked ensemble.

the learning metric in the training of an algorithm (the
latter), the classifier is misguided, leading to suboptimal
classification performance. Both scenarios are undesirable.
To consider the former, the selection of appropriate per-
formance evaluation metrics is reviewed and discussed in
Section II-E. Specifically, the literature reviewed highlights
the adoption of H-measure. Inspired by the importance of
H-measure in the literature (Section II-E) and to consider the
latter, a new meta-learner, in which the H-measure is used as
the global learning metric, is implemented and evaluated in
this paper.

B. STACKED ENSEMBLE
Stacked Generalization [11] also known as stacking or
stacked ensemble, is an ensemble that consists of multiple
base learners and a meta-learner that learns and combines
the predictions of base learners [9]. Stacked ensemble is
considered a heterogeneous ensemble that promotes classifier
diversity because the base learners of stacked ensemble are
usually generated using different and diverse learning algo-
rithms [9], [12]. Van der Laan et al. [26] proved the theoreti-
cal oracle property of the stacked ensemble and coined the
algorithm as Super Learning or Super Learner. According
to Naimi and Balzer [27], the Super Learner, an evolved
version of Stacked Generalization, is an ensemble that con-
sists of an optimal-weighted combination of base learners.
The optimality is defined by a user-specified objective func-
tion or loss function [27], [28]. In the literature [29]–[31],
Super Learning is recognized as Stacked Generalization and
used interchangeably. In this paper, rather than using Stacked
Generalization and Super Learning interchangeably, the term
‘stacked ensemble’ is used.

Fig. 1 shows the generic framework of a stacked ensemble.
Suppose that given a training dataset with dimension of n
× f, where n is the number of rows and f is the number

of features or columns, and b, the number of classification
learning algorithms.

In the training step of Fig. 1, for a single b-th iteration,
the given training dataset is used as the input for the b-th
base algorithm, which goes on to perform two important
tasks. Firstly, the training of b-th base classifier, ψb for the
testing step. Specifically, the b-th classification algorithm
learns the whole training dataset (without cross-validation)
and generates the b-th base classifier of stacked ensem-
ble. Secondly, the generation of metadata, zb for each of
the b-th classification algorithm. Fig. 2 shows the k-fold
cross-validation method with k = 5 as an example. The
k-fold cross-validation is a common approach to generate
the metadata in stacked ensemble [9], [28]. Thus, in the
experiment of this paper, the k-fold cross-validationmethod is
adopted. Fig. 1 shows the generation of metadata, zb using the
k-fold cross-validation method. In Fig. 2, the training dataset
is partitioned into k-roughly-equal folds, {F1, . . . ,Fk}. For
each fold, Fk , the out-of-k-th folds (gray-folds) are used to
train a classifier, ψb

Fk and predict on the fold Fk (slash-line-
fold), repeated for k times, then the predicted foldsF1, . . . ,Fk
(slash-line-folds) are combined into a metadata of b-th algo-
rithm, zb (with a dimension of n × 1). The two impor-
tant tasks are repeated b times for b base algorithms. The
generated zb are column-combined along with the original
actual class-label to complete the metadata, Z. The meta-
data, Z is used as the learning data for the different meta-
learners, 8 (listed in Table 5) in the empirical evaluation of
this paper.

In the testing step of the stacked ensemble, the testing
data is used as input of the b base learners, {ψ1, . . . , ψb}.
Predictions of the b base learners, {ψ1, . . . , ψb} are
column-combined and fed into the trained meta-learner, 8.
The prediction of meta-learner, 8̂ is the final prediction of
the stacked ensemble with meta-learner, 8.
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FIGURE 2. k-fold cross-validation for the generation of metadata, zb, k = 5.

C. LITERATURE ON META-LEARNERS OF STACKED
ENSEMBLE
In this section, research journals related to stacked ensembles
in imbalanced classification are gathered and reviewed from
the perspective of its meta-learner. In the literature, a wide
range of meta-learners has been adopted for imbalanced
classification.

The single classifier system, i.e., non-ensemble-based clas-
sifier, is employed as the meta-learner of stacked ensemble in
the following imbalanced classification literature. Idris and
Khan [32] compared the stacked ensemble against major-
ity voting-based ensemble on telco datasets. The stacked
ensemble consists of four base learners, i.e., Random Forest,
Rotation Forest, RotBoost, and SVM, and a meta-learner of
Decision Tree. The cross-validated predictions in class-label
are used as the metadata of the stacked ensemble. They
concluded that the majority voting-based ensemble outper-
formed stacking with class-label in churn prediction. How-
ever, they added that the performance of stacked ensemble
could be improved by using predicted probability rather than
the predicted class-label as metadata. Thus, in this paper,
the metadata used in the empirical evaluation is the predicted
probability. Ahmed et al. [33] investigated the integration of
stacked ensemble in both bagging and boosting ensembles
named Bagged-Stacked learner and Boosted-Stacked learner,
respectively. The stacked ensemble with Decision Tree as
a meta-learner is employed as the classifier within bagging
and boosting. Therefore, both the Bagged-Stacked learner
and Boosted-Stacked learner’s final predictions are the vot-
ings of multiple stacked ensembles. Wijaya and Wahono [4],
as well as Grenet et al. [34], applied stacked ensemble with
Naive Bayes as meta-learner in software defect prediction
and chemical risk evaluation, respectively. Grenet et al. [34]
highlighted that the proposed stacked ensemble outperformed
the industry’s classical QSAR algorithms. Cao et al. [35] pro-
posed a stacked ensemble classifier named lncLocator to
predict the lncRNA subcellular localizations. They utilized
Neural Network as the meta-learner in the stacked ensem-
ble. Akhtar et al. [36] employed the stacked generaliza-
tion method in the prediction of Large-For-Gestational-Age
(LGA) fetus, i.e., the classification of a fetus as LGA or
non-LGA. The cross-validated predictions of base learners

were used as the metadata of SVM with linear kernel. The
researchers [37] also employed SVM (with the radial ker-
nel) as the meta-learner of stacked in identifying abnormal
phone calls.

Some researchers investigated the use of MCS, i.e., ensem-
ble learning instead of a single classifier as the stacked
ensemble’s meta-learner. Tozlu et al. [38] proposed the use
of stacked ensemble with Random Forest as the meta-learner
in commercial loan application prediction. Gomaa et al. [39]
applied bagging as a meta-learner of stacked ensem-
ble to categorize user reviews in mobile app stores.
The researchers [40] investigated the use of bagging and
AdaBoost ensembles in the meta-learning of stacked ensem-
ble for software defect prediction. A stacked ensemble with
LightGBM as a meta-learner was proposed in the sleep
stage classification [41]. Xia et al. [42] proposed a heteroge-
neous stacked ensemble named bstacking, which combines
the bagging and stacking algorithm. The average prediction
of meta-learners (i.e., XGBoost) is computed as the final
prediction. Zhou et al. [43] also investigated the application
of stacked ensemble with XGBoost as the meta-learner in
purchase prediction.

The adoption of a robust linear classifier with good
interpretability as the meta-learner of stacked ensemble is
highlighted in the literature. Several researchers [3], [30],
[31], [44]–[50] employed Logistic Regression as the lin-
ear meta-learner of stacked ensembles. Logistic Regression
is the most adopted meta-learner of stacked ensemble in
imbalanced classification based on the literature review.
LeDell et al. [28] proposed an AUC-maximizing stacked
ensemble in which a meta-learner finds the optimal com-
bination of base learners that maximize the AUC metric.
The AUC-maximizing stacked ensemble is coined as a Super
Learning ensemble. Table 1 summarized the meta-learners
adopted in the imbalanced classification literature.

D. ALGORITHMS OF BASE LEARNERS AND
META-LEARNERS IN EMPIRICAL EVALUATION
1) ALGORITHM OF BASE LEARNER
Stacked ensemble is a heterogeneous ensemble generated
using different learning algorithms [9], [12]. Since this paper
aims to evaluate the performance of different meta-learners
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TABLE 1. Meta-learners of stacked ensembles in imbalanced
classification.

in stacked ensembles, the base learners are fixed for valid
comparison and evaluation. The classification learning algo-
rithms used as base learners including k-Nearest Neighbor,
FeedforwardNeural Network, RandomForest, C4.5 Decision
Tree, Naive Bayes, and XGBoost are reviewed in this section.

a: k-NEAREST NEIGHBOR (k-NN)
k-NN is recognized as an instance-based learning algo-
rithm [51]. The main idea of k-NN is that data instances with
similar characteristics are near each other. In classification,
the class prediction of a testing instance is generated based
on the k closest training instances. The similarity of instances
is measured in distance functions such as the Euclidean
distance.

b: FEEDFORWARD NEURAL NETWORK
Feedforward Neural Network [52] has three basic layers,
namely the input, hidden, and output layers. Each layer com-
prises elements named neurons. The neurons in one layer
are connected to the neurons in the next layer. The network
is trained to map the input to output through the neurons
in the layers. In Feedforward Neural Network, the weight
of the inter-neuron connection is adjusted iteratively in a
feedforward process to obtain a good model.

c: RANDOM FOREST
Random Forest [16] is a tree-based ensemble that integrates
the bootstrap method and the random subspace method.
The bootstrapping method samples the training dataset with
replacement and generates multiple bags of data. For each
bag, a subset of attributes is randomly selected using the
random subspace method. Let the number of attributes in
the selected subset of attributes be a. Then, the bag with the
selected a attributes is used to train a tree model. The training
process is repeated for all the bags. Later, the generated trees
are subsequently combined to complete the Random Forest
model.

d: C4.5 DECISION TREE
The C4.5 Decision Tree algorithm is a tree-based model
developed by Quinlan [13]. It consists of internal nodes that

split the input data into smaller partitions according to a
discrete function of the input features and a series of leaf
nodes to assign labels to data instances. The gain ratio is
employed as the splitting criteria, and the splitting stops if the
number of instances to be split is below a certain threshold.
The C4.5 Decision Tree has good interpretability because it
can be translated into a set of interpretable ‘if. . . else’ rules.

e: NAIVE BAYES
Naive Bayes is a probabilistic learning algorithm. It is
designed based on Bayes’ theorem and naively assumes that
the attributes are conditionally independent. Suppose that
given a class vector, y and n attributes vector, {x1,. . . , xn},
the Bayes’ theorem states that:

P(y|x1, . . . , xn) =
P(y) · P(x1, . . . , xn|y)

P(x1, . . . , xn)
(1)

Using the naive conditional independence assumption of
attributes, Eq. 1 is simplified to Eq. 2.

P(y|x1, . . . , xn) =
P(y) ·

∏n
i=1 P(xi|y)

P(x1, . . . , xn)
(2)

Notice that P(x1, . . . , xn) is a constant, therefore Eq. 2 can
be written as Eq. 3.

P(y|x1, . . . , xn) ∝ P(y) ·
n∏
i=1

P(xi|y) (3)

A conditional probability model, P(y|x1, . . . , xn) which is
recognized as the Naive Bayes learning algorithm, is obtained
by solving the maximum argument of P(y) ·

∏n
i=1 P(xi|y).

f: EXTREME GRADIENT BOOSTING (XGBOOST)
XGBoost [17] is a tree-based boosting algorithm that merges
multiple weak decision trees into a single strong model.
XGBoost enhances the gradient boosting framework by
incorporating Taylor’s expansion [53] in loss function for fast
approximation and injecting a regularization term in the loss
function to control the complexity of trees.

2) ALGORITHM OF META-LEARNER
Classification algorithms utilized as stacked ensembles’
meta-learners in the imbalanced classification literature are
summarized in Table 1. These meta-learner algorithms are
reviewed in this section. Notice that the Feedforward Neural
Network, Random Forest, C4.5 Decision Tree, Naive Bayes,
and XGBoost algorithms have been discussed in Section II-
D1. Thus, the remaining meta-learners algorithms, including
Logistic Regression, C5.0 Decision Tree, CART Decision
Tree, SVM, Bagging, AdaBoost, LightGBM, Super Learn-
ing with NNLS, CCLL, and AUC maximizing methods are
reviewed in the following paragraphs.

a: LOGISTIC REGRESSION
Logistic Regression is a parametric model that predicts a
binary outcome from a set of independent variables. It mod-
els the log odds of the outcome (i.e., log( p

1−p )) as a linear
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function, as shown in Eq. (4). By moving some terms around,
Eq. (4) can be expressed as shown in Eq. (5). Notice that
Eq. (5) is a sigmoid function parameterized by z as shown
in Eq. (6), where z consists of coefficients, {β0, . . . , βf } and
features, {x1, . . . , xf }.

log(
p

1− p
) = β0 + β1x1 + β2x2 + . . .+ βf xf (4)

and

p =
1

1+ exp−(β0+β1x1+β2x2+...+βf xf )
(5)

where:
p = the probability of an outcome
β0 = the intercept
β1, . . . , βf = the coefficients
f = the number of independent variables (i.e., features)

Sigmoid(z) =
1

1+ exp−z
(6)

b: C5.0 DECISION TREE
The C5.0 algorithm is a successor to Quinlan’s C4.5 algo-
rithm. It has several improvements that are likely to gener-
ate smaller trees compared to the C4.5 algorithm [54]. For
example, the C5.0 will combine non-occurring conditions for
splits with several categories. Also, it performs a global prun-
ing procedure that removes the sub-trees until the error rate
exceeds one standard error of the baseline rate (i.e., no prun-
ing). In terms of computing efficiency, the C5.0 algorithm is
faster and requires less memory than the C4.5 algorithm.

c: CART DECISION TREE
The Classification and Regression Tree (CART) is a binary
decision tree proposed by Breiman [55]. Beginning with the
root node that contains all the training instances, the CART
binary tree is constructed by splitting a node into two child
nodes repeatedly. Different from C4.5 and C5.0 that used the
gain ratio as the splitting criteria, the GINI index is adopted
in the CART algorithm.

d: SUPPORT VECTOR MACHINE (SVM)
SVM [15] is also known as support-vector networks, which
constructs a decision boundary that best separates (classify)
the data instances. The best decision boundary of SVM is
a separating hyperplane that has the largest distance to the
nearest training instances of any class, i.e., a hyperplane that
maximizes the margin. Boser et al. [56] extended the linear
nature of the SVM model to non-linear classification using
the ‘kernel trick’, i.e., replacing the simple linear cross prod-
uct with the kernel function [54]. Table 2 presents the kernel
equations of the kernel trick [54], [57], [58], where γ is the
scaling parameter, coef is a coefficient, and d is the degree of
the polynomial.

TABLE 2. Kernel equations of SVM.

e: BAGGING
Bootstrap aggregating (bagging) [14] is an ensemble learn-
ing method that generates multiple homogeneous classifiers
using bootstrapping (i.e., random sampling with replace-
ment), and these classifiers are aggregated to form the ensem-
ble predictor. Suppose that given a training dataset, {xN , yN},
where N is the number of instances. The bagging algorithm
generates b number of bags (each bag has size N) using
random sampling with replacement. These b bags are used
as the training datasets for a learning algorithm to gener-
ate b number of homogeneous classifiers, {c1, c2, . . . , cb}.
Subsequently, c1, c2, . . . , cb are aggregated by majority or
weighted voting to construct the bagging ensemble.

f: ADABOOST
AdaBoost [59], short for Adaptive Boosting, is an ensemble
learning method that iteratively learns from the mistakes of
weak classifiers, and aggregates them (i.e., the weak clas-
sifiers) into a strong ensemble. Let I denote the total itera-
tions in AdaBoost. In the i-th iteration of AdaBoost, a weak
classifier, ci is trained using a training dataset with weight
distribution, Di. The AdaBoost gives more focus to the diffi-
cult instances (i.e., incorrectly classified instances by ci) by
adjusting the weight distribution of training dataset in the next
iteration,Di+1. Specifically, the weights of difficult instances
and easy instances are increased and decreased, respectively,
inDi+1. Furthermore, in each iteration, another weight (wi) is
assigned to eachweak classifier (ci) based on its performance,
i.e., higher weights are given to more accurate classifiers.
After all the I iterations, the I number of weak classifiers
with the corresponding weights, {(c1,w1), . . . , (ci,wi)} are
aggregated to form the AdaBoost ensemble.

g: LIGHT GRADIENT BOOSTING MACHINE (LIGHTGBM)
LIGHTGBM [18] is a new implementation of Gradient
Boosting Decision Tree (GBDT) that consists of two new
techniques, i.e., Gradient-based One-Side Sampling (GOSS)
and Exclusive Feature Bundling (EFB). The authors proved
that the samples with larger gradients are crucial in the cal-
culation of information gain. Thus, in the proposed GOSS,
those instances with a small gradient are randomly removed,
and those instances with a large gradient (i.e., under-trained
instances) are used to estimate the information gain, i.e., esti-
mation of the information gain with a smaller size of data
using GOSS. Furthermore, in a sparse feature space, many
features are mutually exclusive. In LightGBM, EFB is used to
bundle these mutually exclusive features into a single feature

VOLUME 9, 2021 87439



S. Zian et al.: Empirical Evaluation of Stacked Ensembles With Different Meta-Learners

(i.e., reduction of dimensionality) without compromising the
model performance. The authors reported that the LightGBM
is over 20 times faster in model training and has almost
similar accuracy compared to conventional GBDT.

h: SUPER LEARNING WITH NNLS, CCLL, AND
AUC-MAXIMIZING METHODS
The NNLS method is a meta-learner that finds the
best-weighted combination (with non-negative-coefficient
constraint) of base learners that minimizes the least squares
error. The CCLL method is a meta-learner that searches the
convex combination of base learners (i.e., the base learners
are linearly combined, and their non-negative coefficients
are summed to one) that minimizes the negative binomial
log-likelihood on the logistic scale. The AUC-maximizing
method is a meta-learner that finds the weighted combination
of base learners that maximizes the AUC. It is worth men-
tioning that the Logistic Regression, NNLS method, CCLL
method, and AUC-maximizing method find the weighted
combination (linearly or non-linearly) of base learners with
different loss functions, thus are considered as stacked ensem-
bles with weighted combination-based meta-learners.

E. EVALUATION CRITERIA
Accuracy, commonly employed as the performance metric,
is not a suitable metric in the imbalanced classification [1],
[21], [60]. Consider an imbalanced credit card fraud dataset
with 95 non-fraud instances (majority) and 5 fraud instances
(minority). Recall that the minority class (i.e., fraud) is often
the target of interest for a prediction model. A model that is
trained to detect fraud instances is worthless if it fails to do so.
Suppose that the trained credit card fraud classifier predicts
all 100 instances as non-fraud (majority class), the accuracy
of the classifier is 95%. Notice that all minority instances
are misclassified in this 95% high accuracy model. Ironically,
the fraud instance (minority class) is the target of the detection
model. This shows that the accuracy metric is inappropriate
as it is biased toward the majority class in the context of
imbalanced classification [1].

On the other hand, the AUCmetric, which is a popular per-
formance evaluation metric in imbalanced classification [21],
requires no input parameter including the threshold value, has
the advantage of enabling reproducible evaluations among
researchers. Although the AUC metric is generally accepted
in the literature, Hand [61] highlighted the issue of incoherent
misclassification costs in AUC, i.e., AUC assumes different
misclassification cost distributions for different classification
algorithms. Specifically, Hand [61] pointed out that the AUC
is equivalent to averaging the misclassification loss over a
cost ratio distribution, which depends on the classifiers’ score
distributions. In other words, the AUC metric is classifier-
dependent, assumes different misclassification cost distribu-
tions for different classifiers. This is not logical because the
misclassification cost should depend on the classification
problem and not on the classifier [61], [62]. As an example,

suppose that given 2 classifiers, {C1,C2}, the AUC utilizes
the values of w and W as the misclassification cost of C1
and C2, respectively, where w 6= W. The incoherent mis-
classification cost is a serious problem because it means
that the AUC evaluates different classifiers using different
performance metrics [21], [61] and leads to unfair perfor-
mance measurements. Therefore, the H-measure [61], which
overcomes AUC’s deficiencies, is proposed as an alternative
performance metric.

H-measure is a metric that gives a normalized classifier
assessment based on expected minimum misclassification
loss [62]. A beta distribution is employed in H-measure
to represent the relative cost distribution which is consis-
tent across classifiers. The value of the H-measure ranges
from 0 to 1. The value of 0 represents a random classifier,
and 1 denotes a perfect classifier. The beta distribution,
beta(π1 + 1, π0 + 1) where π0 and π1 denote the propor-
tions of instances belonging to class 0 and 1, respectively,
is suggested for imbalanced classification [63]. In short,
the H-measure is a suitable performance metric that can
make valid comparisons among the classifiers in imbalanced
classification, unlike the AUC metric, which measures dif-
ferent classifiers using different ‘rulers’. In the literature,
the authors [42], [62] utilized the H-measure as the perfor-
mance metric in experimental evaluations. The H-measure
can be estimated using Eq. 7 [61], as shown at the bottom of
the next page.
with

L̂β

=

m∑
i=0

{π0(1− r0i)
{
B(c(i+1); 1+ α, β)− B(c(i); 1+ α, β)

}
/B(1;α, β)

+π1r1i
{
B(c(i+1);α, 1+ β)− B(c(i);α, 1+ β)

}
/B(1;α, β)} (8)

cj+1

=
π1(r1(j+1) − r1j)

π0(r0(j+1) − r0j)+ π1(r1(j+1) − r1j)
(9)

and

B(x;α, β) =
∫ x

0
uα−1(1− u)β−1du (10)

where:
(r1i, r0i) = the coordinates of ROC curve
π0 = the proportions of instances belonging to class 0
π1 = the proportions of instances belonging to class 1
m = the number of segments in the upper convex hull
B(x;α, β) = an incomplete beta function normalizing

constant
Considering the widespread adoption of AUC as an evalu-

ation metric in imbalanced classification and the importance
of H-measure, both AUC and H-measure were employed as
the evaluation metrics in this paper.

87440 VOLUME 9, 2021



S. Zian et al.: Empirical Evaluation of Stacked Ensembles With Different Meta-Learners

TABLE 3. Profile of experimental KEEL datasets.

III. EXPERIMENTAL SETUP
This section presents the design of the experiment of
this research, which includes the imbalanced datasets,
the programming environment and settings, and the
hyper-parameters of base learners and meta-learners used in
the stacked ensembles.

A. IMBALANCED DATASETS
In order to evaluate stacked ensembles’ performance with
different meta-learners, 20 imbalanced datasets with differ-
ent values of Imbalanced Ratio (IR) from various domains
were used, as shown in Table 3. The datasets have differ-
ent features, including numerical (real number and integer)
and categorical (nominal) attributes. Specifically, Table 3
shows the profile of each dataset, including the type of
features, the total number of instances, Imbalanced Ratio
(IR), count of majority and minority instances, and the per-
centage of minority instances. These datasets are available
online in the KEEL repository [64]. The datasets that are
pre-partitioned into five folds by the KEEL repository were
used to enable reproducible results. For every single 5-
fold pre-partitioned imbalanced dataset, 10 data files were
downloaded. With the ‘‘iris0’’ dataset as an example, the
5-fold pre-partitioned ‘‘iris0’’ dataset consists of 5 train-
ing datasets (‘‘iris0-5-1tra.dat’’, ‘‘iris0-5-2tra.dat’’, ‘‘iris0-
5-3tra.dat’’, ‘‘iris0-5-4tra.dat’’, and ‘‘iris0-5-5tra.dat’’) and
5 testing datasets (‘‘iris0-5-1tst.dat’’, ‘‘iris0-5-2tst.dat’’,
‘‘iris0-5-3tst.dat’’, ‘‘iris0-5-4tst.dat’’, and ‘‘iris0-5-5tst.dat’’)
as shown in Diagram 3. Thus, the ‘‘iris0’’ dataset is

pre-partitioned in the KEEL repository into five folds, with
each fold consisting of a training set and a testing set.

B. ENVIRONMENT AND SETTING
R version 3.6.3 [65] was used as the programming envi-
ronment. Following the experimental setting in the lit-
erature [66], [67], this paper adopted the N × k-fold
cross-validation strategy where N is the number of repetition
of the k-fold cross-validation and k is the number of folds
in cross-validation. Specifically, the value of k is five since
the 5-fold pre-partitioned KEEL datasets were used, and the
value of N was set at five.

Fig. 3 shows the research experimental settings in the
R programming environment, N × k-fold cross-validation
method where N = 5 and k = 5 as strategy, and ‘‘iris0’’ as
the imbalanced dataset. For a single N-th iteration, and for
each k-th fold, the training set was used to train a model
(i.e., stacked ensemble) and the trained model predicts on the
testing set to obtain the ‘‘performance on k-th fold’’. Repeated
k times, k number of ‘‘performance on k-th fold’’ were pro-
duced and averaged to obtain the ‘‘averaged k-fold perfor-
mance’’ for the single N-th iteration. The ‘‘averaged k-fold
performance’’ produced by five iterations ofNwere averaged
to obtain the final performances (in AUC and H-measure) of
the experiment. In other words, the ‘‘final performance’’ was
obtained by averaging the performance values of ‘‘averaged
k-fold performance’’ for five repetitions (N = 5).

The training and testing steps of stacked ensembles are
described in Section II-B and shown in Fig. 1. Specifically,
the training dataset (e.g., ‘‘iris0-5-1tra.dat’’) was used as the

Ĥ = 1− (
L̂β · B(1;α, β)

π0B(π1; 1+ α, β)+ π1B(1;α, 1+ β)− π1B(π1;α, 1+ β)
) (7)
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FIGURE 3. Diagram of experimental design - Overview.

input of b number of base learners (as listed in Table 4)
to train the corresponding base classifiers. The training
dataset was also subjected to the k-fold cross-validated pre-
diction process to generate the metadata, Z (as described in
Section II-B). Subsequently, the metadata, Z was used as the
input data for the training of different meta-learners (as listed
in Table 5). Note that the generation of metadata and train-
ing of base learners were conducted only once for different
meta-learners, i.e., the realization of fixed base learners in
all stacked ensembles with different meta-learners. For the
testing step, the testing data (e.g., ‘‘iris0-5-1tst.dat’’) was pre-
dicted by the trained base learners. Then, the predictions of
base learners were used as the input for a trained meta-learner
to output the final prediction of stacked ensemble. Note that
the final predictions of stacked ensemble were evaluated
using AUC and H-measure in the experiment.

C. HYPER-PARAMETER OF STACKED ENSEMBLE
1) HYPER-PARAMETERS OF BASE LEARNERS
k-Nearest Neighbor, Feedforward Neural Network [52], Ran-
dom Forest [16], eXtreme Gradient Boosting [17], C4.5

Decision Tree [13], and Naive Bayes were used as the base
learners of stacked ensembles. The reasons for selecting these
heterogeneous algorithms are two-fold. Firstly, a stacked
ensemble is usually generated using different and diverse
learning algorithms [9], [12]. In other words, a stacked
ensemble is commonly a heterogeneous ensemble. Secondly,
these heterogeneous algorithms are built on different prin-
ciples and likely to make complementary errors [68], [69].
Table 4 shows the list of algorithms used as base learn-
ers, the hyper-parameters of base learners, and R packages
utilized.

In Table 4, the base learners are parameterized
using (mostly) default hyper-parameters rather than tuned
hyper-parameters. Ultimately, a different set of base learn-
ers’ hyper-parameters produces different metadata (which
is the input data for the learning of meta-learner). Let the
metadata generated using the base learners’ hyper-parameters
in Table 4 and a set of tuned base learners’ hyper-parameters
be denoted as Zused and Ztuned , respectively. Ztuned con-
sists of optimal base learners’ predictions as it is gen-
erated based on tuned hyper-parameters of base learners,
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TABLE 4. List of base learners of stacked ensembles in experiment.

whereas Zused contains a mixture of optimal and subopti-
mal base learners’ predictions as it is generated based on
less-tuned hyper-parameters of base learners. The learning
of a meta-learner using Zused (as input data) is more chal-
lenging than Ztuned as the meta-learner needs to learn based
on less-optimized input data. Thus, Zused is preferred over
Ztuned in the experimental setting of this research. The main
reason is that Zused provides a more complex and challenging
environment than Ztuned for the learning (evaluation) of meta-
learner. In other words, in this experiment, the meta-learners
are tested in a ‘difficult’ environment rather than an ‘easy’
(tuned) environment to test the capability of meta-learners
in merging the predictions of base learners (metadata).
A meta-learner must overcome the difficulty in the given
metadata to achieve good performance in the experiment.
Thus, the current setting (Table 4) has the advantage of
providing a more challenging environment using Ztuned as the
input learning metadata (of meta-learners) for the evaluation
of meta-learners.

2) HYPER-PARAMETERS OF META-LEARNERS
The meta-learners reported in the literature (as shown
in Table 1) are included in the empirical evaluation,
as shown in Table 5. Their respective implementation in R
programming and the hyper-parameters used in the empir-
ical evaluation are highlighted. Table 5 includes not only
those specifically reported meta-learners but also those
meta-learners relevant to the reported meta-learners. C4.5,
C5.0, and CART are included for the reported decision tree
meta-learner; AUC-maximizing, NNLS, CCLL, and a new
method named ‘H-measure maximizing meta-learner’ are
covered for the reportedmeta-learners under the Super Learn-
ing framework. Since the new H-measure maximizing meta-
learner, which has never been investigated in the literature (to
the best of our knowledge), is first implemented in this paper,
the following paragraph briefly describes its implementation.

3) IMPLEMENTATION OF A NEW H-MEASURE MAXIMIZING
META-LEARNER
The main idea of the H-measure maximizing meta-learner is
that the meta-learner learns the best-weighted combination of

base learners that maximizes the cross-validated H-measure
based on the base learners’ prediction. Following the
notations used in Section II-B, the implementation and
development of the H-measure maximizing meta-learner is
described. Specifically, in the development of the H-measure
maximizing meta-learner, two major components, the opti-
mization component and the H-measure calculation com-
ponent were considered. For the optimization component,
the nonlinear optimization package – nloptr was utilized to
learn the optimal-weighted combination of base learners,
{ψ1, . . . , ψb} that maximizes the cross-validated H-measure
on the metadata, Z. The nloptr package is an R interface to
the NLopt [74] project from MIT and has several different
effective optimization routines. For the H-measure calcu-
lation component, the ‘hmeasure’ package [75] in R pro-
gramming was adopted. Following the recommendation for
imbalanced data in the literature [63], the H-measure metric
with parameters of beta distribution, beta(π1 + 1, π0 + 1)
was employed in the H-measure maximizing meta-learner.
By integrating the H-measure as loss function and optimiza-
tion algorithms in theNLopt project, ameta-learner,8, which
finds the best combination of base learners, {ψ1, . . . , ψb}, is
formulated.

D. PERFORMANCE ANALYSIS
Both descriptive statistics and statistical tests were adopted
for classification performance analyses. The average per-
formance and average ranking are calculated for descrip-
tive statistics. Furthermore, to analyze the performances
of stacked ensembles with different meta-learners from
a statistical perspective, a hierarchical analysis that con-
sists of intra-family and inter-family comparison was
adopted [82].

For the pair-wise comparison of two methods, the non-
parametric Wilcoxon signed-rank test was utilized [82],
[83]. The null hypothesis of the non-parametric Wilcoxon
signed-rank test is that the two methods have equal clas-
sification performances. If the non-parametric Wilcoxon
signed-rank test’s null hypothesis is rejected, it indicates that
one of the methods has a statistically better classification
performance than the other method.
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TABLE 5. List of meta-learners of stacked ensembles in experiment.

For comparisons of multiple methods, the Friedman
Aligned Ranks test was first used to examine if there is a
statistically significant difference among the methods [84].
The null hypothesis of the Friedman Aligned Ranks test is
that all the methods have equal classification performances.
If the null hypothesis of the Friedman Aligned Ranks test
is rejected, it indicates unequal classification performances
among the methods. Since unequal classification perfor-
mances among the methods exist, to further analyze and
compare the performances among the methods, a post hoc
test with p-values adjusted using Bergman and Hommel’s
procedure is performed. On the other hand, no post hoc test
is conducted if the Friedman Aligned Ranks test indicates
that there is no significant difference among the methods
(i.e., Friedman Aligned Ranks test’s null hypothesis is not
rejected).

IV. EMPIRICAL CLASSIFICATION PERFORMANCE RESULT
A. CLASSIFICATION PERFORMANCE ANALYSIS
This section shows the classification performance results
on the KEEL imbalanced datasets. In this experiment,
the meta-learners of stacked ensembles were categorized
into non-ensemble, ensemble, and weighted combination,
as shown in Table 5.
For each of the evaluated stacked ensembles with different

meta-learner, the average H-measure and average AUC were
calculated by averaging the recorded H-measure and AUC
metrics over all the KEEL datasets. Besides, the average rank
was calculated for each stacked ensemble by averaging the
fractional ranking of the 19 evaluated stacked ensembles with
different meta-learners over the KEEL datasets. The average
AUC and average rank (based on AUC) were computed as
shown in Table 6, whereas the average H-measure and aver-
age rank (based on H-measure) were calculated as presented
in Table 7.

From the average H-measure perspective, both SL-H and
SL-CCLL have the highest average H-measure of 0.857,
followed by SL-AUC with a value of 0.854. For average rank
based on H-measure, the newly implemented stacked ensem-
ble with H-measure maximizing meta-learner (SL-H) has the
best average rank of 5.85 and is followed by SL-AUC with
the value of 5.88. On the other hand, the SL-CCLL has the
highest average AUC (0.9530), as shown in Table 6. For the
average rank based on the AUCmetric, the SL-AUC recorded
the best average rank of 5.60, followed by SL-H with 5.88.
There observed good classification performances in stacked
ensembles with weighted combination-based meta-learners
(i.e., SL-AUC, SL-CCLL, and SL-H) with both the AUC and
H-measure as evaluation metrics.

B. STATISTICAL CLASSIFICATION PERFORMANCE
ANALYSIS
As shown in Table 5, the types of meta-learner in
stacked ensembles can be grouped into non-ensemble-based,
weighted combination-based, and ensemble-based meta-
learners. A hierarchical analysis [82], which consists of
intra-group and inter-group comparisons, is adopted in this
paper’s statistical analysis. Specifically, three intra-group
comparisons, i.e., comparisons within non-ensemble-
based, weighted combination-based, and ensemble-based
meta-learners, were first conducted and followed by
an inter-group comparison. The inter-group comparison
includes the top-performing stacked ensembles from each
intra-group, i.e., comparison among stacked ensembles
with non-ensemble-based, weighted combination-based, and
ensemble-based meta-learners.

The diagram of hierarchical analysis is shown in Fig. 4.
The double-straight-dotted line refers to the selected stacked
ensemble’s meta-learner. The single-straight-dotted line
indicates no statistical significance attained by a stacked
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TABLE 6. Performance in AUC: average rank and average AUC.

TABLE 7. Performance in H-measure: average rank and average H-measure.

ensemble’s meta-learner when compared to the selected
meta-learner. The single-straight line refers to a statistical
significance attained by a meta-learner when compared to the
selected meta-learner.

1) INTRA COMPARISON OF STACKED ENSEMBLES WITH
NON-ENSEMBLE-BASED META-LEARNERS (INTRA
NON-ENSEMBLE GROUP)
As shown in Table 5, the non-ensemble-based meta-learners
consists of different classification algorithms, including three
decision trees (C4.5, C5.0, and CART), four SVMs with dif-
ferent kernels (SVMwith linear, radial basis, polynomial, and
sigmoid kernels), Naive Bayes algorithm, and Feedforward
Neural Network algorithm. Instead of comparing the nine
meta-learners using a single statistical test, more statistical
tests were employed to investigate the classification perfor-
mances for the same type of classification algorithm with
different variants, i.e., intra-variant (subgroup) comparison.
Specifically, the subgroups for intra-variant comparison of
non-ensemble-based meta-learners are:
• Subgroup 1: Stacked ensembles with decision tree
meta-learners (SG-C45, SG-C50, and SG-CART) were
compared against each other, and the best performing
approach was selected as the representative method for
this subgroup;

• Subgroup 2: Stacked ensembles with SVM meta-
learners (SG-SVM-Linear, SG-SVM-Radial, SG-SVM-
Poly, SG-SVM-Sigmoid) were evaluated, and the
top-performing stacked ensemble with SVM meta-
learner was chosen;

• Subgroup 3: Stacked ensemble with Naive Bayes
meta-learner (SG-NB) was selected without intra-
variant comparison;

• Subgroup 4: Stacked ensemblewith FeedforwardNeural
Networkmeta-learner (SG-NNET) was selected without
intra-variant comparison.

After the intra-variant comparisons, four stacked ensembles
(each from the four subgroups) were compared, and the
best performing stacked ensemble was selected to represent
the stacked ensemble with non-ensemble-based meta-learner,
i.e., the intra non-ensemble group.

For the intra-variant comparison of stacked ensembles
with decision tree meta-learners (Subgroup 1), the Fried-
man Aligned Ranks test was first conducted. The p-value of
the Friedman Aligned Ranks test is 0.6979, which is much
greater than 0.05. This suggests that there is no significant
difference within the stacked ensembles with decision tree
meta-learners, statistically. Since the p-value of the Friedman
Aligned Ranks test is much greater than 0.05, it is point-
less to conduct the post hoc test to differentiate among the
stacked ensembles with decision tree-based meta-learners.
For the sake of selecting the best performing stacked ensem-
ble with decision tree meta-learner, theWilcoxon signed-rank
tests were conducted, as shown in Table 8. Based on the
tests, SG-CART was compared against SG-C45 and SG-
C50, both the null hypotheses are not rejected at α = 0.05,
which is aligned with the Friedman Aligned Ranks test.
Although no significant statistical difference was established,
the SG-CART has higher values of ranks (R+) when com-
pared to both SG-C45 and SG-C50. Thus, the SG-CART was
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FIGURE 4. Diagram of hierarchical analysis.

TABLE 8. Wilcoxon test - Comparison of decision trees
(non-ensemble-based methods).

TABLE 9. Wilcoxon test - Comparison of SVMs (non-ensemble-based
methods).

selected to represent the stacked ensembles with decision tree
meta-learners (Subgroup 1).

For the intra-variant comparison of four stacked ensembles
with SVMmeta-learners (Subgroup 2), the FriedmanAligned
Ranks test was conducted. The Friedman Aligned Ranks test
has a p-value of 0.0531 that is greater than 0.05, suggest-
ing no significant difference within the stacked ensembles
with SVM meta-learners. The Wilcoxon signed-rank tests
were employed to select the representative stacked ensem-
ble of Subgroup 2, as shown in Table 9. Based on the
pair-wise Wilcoxon signed-rank tests, SG-SVM-Linear has
greater R+ values, i.e., higher ranks compared to SG-SVM-
Radial, SG-SVM-Sigmoid, and SG-SVM-Poly. Therefore,
SG-SVM-Linear was chosen as the candidate from this sub-
group. Notice that SG-SVM-Linear has slightly better ranks
than SG-SVM-Poly.

Subsequently, the selected representative methods,
i.e., SG-CART (Subgroup 1), SG-SVM-Linear (Subgroup
2), SG-NB (Subgroup 3), and SG-NNET (Subgroup 4) com-
peted against each other to represent the stacked ensembles
with non-ensemble-based meta-learners (intra non-ensemble
group). The Friedman Aligned Ranks test conducted showed
a p-value of 0, suggesting a significant statistical difference

TABLE 10. Post hoc test - Comparison of non-ensemble-based methods.

TABLE 11. Wilcoxon test - Comparison of non-ensemble-based methods.

within the stacked ensembleswith non-ensemble-basedmeta-
learners. A post hoc test with p-value adjusted using Bergman
and Hommel’s procedure was carried out next. The results
are presented in Table 10. As the control method, SG-
SVM-Linear performed statistically better than SG-NNET at
α = 0.05, but when compared to SG-NB and SG-CART,
there found no statistical difference. To further analyze,
the Wilcoxon signed-rank tests were subsequently con-
ducted [82], [85]. Table 11 presents theWilcoxon signed-rank
tests of SG-SVM-Linear against SG-NB and SG-CART.
The results show that the SG-SVM-Linear has higher ranks
(R+) than SG-NB and SG-CART. Thus, the SG-SVM-Linear
was selected to represent the stacked ensembles with non-
ensemble-based meta-learners.

2) INTRA COMPARISON OF STACKED ENSEMBLES WITH
WEIGHTED COMBINATION-BASED META-LEARNERS (INTRA
WEIGHTED COMBINATION GROUP)
For the intra comparison of stacked ensembles with weighted
combination-based meta-learners (intra weighted combina-
tion group), the Friedman Aligned Ranks test was first car-
ried out. The p-value of the Friedman Aligned Ranks test
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TABLE 12. Post hoc test - Comparison of weighted combination-based
methods.

TABLE 13. Wilcoxon test - Comparison of weighted combination-based
methods.

is 0.0147. This suggests that there is a significant statisti-
cal difference at α = 0.05 within the stacked ensembles
with weighted combination-based meta-learner. A post hoc
test with p-value adjusted using Bergman and Hommel’s
procedure was carried out next. The results are presented
in Table 12. As the control method, SL-H performed statisti-
cally better than SG-LR at α = 0.05, and when compared to
SL-CCLL, SL-AUC, and SL-NNLS, there found no statistical
difference. To further analyze, the Wilcoxon signed-rank test
was subsequently conducted [82], [85]. Table 13 presents the
Wilcoxon signed-rank test of SL-H against SL-CCLL, SL-
AUC, and SL-NNLS. Aligned with the descriptive analysis
in Table 7, Table 13 shows that SL-H has a higher ranking
(R+) than SL-CCLL, SL-AUC, and SL-NNLS, but despite
this, there attained no significant differences. SL-H was
selected to represent the stacked ensemble with a weighted
combination-based meta-learner.

3) INTRA COMPARISON OF STACKED ENSEMBLES WITH
ENSEMBLE-BASED META-LEARNERS (INTRA ENSEMBLE
GROUP)
Table 5 shows the ensemble-based meta-learners of
two bagging-ensembles (SG-RF and SG-Bag) and three
boosting-ensembles (SG-Ada, SG-XGB, and SG-LGBM).
The bagging-ensembles and boosting-ensembles are denoted
as ‘Subgroup 5’ and ‘Subgroup 6’, respectively. The best
performing stacked ensemble from each subgroup was
selected, i.e., choosing the best performing stacked ensemble
with bagging-ensemble meta-learner and the top-performing
stacked ensemble with boosting-ensemble meta-learner. Sub-
sequently, the two selected stacked ensembles (each from
Subgroup 5 and 6) competed to represent the stacked ensem-
bles with ensemble-based meta-learners.

The Wilcoxon signed-rank test was conducted for
pair-wise comparison of stacked ensembles with bagging-
ensemble-based meta-learners, i.e., SG-RF and SG-Bag.
Based on the result of the Wilcoxon signed-rank test shown

TABLE 14. Wilcoxon test - Comparison of bagging-ensemble-based
methods.

TABLE 15. Post hoc test - Comparison of boosting-ensemble-based
methods.

TABLE 16. Wilcoxon test - Comparison of boosting-ensemble-based
methods.

in Table 14, the null hypothesis is rejected at α = 0.05. This
shows that SG-RF and SG-Bag are statistically different in
terms of classification performance. The R+ and R- represent
the rank of SG-RF and SG-Bag, respectively. SG-RF has
a higher rank (R+) than SG-Bag. Thus, the SG-RF has a
better performance than SG-Bag and was selected as the best
performing stacked ensemble with bagging-ensemble meta-
learner.

For comparison of stacked ensembles with boosting-based
meta-learners (SG-Ada, SG-XGB, and SG-LGBM), the
Friedman Aligned Ranks test was first performed. The Fried-
man Aligned Ranks test has a p-value of 0. It means that
the classification performances among the stacked ensem-
bles with boosting-based meta-learners are statistically dif-
ferent. To further analyze, a post hoc test with p-value
adjusted using Bergman and Hommel’s procedure was con-
ducted and the results are presented in Table 15. As the
control method, SG-Ada performed statistically better than
SG-LGBM at α = 0.05, and when compared to SG-XGB,
there found no statistical difference. For the sake of select-
ing the best stacked ensemble with boosting-ensemble meta-
learner, the Wilcoxon signed-rank test was carried out to
compare SG-Ada and SG-XGB, and the results are presented
in Table 16. The results show that SG-Ada has a higher
ranking (R+) than SG-XGB, but no significant difference
was recorded. With a higher R+ value compared to SG-
XGB, SG-Adawas selected as the best stacked ensemble with
boosting-based meta-learner.

As discussed in the previous paragraphs, SG-RF and
SG-Ada were chosen as the best-performing stacked
ensemble with bagging-ensemble meta-learner and the
top-performing stacked ensemble with boosting-ensemble
meta-learner, respectively. To select the better performing
stacked ensemble with ensemble-based meta-learner for intra
ensemble group, SG-RF and SG-Ada were evaluated using
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TABLE 17. Wilcoxon test - Comparison of ensemble-based methods
(SG-RF and SG-Ada).

TABLE 18. Post hoc test - Comparison of weighted combination,
ensemble and non-ensemble-based methods.

the Wilcoxon signed-rank test, and the test results are pre-
sented in Table 17. Table 17 shows that the null hypothesis
is rejected at α = 0.05. This indicates that SG-RF and
SG-Ada are statistically different in terms of classification
performance. Notice that R+ and R- represent the rank of
SG-RF and SG-Ada, respectively. SG-RF has a higher rank
(R+) than SG-Ada. Thus, SG-RF has a better performance
than SG-Ada and was selected to represent the intra ensemble
group.

4) INTER-GROUP COMPARISON OF STACKED ENSEMBLES
WITH WEIGHTED COMBINATION, ENSEMBLE, AND
NON-ENSEMBLE-BASED META-LEARNERS
In the previous intra-group comparisons, the SL-H (from
intra weighted combination group), SG-SVM-Linear (from
intra non-ensemble group), and SG-RF (from intra ensem-
ble group) were selected as the best stacked ensemble with
weighted combination-based meta-learner, the top stacked
ensemble with non-ensemble-based meta-learner, and the
highest performing stacked ensemble with ensemble-based
meta-learner, respectively. In this paragraph, these stacked
ensembles with different types of meta-learners are compared
against each other.

The Friedman Aligned Ranks test was carried out to com-
pare the multiple stacked ensembles. The Friedman Aligned
Ranks test has a p-value of 0.0627, between α = 0.05
and α = 0.10, indicating that the classification perfor-
mances are statistically different among the best performing
stacked ensembles with different meta-learners at α = 0.10.
A post hoc test with p-value adjusted using Bergman and
Hommel’s procedure was conducted. The results are pre-
sented in Table 18. As the control method, SL-H performed
statistically better than both SG-SVM-Linear and SG-RF
at α = 0.05.
The Wilcoxon signed-rank tests were carried out to

pair-wisely compare SL-H against SG-SVM-Linear and SG-
RF, and the results are presented in Table 19. Table 19 shows
that the stacked ensemble with weighted combination-based
meta-learner represented by SL-H is able to establish
statistical differences when compared to the best stacked
ensemble with ensemble-based meta-learner (SG-RF) and
non-ensemble-based meta-learner (SG-SVM-Linear) at

TABLE 19. Wilcoxon test - Comparison of weighted combination,
ensemble and non-ensemble-based methods.

α = 0.05 and α = 0.10, respectively. In addition, SL-H
recorded better ranks (R+ values) compared to SG-RF and
SG-SVM-Linear.

Thus, based on the inter-group comparison of the hier-
archical analysis, the stacked ensemble with weighted
combination-based meta-learner represented by SL-H has a
better performance than stacked ensembles with other types
of meta-learners. Notice that the findings are aligned with
the reported highest averaged fractional rank and averaged
H-measure (Table 7).

C. DISCUSSION
By analyzing the results from the descriptive analysis in
Section IV-A and statistical analysis in Section IV-B, a dis-
cussion is formulated and presented in this section.

Based on the results as shown in Tables 6 and 7, there is
no ‘one size fits all’ meta-learner, i.e., different meta-learners
of stacked ensembles excel in different datasets. In terms
of H-measure (Table 7), SL-CCLL has the highest perfor-
mances in ‘‘flare-F’’, ‘‘yeast-1-2-8-9_vs_7’’, ‘‘yeast6’’, and
‘‘abalone19’’ datasets; SG-SVM-Linear recorded the best
results in ‘‘ecoli-0_vs_1’’ and ‘‘winequality-white-9_vs_4’’
datasets; SG-NB has the highest H-measure in ‘‘ecoli3’’
dataset; SG-SVM-Poly has the top performance in ‘‘yeast-
0-2-5-7-9_vs_3-6-8’’ dataset; SG-RF excels in ‘‘led7digit-
0-2-4-5-6-7-8-9_vs_1’’ and ‘‘car-good’’ datasets. In terms
of AUC (Table 6), for example, SL-CCLL has the top per-
formances in ‘‘yeast-0-2-5-7-9_vs_3-6-8’’, ‘‘flare-F’’, and
‘‘abalone19’’ datasets; SG-SVM-Poly has the highest AUC
in ‘‘led7digit-0-2-4-5-6-7-8-9_vs_1’’ dataset. Thus, no sin-
gle meta-learner is better than other meta-learners for every
dataset.

As highlighted in Section II-E, the H-measure [61], which
overcomes the deficiencies of AUC, is a suitable evalua-
tion metric for imbalanced classification. Thus, based on the
results of the average H-measure and average rank com-
puted in Table 7, and the hierarchical analysis conducted
based on the H-measure as presented in Section IV-B, the
following paragraphs discuss the selection of stacked ensem-
ble’s meta-learner for imbalanced classification from two
perspectives, i.e., the perspectives of best (single) performing
meta-learner and top-performing type of meta-learner.

From the best (single) performing meta-learner perspec-
tive, the SL-H recorded the highest average H-measure
and average rank values in Table 7. Besides, based on
the hierarchical analysis in Section IV-B, the SL-H per-
formed statistically better than other types of meta-learners,
i.e., non-ensemble-based and ensemble-based meta-learners
of stacked ensembles. The results of descriptive analysis and
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hierarchical analysis are aligned, i.e., the SL-H has the best
overall classification performance on the evaluated imbal-
anced datasets. This insight is supported by weak evidence
as no large margin of superiority is observed. Notice that the
SL-CCLL recorded the same highest averaged H-measure
as SL-H (Table 7). Besides, as shown in Section IV-B2,
the SL-H has higher ranks (R+) than SL-CCLL, SL-AUC,
and SL-NNLS. Despite this situation, there attained no sig-
nificant differences. Nonetheless, the SL-H was selected as
the top single meta-learner as it shares the highest averaged
H-measure with SL-CCLL, has the highest averaged ranks
(Table 7), and is the top-performing method in the hierarchi-
cal analysis in Section IV-B.

In terms of the top-performing type of meta-learner in
stacked ensemble, the results of the descriptive analysis
(Table 7) and statistical analysis evidenced that the weighted
combination-based meta-learner is the best performing type
of meta-learner when compared to other types such as
non-ensemble-based meta-learners (which consists Decision
Trees, SVMs, Naive Bayes, and Feedforward Neural Net-
work) and ensemble-based meta-learners (includes boosting
and bagging-based ensembles). Specifically, based on the
descriptive analysis, the stacked ensembles with weighted
combination-based meta-learners (SL-H, SL-CCLL, and
SL-AUC) are the top 3 performing stacked ensembles in
terms of average H-measure and average rank. Supported by
the findings of descriptive analysis and hierarchical analysis
in Sections IV-B2 and IV-B4, the stacked ensembles with
weighted combination-based meta-learners are statistically
better than other stacked ensembles with other types of meta-
learners.

In the previous paragraph, we discussed that the weighted
combination-based meta-learner is the best performing
type of meta-learner. Specifically, the stacked ensembles
with weighted combination-based meta-learners are SG-
LR, SL-H, SL-AUC, SL-CCLL, and SL-NNLS. Notice
that the Logistic Regression meta-learner (in SG-LR) is a
very popular meta-learner of a stacked ensemble in imbal-
anced classification literature. Whereas the SL-H, SL-AUC,
SL-CCLL, and SL-NNLS are often coined as Super Learner,
i.e., an ensemble consisting of a meta-learner that finds
the optimally weighted combination of base learners. For
the following discussion, we denote the meta-learner of
Super Learner as ‘Super Learning-based meta-learner’. Thus,
given the popularity of Logistic Regression meta-learner
and the distinct naming convention of Super Learner,
the following paragraphs discuss the performance improve-
ment if Logistic Regression meta-learner is replaced with
Super Learning-based meta-learner, the technical differences
between the two, and the possible advantages and shortcom-
ings of Super Learning-based meta-learner.

The percentage of performance improvement (in
H-measure) is calculated in Table 20. As an example, with
SG-LR as the baseline, the percentage improvement of SL-H
is (0.857-0.831)/(0.831) × 100%, where the H-measure

TABLE 20. H-measure performance improvement with Super
Learning-based meta-learner as replacement of Logistic Regression
meta-learner in stacked ensemble.

performances of SL-H and SG-LR (acquired from Table 7)
are 0.857 and 0.831, respectively. As shown in Table 20, if the
Logistic Regressionmeta-learner is replacedwith other Super
Learning-based meta-learners, the percentages of improve-
ment (in H-measure) range from 2.5% to 3.1%. Note that the
importance of performance improvement varies from case to
case. In certain cases, a small improvement of performance is
crucial and beneficial. For example, in credit risk prediction,
a small improvement of classification performance can result
in substantial cost savings for financial institutions [86]; in
cancer diagnosis prediction, wrong predictions on actual can-
cerous patients can cost patients’ lives [87] or poor treatment
modality.

In this paragraph, we discuss the technical differ-
ences between Logistic Regression meta-learner and Super
Learning-based meta-learner from the perspective of
meta-learning function. The function of a meta-learner is
important as it returns the final predictions of a stacked
ensemble. The functions of Logistic Regression meta-learner
and Super Learning-based meta-learner are shown in Eq. (5)
and Eq. (11), respectively.

h(x) = β1x1 + β2x2 + . . .+ βf xf (11)

where:
β1, . . . , βf = the weights of base learners
f = the number of base learners
Notice that the intercept, β0 and sigmoid function

(6) are required in the function of Logistic Regression
meta-learner (5) but are omitted in the function of Super
Learning-based meta-learner (11). From the perspective
of meta-learning, function (11) finds the best weighted
combination of base learners in stacked ensemble if the
parameters, {β1, . . . , βf } are optimal, whereas function (5)
finds the best sigmoid curve parameterized by z, where z
consists of the weighted combination of base learners and
intercept, β0. Given the different components in the meta-
learners’ functions, intuitively, the finding of an optimally
weighted combination of base learners to merge (learn)
the base learners’ predictions for stacked ensemble
(i.e., Super Learning-based meta-learner) is comparatively
more sensible.

In this paragraph, we briefly discuss the strengths
and shortcomings of the Super Learning-based meta-
learner. In general, the strengths of Super Learning-based
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meta-learner are three-fold. Firstly, Super Learning-based
meta-learner has good interpretability as it finds the best
weighted combination (linear or non-linear) of base learners
as the prediction of stacked ensemble. Secondly, it is easy to
use as it requires minimal hyper-parameters tuning. Thirdly,
the Super Learning-based meta-learner allows customizable
loss function. For instance, the loss function in the H-measure
maximizing meta-learner is customized to include the desired
H-measure as the metric of maximization. The shortcoming
of Super Learning-based meta-learner, in certain configura-
tions, can be originated from its loss function component.
As an example, the H-measure maximizing meta-learner in
SL-H has a more complex H-measure calculation in the loss
function.

V. CONCLUSION
The classification performance of stacked ensemble on
imbalanced datasets depends on the choice of stacked
ensemble’s meta-learner. Based on the literature review,
researchers adopted a wide range of meta-learners in
stacked ensembles for imbalanced classification. The selec-
tion of stacked ensemble’s meta-learner from a wide
range of choices is not an easy task. In this paper,
stacked ensembles with 19 different meta-learners were
empirically evaluated on imbalanced datasets. Among the
19 meta-learners of stacked ensembles, a new H-measure
maximizing meta-learner of stacked ensemble (SL-H),
which has never been explored in the imbalanced clas-
sification literature, is first introduced, implemented,
and evaluated in this article. The classification perfor-
mances of stacked ensembles with different meta-learners
on imbalanced datasets were evaluated in both the
AUC and H-measure metrics. A hierarchical analysis
guided by nonparametric statistical tests was conducted
to analyze the classification performance of stacked
ensemble with different meta-learners from the sta-
tistical viewpoint. Based on the descriptive and sta-
tistical analyses of imbalanced classification results,
the stacked ensembles with weighted combination-based
meta-learners, including SL-NNLS, SL-CCLL, SL-AUC,
and SL-H, were reported to have better performance
than stacked ensembles with ensemble-based meta-learners
(SG-RF, SG-Bag, SG-Ada, SG-XGB, and SG-LGBM)
and non-ensemble-based meta-learners (SG-C45, SG-C50,
SG-CART, SG-NB, SG-NNET, SG-SVM-Linear,
SG-SVM-Radial, SG-SVM-Poly, and SG-SVM-Sigmoid).
Besides, within the stacked ensembles with weighted
combination-based meta-learners, the SL-H, SL-CCLL,
SL-AUC, and SL-NNLS were observed to have better per-
formance than the popular stacked ensemble with Logis-
tic Regression as meta-learner (SG-LR). Supported by the
empirical imbalanced classification results presented in this
paper, some practically useful insights, including the adop-
tion of weighted combination-based meta-learners, were
highlighted in selecting stacked ensemble’s meta-learner for
imbalanced classification.
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