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ABSTRACT In the light of Brazilian energy regulatory context, cluster strategies are required to classify
groups of substations for voltage sag purposes. Tuning cluster algorithms is not a trivial task, due to the fact
that these methods are sensitive to small errors. Therefore, this study proposes a new methodology based on
principal components analysis (PCA), attribute agreement and analysis of covariance to verify the level of
consistency and sensitivity of the linkage methods in the cluster formation for voltage sag studies. In order
to prove this methodology, real data from power quality indices of distribution substations are used. Four
distinct scenarios with disturbances are evaluated. PCA is applied for dimensionality reduction of the data.
Then, grouping is performed for eight different linkage methods and agreement analysis is applied. Ward
method was the only one that presented 100% consistency in all scenarios, considered as the most robust
method whereas k-means showed consistency of 94.11%, with inversion of the clusters. However, when
evaluating their groupings, it was found that k-means was unable to adequately separate the groups for this
dataset. Finally, the proposed methodology is adequate for choose cluster methods for extensive data and it
can be extended to applications in different areas.

INDEX TERMS Substation cluster, voltage sag, principal components analysis, linkage methods, attribute
agreement analysis.

I. INTRODUCTION
Quality improvements are widely studied in several power
quality (PQ) sectors, where the quality of generation and
distribution significantly influences industrial sectors [1].
Among the variables researched in PQ distribution, the volt-
age sag is characterized as a metric of great importance in
these studies [2], as it directly influences losses in industrial
processes with sensitive loads. From this, it is possible to
verify that several studies, focused on PQ, investigate the
phenomenon of voltage sag applying different strategies,
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in which, we can highlight: the use of evolutionary algorithm
to optimize the allocations of PQ monitors in distribution
systems [3]; use of battery energy storage systems in the
investigation of voltage sag and voltage deviation problems in
distribution networks [4]; a new approach to asses equipment
trip using fuzzy probabilities and possibility distribution in
order to mitigate voltage sag [5]; simulations of different
strategies to identify voltage sag sources [6]; the use of
non-hierarchical linkage method of k-means for PQ event
recognition [7]; the use of convolutional neural networks with
weighted k-nearest neighbor classifier for identification of
voltage sag events [8]; and a methodology which can be
applied as a voltage sag mitigation solution to distribution of
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utility in a group of customers installing a dynamic voltage
restorer [9]. These and other studies infer the importance of
using modern strategies to investigate the phenomenon of
voltage sag for PQ distribution.

Voltage sag studies are also applied to classify PQ based
on the number of incidences and the influence of other
variables in this phenomenon, where regulatory agencies
map substations to assess the quality in power distribu-
tion. Among the studies, we can highlight the research by
Miranda Filho et al. [10], in which the authors presented a
proposal that combines the use of principal components
analysis (PCA) strategy and Ward linkage method, creat-
ing substation groups to evaluate PQ based on voltage sag.
Studies, such as this one, are needed in view of the new
Brazilian context regulation and PQ control. Considering
the variance-covariance structure of the data (common in
large datasets), the authors used PCA to model correlated
data from its variance-covariance structure. In addition, this
strategy aims to reduce data dimensionality and promoting a
combination of non-correlated response vectors [11]. These
combinations explain the original variables in a lean and
appropriate way. In addition, the reduction of dimensionality
promotes a decrease in computational effort, favoring the
analysis of extensive data. The use of PCA is present in
several studies that analyze PQ and also in applications in
different segments, such as [12]–[17].

Another multivariate technique widely used for applica-
tions in the electrical sector is known as cluster analysis.
This technique is characterized as a data mining strategy [18],
which is especially applied in studies related to the elec-
tricity sector through the use of linkage methods [1], [10].
These methods are characterized as techniques for estimating
patterns and clusters, in which they are widely used in the
literature, such as: Jasiński et al. [19] used the k-means algo-
rithm to analyze long-term PQ data in the mining industry;
López et al. [20] uses the non-hierarchical k-means method
merged with Hopfield’s autonomous recurrent neural net-
work to classify electricity utility customers (industrial, res-
idential and administrative); Vinothkumar and Selvam [21],
who applied a hierarchical clustering algorithm in the devel-
opment of a new method for grid integration points identifi-
cation of distributed generator units; The use of clustering is
also investigated in Pinel [22], but in a context of designing
energy system of zero emission neighborhood using. For this
purpose, the authors used two distinct clustering methods,
k-means and k-medoids, were evaluated and k-means pre-
sented better results in this specific application; We can also
comment on the study by Ferreira et al. [23], in which they
proposed a newmethod for clustering and pattern recognition
of multivariate time series. The algorithm, which extracts the
main features of the series, was applied in a real context
in Brazil. These studies highlight the importance and wide
applicability of cluster analysis aimed at the electricity sector
and in PQ studies.

When exploring the cluster strategy in the literature, Fávero
[24] highlights that this approach can be divided into two

distinct groups, being the methods of hierarchical clusters
(such as Average, Centroid, Complete, McQuitty, Median,
Single and Ward) and the non-hierarchical methods (such
as k-means). Usually, the choice of these methods is made
in an arbitrary way, where the authors choose a method to
work. However, it is possible to find sources of variations
and errors when formulating clusters, since these techniques
are sensitive to outliers [25]. In addition, Pinel [22] states
that the best clustering method depends on the dataset and
application. In this sense, the configuration of the techniques
used to generate clusters must be examined in a detailed and
careful manner, evaluating the sensitivity and the consistency
of their groupings. Johnson and Wichern [25] affirm that it
is a good measure to apply several clusters methods allied to
small perturbations (small errors) to the unit of data, in order
to verify if there are inversions in the formation of clusters
and to analyze the variability and agreement of the methods
for a particular case.

In this sense, the most suitable technique for analyzing
variability within and between systems is the repeatability
and reproducibility (GR&R) study [26], [27]. This strategy
is the most appropriate technique to evaluate the principles
of variation of a measurement system [28]. This allows the
numerical identification of the highest significance standard
errors. These variation principles are measured to verify that
the variation presented in the measurement system is less
than the true variation of the process [29], [30]. For the
substation clusters evaluation, it is more appropriate to apply
a GR&R by attributes, also known as Attribute Agreement
Analysis (AAA), since the clusters are classified through
memberships. There are some studies in the literature that
apply the AAA technique to assess study variability in differ-
ent applications, such as [31], [32]. It is known that AAA can
evaluate the quality of a cluster method based on its degree
of agreement in front of an established confidence interval.

Based on the studies previously analyzed, it is possible to
verify that several studies that use the cluster approach in
the electric sector do not present an adequate analysis for
the choice of linkage methods, neglecting their instability
in different scenarios. Thus, our study proposes a strategy
that combines exploratorymultivariate techniques and quality
control statistics to analyze the consistency and sensitivity of
the linkage methods in voltage sag studies. For that, we used
data from distribution substations with similar features for
voltage sags applied in Brazil. As suggested by Johnson and
Wichern [25], 1.5% perturbations were applied to the origi-
nal data for four replicates, whereas the data characteristics
(variance-covariance structure) were preserved. Given the
correlated nature of the data, the PCA strategy will be used
and the scores of the principal components will be stored.
After that, the clustering was performed for eight different
linkage approaches (Average, Centroid, Complete, McQuitty,
Median, Single, Ward and k-means) and storing their respec-
tive memberships. Then, the attribute agreement study was
performed to verify the variability in hierarchical and non-
hierarchical methods. In addition, the degree of sensitivity
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of the results were evaluated based on the main voltage sag
variables. To the authors best knowledge, there’s no study
that compares different linkage methods, assessing the level
of agreement and sensitivity analysis in cluster formation for
voltage sag studies. The proposed method stands out as an
important alternative for the evaluation of substation classi-
fications, given the new Brazilian context of power quality
regulation.

This paper is organized as follows: A theoretical back-
ground is presented in section 2, describing all the techniques
used in this study. Section 3 presents the materials and meth-
ods used. Section 4 describes the application for the dataset
from distribution substations in southeastern Brazil, detailing
the design, steps and the results. Finally, section 5 presents
the study’s conclusions.

II. THEORETICAL BACKGROUND
1) PRINCIPAL COMPONENTS ANALYSIS
PCA is a multivariate analysis technique used to find a com-
bination of uncorrelated variables that adequately explains
the original variables [33]. Considering the random vector
XT
= [X1, X2, . . . ,Xp] that has the covariance matrix 6 with

eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λp ≥ 0. Then, the linear
combinations can be described as in Eq. (1).

Y1 = aT1 X = a11X1 + a21X2 + · · · + ap 1Xp
Y2 = aT2 X = a12X1 + a22X2 + · · · + ap 2 Xp

. . .

Yp = aTp X = a1pX1 + a2pX2 + · · · + ap p Xp (1)

According to Johnson and Wichern [25], these linear com-
binations can replace the original variables by reducing the
dimensionality of the problem. If Yi is the ith principal com-
ponent, then (Eqs. (2) and (3)).

Var(Yi) = aTi
∑

ai = eTi
∑

ei;

∀i = 1, 2, . . . , p (2)

CoVar(Yi, Yk ) = aTi
∑

ak = eTi
∑

ek ;

∀i, k = 1, 2, . . . , p (3)

The principal components are those uncorrelated linear
combinations Y1, Y2, . . . ,Yp whose variances in Eq. (2) are as
large as possible. The first principal component is the linear
combination with maximum variance. That is, it maximizes
Var(Y1) = aT1

∑
a1. It is clear thatVar(Y1) = aT1

∑
a1 can be

increased by multiplying any a1 by some constant. To elimi-
nate this indeterminacy, it is convenient to restrict attention to
coefficient vectors of unit length. Therefore, the first principal
component in Eq. (4),

PC1 =

{
Maximize : Var (Y1)
Subject to : aT1 a1 = 1

(4)

Similarly (for Eq. (5)),

PC2 =


Maximize : Var (Y2)
Subject to : aT2 a2 = 1
CoVar (Y1, Y2) = 0

(5)

A. HIERARCHICAL CUSTER ANALYSIS
Hierarchical Cluster Analysis (HCA) consists in agglomera-
tion techniques whose purpose is to group objects with a cer-
tain similarity level. These groupingmethods start with single
objects, which means that initially the number of clusters is
the same as the total number of objects. Next, similar objects
form groups, which aremerged according to their similarities.
Inasmuch as the similarity is reduced, the subgroups tend to
form a single cluster [25]. In this context, different linkage
methods are presented.

1) SINGLE LINKAGE METHOD
Single linkage is a hierarchical method where groups are
formed by merging individual entities considering the largest
similarity, i.e., a smaller separation [25]. Let A and B be
two different clusters and yi and yj be the observations vec-
tors for A and B, respectively. Considering n observations
(i = 1, 2, . . . , n and j = 1, 2, . . . , n), the purpose is to
minimize the distance between them as in Eq. (6).

Dsingle(A,B) = min
{
d
(
yi, yj

)}
(6)

2) COMPLETE LINKAGE METHOD
The complete linkage method is also known as the farthest
neighbor method. Differently from the single linkage, it seeks
tomaximize the distance of two objects between clusters [34].
Again, letA andB be two different clusters, the complete link-
age method separates the most distant objects [35], as shown
in Eq. (7).

Dcomplete(A,B) = max
{
d
(
yi, yj

)}
(7)

3) AVERAGE LINKAGE METHOD
The average linkagemethod defines the distance between two
clusters as the average distance between all pairs of objects,
where each item belongs to a specific cluster [25], [35].
According to Rencher [35], the distance between two clusters
can be expressed as shown in Eq. (8), where nA and nB, rep-
resent the number of objects in cluster A and B, respectively.

Daverage(A,B) =
1

nAnB

nA∑
i=1

nB∑
j=1

d
(
yi, yj

)
(8)

4) CENTROID LINKAGE METHOD
The centroid of a cluster is defined as its center of mass
and the distance between the clusters’ centroids defines the
similarity between them [36]. Therefore, let A and B be two
different clusters, the distance between them depends on the
Euclidean distance between their centroids, which means,
the average vectors ȳA and ȳB, respectively. This formulation
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is indicated in Eqs. (9) and (10) presenting the weighted
average, which calculates the centroid of the new cluster AB.

Dcentroid (A,B) = d(ȳA, ȳB) =
√
(ȳA − ȳB)T (ȳA − ȳB) (9)

ȳAB =
nAȳA + nBȳB
nA + nB

(10)

where ȳA =
∑nA

i=1 yi/nA and ȳB =
∑nB

i=1 yi/nB.

5) MEDIAN LINKAGE METHOD
The median linkage method calculates the median distance
between the elements of different groups and Eq. (11) shows
how the distance matrix is obtained. The variables Dmj, Dkj,
Dlj and Dkl are defined as the distances between the clusters
m and j; k and j; l and j; and k and l, respectively.m represents
the merged group consisting of the clusters k and l, with
m = (k , i).

Dmedianmj =
Dkj + Dlj

2
−
Dkl
4

(11)

6) MCQUITTY LINKAGE METHOD
In the McQuitty linkage, the distance between a cluster AB
and a given cluster C is calculated in Eq. (12) [37].

Dmcquitty(AB−C) =
DAC + DBC

2
(12)

7) WARD LINKAGE METHOD
Ward linkage method merges two distinct clusters to mini-
mize the loss of information, which is described as an increase
in the error sum of squares criterion (ESS). Grouping the
clusters into a specific group of n variables, ESS can be
described as shown in Eq. (13) [38].

ESSi =
∑

ni
j=1(Xij − Xi)

′(Xij − Xi) (13)

where Xi is the mean of the objects and Xij is the multivariate
measurement associated with the jth object. A deeper expla-
nation about this method can be found in Ward [38].

B. NON-HIERARCHICAL CUSTER ANALYSIS
Non-hierarchical cluster techniques aim to group the items
into a certain number (k) of clusters. An important considera-
tion for these methods is that the number of final groups must
be determined before starting the clustering procedure [39].
Furthermore, these techniques may be applied in situations
where the collection of data are considerably large, since
there is no need to calculate distance matrices nor store
basic data during the computer run. One of the most popular
technique in this context is the k-means method [25].

The algorithm described by the k-means method assigns
to each item of a cluster a nearest mean [10]. According
to Johnson and Wichern [25], the simplest version of this
procedure consists on the three main steps listed below:

–Initially, we partition the items in k distinct clusters and
we calculate the coordinates of the clusters’ centroids.

–Next, we assign an item to the cluster whose centroid
is the nearest. For that, we compute the Euclidian distance.

It is necessary to recalculate the centroids of the clusters that
receive and loose an item.

–Finally, we perform the second step until there are no
more reassignments to be done.

C. ATTRIBUTE AGREEMENT ANALYSIS
Attribute agreement analysis is a recommended strategy to
analyze the variability presented by discrete variables. It is
a statistical strategy used to verify if the appraisers present
consistency among themselves and among the standards pre-
viously known. This technique allows reducing or eliminat-
ing the subjectivity in the analysis, e.g., in the classifica-
tion of substations clusters. In order to create this study,
it is necessary to define the number of samples, appraisers
and replicates to be analyzed. After that, specific hypothesis
tests are used to define the variability/agreement as Kappa
statistics and Kendall coefficients. These statistics describe
the agreement level existing among different classifications
calculated from Fleiss strategy [40], [41].

Kappa index shows the ratio between the proportions that
the appraisers agree and the maximum proportions that they
could agree. Eq. (14) indicates the agreement degree of the
classifications performed by several appraisers analyzing the
same responses.

K =
(
Po − Pe
1− Pe

)

=

[
1

Nknk (nk−1)

(
k∑
i=1

k∑
j=1

xij − Nknk

)]
−

l∑
j=1

p2j(
1−

l∑
j=1

p2j

) (14)

where Po is the observed agreement mean proportion; Pe is
the expected agreement mean proportion. p2j is the expected
agreement proportion for each category; Nk and nk represent
the number of evaluated items and the number of appraisers,
respectively; k is the number of categories of the adopted
scale. Finally, xij represents the number of appraisers that
classified the ith item as belonging to the jth category.
Analyzing the Kendall coefficient in Eq. (15), it is possible

to verify that it is more adequate to perform ordinal data
analysis, being used as classifications, in [43], or in Likert
scale as in [44]. Hence, Eq. (15) measures the agreement
level between the appraisers, for both appraisers between and
within.

W =

12
n∑
i=1

R2i − 3p2n (n+ 1)2

p2
(
n3 − n

)
− p

(
m∑
k=1

(
t3k − tk

)) (15)

where n is the number of items, R2i is the sum of squares
for the classification sums Ri, p refers to the number of
appraisers, and tk is the number of tied classifications in each
one of the m groups of ties.
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TABLE 1. Agreement indexes.

TABLE 2. Acceptability levels of agreement.

TABLE 3. Length of Distribution Lines and Fault Statistics Used in
Short-Circuit Simulations.

Table 1 summarizes the agreement indexes explored in this
paper, and Table 2 shows the acceptability levels of agreement
according to [42], [46].

III. MATERIALS AND METHODS
A. POWER QUALITY INDICATORS OF SUBSTATIONS
OCATED IN SOUTHEASTERN BRAZIL
A real example of network modeling and fault simulations
in transmission and distribution levels is performed aiming
to validate the proposal of the present paper. We considered
an electricity distribution system consisting of 17 substations
whose total area is about 41,241 km2, around 90% of the
state where they are located. All these substations are located
in southeastern Brazil and can be viewed, geographically,
in Fig. 1. The data, also available in [10], were obtained
in a 30 month duration research and development project
managed by EDP ES Distribution Utility, an electricity dis-
tribution company in partnership with the Federal University
of Itajubá (UNIFEI).

In this context, voltage sags are caused by occurrences
of lightning and short-circuit, since most of the overhead
lines and feeders are not covered. The voltage-rated feeders,
the length of the distribution lines, and the fault statistics
(faults/100 km/year) that were used in the short-circuit sim-
ulations causing the analyzed sags can be viewed in Table 3,

FIGURE 1. Flowchart of the proposed methodology.

where VL, L and FR represent the voltage level, the length
and the failure rate, respectively. The power quality monitors
recorded the events that were collected in the secondary of
power transformers. It was possible to obtain a distribution
line equivalent to 13.8kV from the total long-term rates
(greater than or equal to 3 minutes) and short duration of
the statistics, in which medium voltage failure rate was used.
We can also verify the existence of three-phase type with a
lower incidence, whereas a single phase has a higher inci-
dence, among the occurrences. Finally, just as in [10], we con-
sidered a normal distribution to estimate the transmission and
sub transmission systems whose mean (µ) was equal to 5 �
and whose standard deviation (σ ) was equal to 1 �. We also
worked with a uniform distribution ranging from zero to one
for the distribution network, where a maximum value of 30�
was assigned for 1LG faults, 30� for 2LG faults and 10� for
3LG faults. Further details about the substation buses being
analyzed are available in [10]. For each substation considered
in the present study, 32 design characteristics and power qual-
ities were considered. The main quality variable is the TNE,
which is obtained through simulation, whereas the monitored
number of events (MNE) is obtained by monitoring. Tables
from 4 to 7 show the values of the 32 variables used in this
study, and for more details on the data collection, readers
should consult [10]. PQ measurements were collected over
one year so that it was possible to cover different seasonality
that has influence on the Distribution Network performance,
such as rainfall, winds, etc. In addition, 30 Schweitzer Engi-
neering Laboratories PQ meters were used to acquire these
data by model SEL 734. The nomenclature of all variables
used can be found in Appendix, in Table 14. We highlight
that in this project we used software such asMinitab18 R©and
R Studio R©for statistical purposes and other developments.
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TABLE 4. Power Quality Indices of substation (Part I).

TABLE 5. Power Quality Indices of substation (Part II).

B. SUBSTATION CLUSTERING METHOD BASED ON
MULTIVARIATE TECHNIQUE
Characterized as one of the most worrying PQ variables in
sensitive industrial loads, voltage sags are widely analyzed
in studies that make use of hierarchical and non-hierarchical
methods of clustering applied to this topic (as highlighted
in section 1). Thus, it appears that several authors analyze
one, or few, linkage methods without checking the degree of
agreement. In other words, without checking if the method
is stable or even robust for the dataset under analysis. In their
study,Miranda Filho et al. [10] briefly discuss the behavior of
a few hierarchical methods and the non-hierarchical methods,
k-means, for voltage sag studies. However, the authors do
not analyze, or demonstrate, the behavior of all methods.
In addition, Johnson and Wichern [25] infer that there are
sources of errors and variations when analyzing the clus-
ters from these strategies and that, when discussing cluster
methods, one should verify the behavior of the methods in

the face of minimal disturbance scenarios. Thus, this work
proposes a methodology, of a multivariate character, aiming
to find the best choice among the linkage methods for voltage
sag studies of PQ distributions data. Therefore, it is possible
to perform a sensitivity and variability check on the forma-
tion and degree of agreement from small disturbances for
each cluster. Based on these analyzes, confidence intervals
can be generated. The proposed methodology is illustrated
in Fig. 1.

–Step 1: From the main variables to carry out a voltage sag
study, different scenarios should be generated by applying
small disturbances to the dataset (in the range of 1.5%).
Based on this, four distinct replicas should be generated at
random. In this case study, real data from the Brazilian Power
Distribution Company described in Tables 4 to 7 will be used,
containing a total of 544 data. It is important to emphasize that
the replicates must maintain a significant variance-covariance
structure, according to the original dataset;
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TABLE 6. Power Quality Indices of substation (Part III).

TABLE 7. Power Quality Indices of substation (Part IV).

–Step 2: After performing the four sets of random repli-
cas with minor disturbances, the PCA multivariate tech-
nique should be applied, storing the components scores, for
the following purposes: i) reduce the dimensionality of the
data (minimizing computational effort); ii) generate scores
for non-correlated components that adequately represent the
variance-covariance structure of the data. The use of this strat-
egy is necessary, since analyzing such data with a univariate
technique, may present inadequate results [27];

–Step 3: In view of the PCA application and the com-
ponents scores of the different scenarios, clusters should
be performed using each of the linkage methods listed
above, hierarchical and non-hierarchical, namely: Average,
Centroid, Complete, McQuitty, Median, Single, Ward and
k-means, respectively. For each method, the memberships
must be stored, totaling eight response vectors from different
voltage sag scenarios;

–Step 4: Based on the previous analysis, it is possible to
verify the behavior and robustness of the clusters in each
linkage method. For this, the strategy called Attribute Agree-

ment Analysis will be used (or GR&R by attributes). Along
with the other techniques, the analysis by attributes allows
to verify the consistency of the groupings, even in scenario
with small disturbances. Furthermore, the method allows to
verify, analytically, which linkage methods performed better,
with lower incidence of cluster inversion;

–Step 5: Finally, it is possible to check the sensitivity of
the results for the voltage sag dataset. For this, the confidence
interval of the clusters must be calculated and evaluated from
the analysis of covariance (ANCOVA). It is possible to infer
the best linkage method for a given dataset.

IV. CONSISTENCY AND SENSITIVITY ANALYSIS BASED
ON PCA FOR ASSESSING LINKAGE METHODS IN
VOLTAGE SAG STUDIES
In view of the real data of design features and power quality
indices from distribution substations conducted by EDP ES
Distribution Utility, we will apply the proposed method to
find the best and most robust linkage method for generating
clusters. Considering the total number of data (32 variables
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TABLE 8. Principal Component Scores for R1.

TABLE 9. Memberships of the Clusters Formed by the Linkage Methods (PART I).

of 17 substations), initially the data will be disturbed in the
range of 1.5%, as suggested by Johnson and Wichern [25].
It is important to note that the replicas with disturbances
were randomly generated. In addition, a significant degree
of data structure was maintained. In this way, a total of
2,176 data were generated and, due to the large exten-
sion of the sets, they are available in the supplementary
material.

Considering the correlated nature of the data structure,
in step 2 it is necessary to apply the multivariate strategy of
principal component analysis. For the extraction of compo-
nent scores, the Kaiser criterion was considered, where the
percentage of explanation must be greater than or equal to
80% [27], [47]. Fig. 2 presents the statistical explanation for
replica 1 (R1) of each component, eigenvalue and percentage
of explanation. The first seven principal components (PC)
have explanation values greater than or equal to 92.9% for the
replicas R1, R2, R3 and R4, respectively. Thus, the choice of

seven components is ideal to represent the original variables
with adequate statistical validation. Table 8 presents the com-
ponent scores for R1.

From the non-correlated and dimensionless scores
(Table 8), it is possible to plan and apply hierarchical and non-
hierarchical clustering methods. The ideal number of clusters
was defined by the group categorization rule, the quantity
(kc) being defined by kc = 1 + 3.32log(N ), where N is
the number of objects. Thus, the number of clusters for the
study was defined as 5. Regarding the hierarchical methods,
the seven most used linkage methods were considered: Ward,
Average, Centroid, Complete, McQuitty, Median and Single.
All hierarchical applications used the Euclidean distance,
in which the square root of the sum of the square differences
is calculated.

In addition, the non-hierarchical method of k-means was
also applied. For each of these applications, memberships are
stored.
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TABLE 10. Memberships of the Clusters Formed by the Linkage Methods (Part II).

TABLE 11. Assessment Agreement within appraisers.

Regarding the results, it is possible to check the behav-
ior of the clusters in the replicas, analyzing the consistency
and finding the best method. Given the information stored,
we can assess the variability of the clusters from the attribute
agreement analysis (step 4). The planning of the concordance
analysis for this study can be defined as the 17 substa-
tions (number of samples), 8 linkage methods (as number
of appraisers) and the 4 disturbance scenarios, with differ-
ent datasets (number of replicates). Thus, we have 544 data
combinations for variables containing design features and
power quality indices. Thememberships for this experimental
matrix are described in Tables 9 and 10.

Applying this strategy with a 95% confidence interval
(CI), we can analyze the degree of precision in which the
methods group the substations for PQ through the Fleiss’
Kappa statistics and Kendall’s Coefficient of Concordance
(detailed in section 2.4). Initially evaluating the agreement
within appraisers (or repeatability), it is possible to verify
through the Table 11 that the only method that showed 100%
consistency for all clusters was the Ward method. This link-

age method did not show cluster inversion in any of the four
scenarios with disturbance. This level of agreement can be
validated through Tables 10 and 11, where all clusters (and
the Overall assessment) had a Kappa and Kendall index equal
to 1, inferring an excellent level of agreement according to the
AIAG criteria (Table 2). Then, the non-hierarchical method
(k-means) showed the second-best behavior, with 94.12%
agreement, with a confidence interval between 71.31% and
99.98%. Evaluating the Kappa statistic, it appears that the
k-means method presented an overall agreement of 95.81%,
obtaining an inversion of clusters between clusters 2 and 3 for
the Linhares C substation (with original TNE of 292 - faults
on medium voltage and high voltage). Thus, from Kendall’s
Coefficient of Concordance, it appears that k-means pre-
sented a value equal to 0.9984, which is an excellent level
of agreement.

Considering the methods that showed a good, or even ade-
quate, behavior in view of the acceptance criteria established
by AIAG [42], we can verify another hierarchical method,
the Centroid. This method showed an 82.35% agreement in
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TABLE 12. Results for Fleiss’ Kappa Statistics Within Appraisers.

FIGURE 2. Pareto chart and number of principal components for R1.

view of the disturbance scenarios, providing total consis-
tency only for clusters 4 and 5. When evaluating the Fleiss
’Kappa statistics and Kendall’s Coefficient of Concordance
(Table 12 and 13), it appears that the method had an overall
value of 0.7801 and 0.9054, respectively. It is possible to
infer from these results that, according to the Kappa criterion,
the method presents a good quality of agreement (but not
excellent), while the Kendall’s coefficient infers a high level
of agreement. Evaluating in detail, we have that Clusters
1 had a consistency of 83.65%, with inversions linked to

FIGURE 3. Degree of agreement for linkage methods in disturbed
scenarios.

TABLE 13. Kendall’s Coefficient of Concordance within appraisers.

the Barra Sahy substation, whereas clusters 2 and 3 pre-
sented inversions for the Ecoporanga and Juncado substations
(46.85% consistency for both clusters).
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FIGURE 4. Ward method dendrogram for substations.

FIGURE 5. 95% interval plot of voltage sags for Ward linkage method.

Regarding the Singlemethod, it appears that it did not show
total consistency in any of the five clusters, with inversions
in the substations: Ecoporanga, João Neiva, Juncado and
Linhares A. However, its overall agreement percentage is
64.71%. The other methods analyzed (Average, Complete,
McQuitty andMedian) obtained a degree of agreement below
50%, showing great instability, with inversions in several
clusters and between replicates. Fig. 3 depicts the degree
of agreement and confidence intervals (95%) for all linkage
methods used in the study. Further details on the results of
the Kappa and Kendall metrics are available in Tables 12 and
13. The assessment agreement between appraisers (or repro-
ducibility) shows an agreement of 5.88%, with Kappa and
Kendall values of 0.2442 and 0.3934, respectively. This result
implies that the linkage methods are not in agreement, vali-
dating the need to find a method that is robust for each type
of dataset.

Considering the method that showed consistency in all dis-
turbance scenarios, we can apply it to the original data, using
the PCA technique. Fig. 4 shows the groupings generated
by the Ward method from the PC scores. When evaluating
these clusters, it is possible to verify that Clusters 1, 2 and 3

FIGURE 6. 95% interval plot of voltage sags for k-means linkage method.

present a lower occurrence of voltage sag, compared to the
other clusters. The first cluster is formed by Suíça substation
(with a similarity of 52.85%) and by Paulista and Aracruz
substations, both showing similarity of 64.46%. The second
cluster consists of five substations, where we can highlight
Linhares C and Jaguaré, which have the highest level of sim-
ilarity (69.4%). It is important to note that the five substations
in Cluster 2 have identical primary voltage values (138 kV).
Cluster 3 is formed by three substations (Ecoporanga, São
Francisco and Montanha), with similarity levels greater than
52% and equal capacity transformers and primary voltages
for the substations (15/20MVA and 69kV, respectively).

When analyzing clusters 4 and 5, we found that both
represent the groups with the highest incidence of voltage
sag. In detail, we verified that cluster 4 infers the grouping
of the Pinheiros and Itarana substations (77.3% similarity).
These substations have equivalent characteristics, such as the
power and voltages transformers capacities (25/33/41 MVA;
138–69 kV and; 15/20MVA; 69–13.8 kV, respectively). Such
characteristics stand out for their importance for check-
ing sags and voltage regulation [8]. In addition, Juncado
and Santa Teresa substations (both with primary voltages
of 69kV), are part of Cluster 4. Finally, we can see that cluster
5 performed the grouping of nearby substations, Linhares A
and João Neiva, presenting 13.8/138kV transformers. It is
important to note that the Ward linkage method, in addition
to presenting 100% agreement between the disturbance sce-
narios, also showed full agreement with the values generated
by the original data.

In order to better evaluate the classification of clusters,
it is possible to determine the mean values of total num-
ber of sag events (TNE), for each group and the respec-
tive confidence intervals for the results. For this, analysis
of variance (ANOVA) is usually used. However, given the
multivariate nature of the data, it is more appropriate to
consider the variance-covariance structure of the data. Such
assessments will be carried out by analysis of covariance,
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FIGURE 7. (a) 95% Interval plot and (b) dendrogram of voltage sags for Centroid method.

TABLE 14.

which considers a concomitant variable. From the original
data, it is possible to verify that the variable ‘‘number of
events in medium voltage’’ (NEMV) has a higher level of
significance for the TNE. However, this variable has a linear
dependence for TNE (since this variable is part of the calcu-
lation to find TNE per year). Thus, the variable ‘‘equivalent
medium voltage vulnerability area’’ (EMVVA), indicating
the short circuits that cause sags in the substation busbars
(represented in kilometers), is the most significant and does
not have linear dependence. ANCOVA is performed consid-
ering EMVVA as a concomitant variable. Fig. 5 depicts the
confidence intervals for clusters formed by the Ward method,
where it is possible to easily verify the division of clusters,
with significant partitions. Clusters 4 and 5 have a high
incidence of voltage sag events, with average values above
300 sag events per year while clusters 1, 2 and 3 have a low
incidence, with average values below 200 sag events.

For comparative purposes, confidence intervals were per-
formed using linkage methods that presented consistency
greater than 80%: k-means and Centroid. From the confi-
dence intervals by the k-means method (Fig. 6), it was found

that it performed clusters with close means values and with
long confidence intervals, showing the lack of precision in
the estimation for voltage sag analysis. Furthermore, it is not
possible to perform an adequate separation of the clusters,
making their classification unfeasible.

Fig. 7(a) shows the intervals for the Centroid method.
In this graph it can be seen that the groups have different
mean values. However, the confidence intervals are long,
showing overlaps. These results infer that it is not possible
to say that the mean is different. When analyzing the sep-
aration of clusters, it is possible to verify that the Centroid
method added most of the substations in just one cluster (the
same performance was verified in the Single method). Such
behavior cannot be justified, making its analysis inadequate
and unsatisfactory. The dendrogram of the Centroid method
illustrates this behavior, as shown in Fig. 7(b).

The verification and the evaluation of these results demon-
strates the importance to analyze the sensitivity of the
results and not just agreement, as suggested by Johnson
and Wichern [25]. Ward linkage method proved to be the
most suitable for analyzing PQ data when classifying these
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substations to provide a diagnosis for concessionaires and
regulatory agents.

V. CONCLUSION
This work sought to present amethodology capable of finding
the best linkage method from the scores of principal compo-
nents. From the application of this methodology, the follow-
ing conclusions can be inferred:

–The proposed approach was able to provide a viable
and adequate alternative to verify the consistency of linkage
methods in small disturbance scenarios;

–Performing the application in PQ data for substations,
the Ward linkage method showed 100% consistency (for that
specific dataset), demonstrating to be a robust alternative
when analyzing this dataset.

–The non-hierarchical method k-means did not show abso-
lute agreement, in this case. When analyzing the classifi-
cation criteria, k-means proved to be an adequate method
with an excellent degree of agreement (Kappa and Kendall).
However, when checking the clusters and their CIs, it was
found that k-means had overlapping, making it difficult to
separate groups with high and low incidence of voltage sag
phenomena. The other methods were not able to present
an adequate degree of agreement through the evaluated
scenarios;

–When applying the Ward method to the original data,
it confirmed the consistency of the oscillating scenarios.
In addition, from ANCOVA it was possible to estimate the
CI for each cluster, considering TNE. With this result, it was
possible to verify that the Ward method provided a better
grouping for this dataset, allowing to find two different levels
of sag event incidence, promoting a good discriminatory level
and favoring decision-making.

Finally, it can be inferred that the proposed methodology
allows analyzing the behavior of the linkage methods, being
able to be applied in different correlated datasets. In addi-
tion to the concordance results, the sensitivity analysis of
the clusters allowed to confirm the robustness and behavior
of the clusters through the confidence intervals. As future
suggestions, this methodology can be applied using differ-
ent datasets and different multivariate methods, such as the
analysis of rotated factors scores.

APPENDIX
See Table 14.
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