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ABSTRACT Group cohesiveness represents the bonding between members in a group. Indeed, a group with
high cohesiveness may easily reach success in their task. Therefore, the most critical element that affects the
success of a group is group cohesiveness, which is estimated by Group Cohesion Score (GCS). This study
proposed an automatic GCS estimation system for the 7th Emotion Recognition in the Wild (EmotiW 2019)
challenge in the task of the Group Cohesion Prediction. We proposed a multi-stream hybrid network based
on scene-level, skeleton-level, UV coordinates-level, mid-fusion, and face-level, followed by late-fusion to
combine these approaches. We also developed a joint training method called Discrete labels to Continuous
scores (D2C), where discrete labels (categorical labels) directly participate in generating continuous scores.
Our proposed method achieved 0.416 mean squared error on the testing set of the EmotiW 2019 dataset
and became a state-of-the-art in this challenge. Furthermore, to confirm the ability of the proposed D2C
method, we performed experiments on the AffectNet database and obtained relatively better results than
state-of-the-art approaches.

INDEX TERMS Group cohesion, hybrid network, discrete labels, continuous labels, valence/arousal.

I. INTRODUCTION
Group cohesiveness is a fundamental theoretical concept in
most studies of group behavior, social psychology, and sport
psychology [1], [2]. Group cohesiveness represents the bond-
ing of people in a group, where higher cohesiveness means
stronger bonding among group members. Myers observed
that while the successful teams showed improvement in cohe-
siveness, the opposite was true for the unsuccessful teams [3].
Based on this, group cohesiveness is the most critical factor
and an essential measurement for the success of a group.
According to psychological researches, various factors that
affect group cohesion include members’ similarity [4], group
size [5], group success [6] and external competition and
threats [7], [8]. Fig. 1 illustrates GroupCohesion Score (GCS)
created to estimate cohesiveness among group members [9].

Nowadays, people share their photos on social network-
ing services, such as Facebook, Instagram, and Twitter.
Thousands of photos uploaded on these services are taken in
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FIGURE 1. Group cohesion score.

formal and casual events like graduation ceremonies, birth-
day parties, family reunions, and social campaigns. These
photos possess the valuable information that can be used to
investigate group behavior, such as group cohesion. Besides
that, AI technologies, especially Deep Learning methods,
have flourished and continued showing their superior perfor-
mances in various fields of computer vision, natural language
processing, medical imaging, etc. The available resources
motivate researchers to build an automatically estimate group
cohesion system.

Ghosh et al. [10] provided a database for group cohe-
sion that was applied in the Group Cohesion sub-task of
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the 7th Emotion Recognition in the Wild (EmotiW 2019)
Challenge [11]. In Ghosh’s paper, two approaches were pro-
posed to build models for GCS prediction, namely image-
level (scene-level) and face-level. Particularly, they showed
that holistic scene and face-level information have valuable
contributions to the perception of cohesion. Moreover, group
emotion also affects group cohesion prediction while imple-
menting the joint training method. This indicates that there is
a correlation between group cohesion and group emotion.

The effect of scene-level and face-level play a vital role in
the group cohesion prediction system, however, does not get
high performances. This observation inspired us to exploit
more approaches for system performance improvement.
We discovered that the skeleton and UV coordinates (also
known as texture coordinates which define a map of a 2D
image onto a surface in 3D space [12]) also have positive con-
tributions to the system. In this study therefore, we proposed a
multi-stream hybrid network based on scene-level, skeleton-
level, UV coordinates-level (UVC-level), mid-fusion, and
face-level, followed by late-fusion being used to combine
these approaches. We developed the Discrete labels to Con-
tinuous scores (D2C) method to predict labels in continuous
dimensional from discrete categorical. The method’s idea
is an improvement of the joint training method in Ghosh’s
paper [10] where discrete labels directly participate in gen-
erating continuous labels instead. In this case, discrete labels
and continuous labels were group emotion and group cohe-
sion labels, correspondingly. Our method achieves superior
performances among the Group Cohesion sub-challenge par-
ticipants, a Mean Squared Error (MSE) of 0.517 and 0.416 on
the validation and testing sets, respectively.

This study extends the work in conference paper [13] with
detail explanation of D2C method and extensive experiments
on AffectNet Database [14]. Moreover, we also perform the
experiments to study the effect of parameters in the D2C’s
loss function. Our method can be applied not only in the
group cohesion issues but also in any problem whose data
contains two kinds of labels: discrete categorical and continu-
ous dimensional. To demonstrate the ability of D2C method,
we measured the performance of our proposed methods on
the AffectNet database and achieved comparatively better
results than other approaches.

The rest of the paper is organized as follows: We first
revise current works related to the group-level cohesion issues
in Section 2. Section 3 describes details of our proposed
method. Experiments and results are discussed in Section 4.
Section 5 gives conclusions and future research directions.

II. RELATED WORKS
Cohesiveness is a fascinating topic in social psychology
because studies in this field major on group behavior, group
dynamics [1], [2], [15]. Psychologists define cohesiveness as
the number of members of a group liking each other or the
amount of friendship between group members [16] or the
‘‘glue’’ that retains a group together [17]. Actually, a group
with high cohesiveness may easily obtain success in their

task [3]. Therefore, one of the most important factor that
affects success in a group is group cohesiveness [18]. Many
pieces of psychological research argued that group cohesion
depends on several factors namely members’ similarity [4],
group size [5], group success [6] and external competition
and threats [7], [8]. Furthermore, Treadwell et al. [9] created
GCS (shown in Fig. 1) to evaluate cohesiveness among group
members based on a 4-point scale of strongly disagree (SD),
disagree (D), agree (A) and strongly agree (SA), or can be rep-
resented by numbers from 0 to 3, correspondingly [10]. These
studies have formed the fundamental knowledge for the evo-
lution of social psychology especially, group cohesiveness.

Nowadays, the rapid growth of Machine Learning and
Deep Learning inspired scientists to build an automatic sys-
tem for estimating GCS. Hung et al. [19] applied Support
Vector Machine (SVM) to estimate group cohesion on the
audio-video of a group meeting data. This is one of the first
studies that utilizes machine learning to predict group cohe-
sion of a group of people in videos. Recently, the EmotiW
2019 presented the first study of group cohesion prediction
in statics images [10], [11]. The EmotiW organizers provided
a database for group cohesion, which is an upgrade version
of Group Affect Database (GAF 3.0) [20] with group cohe-
sion labels (GAF-Cohesion). GAF-Cohesion database con-
tains not only the GC labels, but also the GE labels, namely
positive, neutral, and negative. Besides that, they introduced
two approaches to estimate GCS: (1) Image-level, trained on
InceptionV3 [21] with ImageNet [22] weights; (2) Face-level
applied transfer learning CapsNet [23], which are trained
on RAF-DB [24], [25]. In our research, we added more
approaches, such as skeleton-level and UVC-level, to enrich
our hybrid network.

Using a hybrid network that is a combination of visual cues
such as scene, skeleton and face has become a widespread in
studies of predicting group cohesion [26], [27]. Guo et al. [26]
and Zhu et al. [27] also used hybrid network, but their
networks did not include blended features of visual cues
which can be a critical factor to enhance the performance of
hybrid networks. As demonstrated in our mid-fusion method,
blended features have a remarkable contribution to the perfor-
mance of our hybrid network. Ghosh et al. [10] demonstrated
that joint training on both group emotion and group cohesion
gives higher performances than individual training. Indeed,
the most critical observation, which was presented in Ghosh’s
paper, is the correlation between group emotion and group
cohesion. However, Ghosh’s method and Guo’s method [26]
are hard to tune and improve performances because the group
emotion do not directly join in predicting group cohesion,
i.e., their performances cannot directly affect each other.
In this paper therefore, we presented the D2Cmethod to solve
drawbacks in approaches of Ghosh and Guo.

To evaluate performance on GAF-Cohesion, the EmotiW
2019 organizers have suggested using Mean Squared Error
(MSE). For AffectNet database [14], we use Root Mean
Square Error (RMSE) and Concordance Correlation Coeffi-
cient (CCC) [28] to measure performance.
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FIGURE 2. Pipeline of our multi-stream hybrid network. The network is a combination of multi-type of visual cues models, such as scene, skeleton, UVC,
mid-fusion and faces. In face-level, n is the number of faces in an image.

III. PROPOSED METHOD
Fig. 2 illustrates the proposed hybrid network containing five
independently trained streams; scene, skeleton, UV coordi-
nates (UVC), mid-fusion, and face. The predicted values are
fused by using the late-fusion method. We train a multi-
layer perceptron (MLP) that comprises of fully connected
layers and the D2C block, with deep features extracted from
the state-of-the-art Convolutional Neural Network (CNN)
models.

A. SCENE-LEVEL, SKELETON-LEVEL AND
UVC-LEVEL ANALYSIS
Holistic scene and contextual information play an essential
role in the group cohesion prediction system [10]. Therefore,
the scene-level analysis is necessary to understand the sce-
nario in images. In this approach, we used three pre-trained
models, namely ResNet50 [29], InceptionV3 [21], and
NasNet [30], to extract features of images. These networks
have been state-of-the-art models of ImageNet database [22].
The dimensions of feature vectors extracted by ResNet50,
InceptionV3, and NasNet are 2048, 2048, and 1056, respec-
tively. The image features are then fed to an MLP to predict
the GCS. The scene-level is illustrated in Fig. 2.
Skeleton analysis can have valuable contributions to the

perception of cohesion. Skeleton features demonstrate the

gestures and structures of a group of people. In this study,
we used OpenPose [31]–[33] to obtain the skeleton of each
image. OpenPose is an open-source library and widely used
to extract the human body, facial, hand and foot keypoints in
images.

Additionally, we realize that the 3D surface of a human
body is also a crucial element that can improve the perfor-
mance of our hybrid network. Thus, DensePose [34] library
is applied to produce UV coordinates representing the 3D sur-
face of the human body. Both skeleton-level and UVC-level
networks are shown in Fig. 2. In these approaches, feature
extractors, model modification, training parameters and train-
ing methods are the same as the scene-level.

B. FACE-LEVEL ANALYSIS
Ghosh et al. [10] showed that besides the scene-level,
the facial expression of each face in an image is a useful
cue for predicting group cohesion. Additionally, the facial
features also have valuable contributions to face-level anal-
ysis. These observations motivated us to build a model for
predicting the GCS based on a combination of facial features
and facial expressions. Fig. 2 illustrates the structure of face-
level approach.

We extract faces using recent state-of-the-art face detector,
PyramidBox [35]. Nonetheless, in practice, PyramidBox can-
not detect tiny faces, thus TinyFace [36] is used.
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FIGURE 3. Feature maps of scene-level, skeleton-level, UVC-level and fusion are extracted by Grad-CAM [38]. The fusion feature becomes
powerful because It gets the advantages of the other levels. Moreover, expanding the region of interest gives more knowledge about
contextual and structure of a group in images, which can enhance the performance of our hybrid network. [Best viewed in color].

To get the facial features, we used the ResNet50 model
(ResNet-VGGFace), which was trained on a large-scale face
database introduced by Visual Geometry Group [37]. Each
face has a feature vector with 2048 dimensions. Since the
amount of faces in each image is variable, we pool the feature
vectors by computing average to ensure the output vectors’
sizes are the same on every image. Fff denote the output
vector of facial feature.

To extract facial expression, we first fine-tune models
on large-scale facial expression databases, namely, Affect-
Net [14] andReal-worldAffective FacesDatabase (RAF-DB)
[24], [25]. We then utilized these models to get expression
probability predictions for each of the faces present in an
image. The facial expression vector created by calculating the
average, maximum, and minimum on the facial expression
vector of each face is denoted by Ffe. The size of Ffe was 21.
After that, we concatenate all feature vectors, Fface =

Fff ⊕ Ffe. Where Fface, whose dimension is 2069, is the
combination vector of facial features and facial expressions.
We created a MLP model for training our face-level network,
as depicted in Fig. 2.

C. MID-FUSION METHOD
Scene features provide not only information about context
(or environment) in images, but also the specific regions
in images. Besides that, skeleton-level and UVC-level give
information on the structure and the relation between mem-
bers in a group. Accordingly, blending features can improve
the performance of our hybrid network. As depicted in Fig. 3,
the feature map of the fusion method gets the advantages of
scene-level, skeleton-level, and UVC-level.

Fig. 2 illustrates the structure of the mid-fusion method
where the combination feature, Fm, is put to an MLP with
three fully-connected layers linked with the D2C block.
Fm is created by concatenating the features of scene (Fscene),
skeleton (Fskeleton), and UVC (FUVC ). Fm is defined by the
following equation Fm = Fscene ⊕ Fskeleton ⊕ FUVC .

D. LATE-FUSION METHOD
Since the results of the late-fusion method depended on the
results of each model in the other approaches, the best models

are needed. Firstly, we choose the best models based on
differences between its validation and training loss values.
The difference, D, is defined as follows:

D = VL − TL (1)

Subject to constraints of D ≤ θ and VL ≥ TL Where θ is
selection threshold. In this research, we chose θ in interval
[0.1, 0.3]. TL and VL is training and validation loss values,
correspondingly.

Secondly, we use these models to get GCS predictions.
Finally, we concatenate these predictions and push them into
an MLP model with D2C block.

E. D2C METHOD
D2Cmethod utilizes the discrete labels (categorical labels) to
estimate labels in continuous dimensional. It is based on the
joint training method [10] where discrete labels immediately
participate in generating continuous labels instead. Fig. 4
shows a typical MLP network with D2C block.

FIGURE 4. A typical MLP network with D2C block (in green box). k is the
index of layers and k = 1,2, . . . , (L− 2).

We denote, L as the number of layers (excluded input
layer), d (l) as the number of hidden units in layer l th, l = 1,
2, . . . ,L, z(l) as the input vector of hidden layer l th (excluded
bias), a(l) ∈ Rd (l) as the output vector of layer l th, W(l)

∈

Rd (l−1)×d (l) and b(l) ∈ Rd (l) are the weight matrix and bias
matrix, respectively. D and C are the (L − 1)th layer and the
L th, respectively. The number of hidden nodes in layer D is
the number of classes in discrete categorical.
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For example, a dataset
(
x, y(D), y(C)

)
contains N samples.

Where x is the input vectors, y(D) is ground truth labels
in discrete categorical, and y(C) is ground truth labels in
continuous labels.

Calculating feedforward for each sample
(
xi, y

(D)
i , y(C)i

)
in the dataset, i = 1, 2, . . . ,N .

a(0) = xi

z(k) = W(k)Ta(k−1) + b(k), k = 1, 2, . . . , (L − 2)

a(k) = f
(
z(k)

)
, f (.) is an activation function

z(D) = z(L−1) =W(D)Ta(k) + b(D)

ŷ(D) = a(D)=softmax
(
z(D)

)
∈RM ,M is number of classes

z(C) = z(L) =W(C)Ta(D) + b(C)

ŷ(C) = a(C) = tanh
(
z(C)

)
∈ R

While applying the D2C method, the final loss function is
defined as:

L = αLD + (1− α)LC (2)

whereα is weight or balance point, it determines the influence
of LD and LC to the final loss function, L, α ∈ [0, 1]. LD is
the categorical cross-entropy loss function defined as follows:

LD = −
N∑
i=1

M∑
j=1

y(D)ij log
(
ŷ(D)ij

)
= −

N∑
i=1

C∑
j=1

y(D)ij log
(
a(D)ij

)
(3)

where M is the number of classes in categorical. y(D)ij and

a(D)ij are the jth in probability vector of y(D)i and a(D)i ,
correspondingly.

LC is loss functions that are usually used in regression
problems such as MSE loss function or Euclidean loss func-
tion. In this case, we chose MSE loss function, therefore we
have:

LD =
1
N

N∑
i=1

(
y(C)i − ŷ(C)i

)2
=

1
N

N∑
i=1

(
y(C)i − a(C)i

)2
(4)

In backward process, our goal is to update the parameters
W and b as follows:

W(l)
=W(l)

− η
∂L
∂W(l) b(l) = b(l) − η

∂L
∂b(l)

where η is learning rate. The best way to calculate the partial
derivatives is to apply the backpropagation algorithm.

The partial derivatives at the output layer (layer C) will be
the derivatives of LC with respect toW(C) and b(C):

∂L
∂W(C) = (1− α)

∂LC
∂W(C) = (1− α)

∂LC
∂z(C)

·
∂z(C)

∂W(C)

= (1− α)a(D)p(C)T

where p(C) = ∂LC/∂z(C) = ∂LC/∂a(C) · ∂a(C)/∂z(C).

Similarly, we have:

∂L
∂b(C)

= (1− α)
∂LC
∂b(C)

= (1− α)p(C)

Then, the derivatives at layer D are calculated as follows:

∂L
∂W(D) = α

∂LD
∂W(D) + (1− α)

∂LC
∂W(D)

∂L
∂b(D)

= α
∂LD
∂b(D)

+ (1− α)
∂LC
∂b(D)

We have

∂LD
∂W(D) =

∂LD
∂z(D)

·
∂z(D)

∂W(D) = a(L−2)q(D)T

∂LC
∂W(D) =

∂LC
∂z(D)

·
∂z(D)

∂W(D) = a(L−2)p(D)T

where q(D) = ∂LD/∂z(D) = ∂LD/∂a(D) · ∂a(D)/∂z(D) and
p(D) = ∂LC/∂z(D) = ∂LC/∂a(D) · ∂a(D)/∂z(D).
Therefore

∂L
∂W(D) = αa

(L−2)q(D)T + (1− α)a(L−2)p(D)T

Similarly, we have:

∂L
∂b(D)

= αq(D) + (1− α)p(D)

Furthermore, the derivatives at l th, l = (L − 2),
(L − 3), . . . , 1 will be computed as follows:

∂L
∂W(l) = αa

(l−1)q(l)T + (1− α)a(l−1)p(l)T

∂L
∂b(l)

= αq(l) + (1− α)p(l)

In summary, continuous labels are generated by discrete
labels in feedforward. But, in backpropagation, the discrete
labels are impacted by continuous labels. Moreover, α play
an important role in our method, as it determines how much
weight of LD and LC in L.

IV. EXPERIMENTS AND RESULTS
In this paper, we used Keras [39] deep learning framework
for all experiments. Class-weighted method was applied to
solve the imbalance problem. Moreover, we carried out a
comparison of Ghosh’s joint training [10] and our D2Cmeth-
ods on two databases namely GAF-Cohesion [10], [11] and
AffectNet [14].

A. DATASET
GAF-Cohesion, an extension of the GAF 3.0 database [20]
with group cohesion labels, is the official database of the
Group Cohesion sub-challenge in the EmotiW 2019 [11].
It contains group cohesion labels (discrete labels) and group
cohesion labels (continuous labels). The values of group
cohesion labels were marked in continuous domain [0, 3]
corresponding to four group cohesion labels (0: SD, 1: D, 2:
A, 3: SA). Besides that, three discrete categories were defined
in the group emotion task as negative, neutral, and positive.
The GAF-Cohesion database was divided into three parts:
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FIGURE 5. The alpha values influence the performances of each level in the group cohesion estimation system. The best value of α is around 0.3. When
α < 0.3 the graph of both GE and GC losses have the same downward trend. In contrast, α > 0.3, the GE losses decreased while the opposite was true for
the GC losses.

TABLE 1. Comparison between the performances of Ghosh’s joint training [10] and our D2C methods in scene-level, skeleton-level, UVC-level and
mid-fusion on the GAF-Cohesion validation set.

TABLE 2. Comparison between the performances of Ghosh’s joint
training and our D2C methods in the face-level approach on the
GAF-Cohesion validation set. Where FF and FE models are the facial
feature models and facial expression models, respectively.

TABLE 3. The performance of late-fusion method on the GAF-Cohesion
validation set. In the last case, we added two more face-level models
therefore the number of models is 8.

9300 images for training, 4244 images for validation, and
2899 for testing.

We further carried out experiments on the AffectNet
database [14] to demonstrate the ability of the D2C method.
The AffectNet is a large-scale facial expressions database

TABLE 4. The performance comparison on the GAF-Cohesion testing set.

containing both discrete categorical and continuous dimen-
sional (valence and arousal) labels. Discrete categories
include eleven classes, namelyNeutral, Happy, Sad, Surprise,
Fear, Anger, Disgust, Contempt, None, Uncertain, and Non-
face. However, because the uncertain and non-face were
not assigned valence/arousal, we did not use these classes
in our experiments. In this study, we utilized 320739 and
4500 images for training and testing, correspondingly.

B. EXPERIMENTAL RESULTS ON GAF-COHESION
DATABASE
In this study, the discrete labels and continuous labels were
the group emotion (GE) labels and group cohesion (GC)
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TABLE 5. The performance comparison on the AffectNet validation set.

labels, respectively. The α in Eqn. 2 is the weight or the
balance point, it determines the influence of LD and LC to L.
Therefore, the best value of α is needed, which is the balance
point where the differences between training losses and val-
idation losses are minimized, and the validation losses also
reach their minimal points in both GE and GC cases. Fig. 5
illustrates the effect of α values to each level in our system.

Moreover, we tuned activation functions (such as sigmoid,
linear and tanh) at the output layer C , the tanh function
generates the best results. The LD and LC are categorical
cross-entropy loss function and MSE loss function, corre-
spondingly. Table 1 displays the results of the scene-level,
skeleton-level, UVC-level and mid-fusion.

The performances of the face-level and late-fusion are
shown in Table 2 and Table 3, respectively.

Besides late-fusion models, we also used ensemble meth-
ods to fuse the predictions. In this paper, we used a weighted
ensemble method defined as follow:

ŷw =
m∑
k=1

wk ŷk (5)

Subject to constraints of
∑m

k=1 wk = 1, wk is the weight of
model k and wk ∈ R. Where, ŷw is the output of the weighted
ensemble method. m is the number of models that are joined
in the progress. ŷk denotes the outputs of model k .

Table 4 demonstrates a comparison between our method
and the other methods on the GAF-Cohesion testing set.
As shown in Table 4, our hybrid network with the D2C
method achieved superior performance among the challenge
participants.

C. EXPERIMENTAL RESULTS ON AffectNet DATABASE
In this research, the discrete labels and continuous labels
were the facial emotion labels and valence/arousal labels,
respectively. Facial features are extracted by using pre-trained
ResNet-VGGFace model on the RAF-DB. We then applied
an MLP with three fully-connected layers connected with the
D2C block to estimate the valence/arousal values. In this case,
we used α = 0.3 and the activation function at output layer
C as tanh function. Furthermore, we performed experiments
with two cases of regression loss functions, namely MSE loss
function and Euclidean loss function. Table 5 summarizes the
performance of our method and other methods on the Affect-
Net validation set [14]. The results show the capability of the

proposed D2C method and its valuable results in comparison
with other methods, especially in the case of arousal.

V. CONCLUSION
In this paper, we presented a potential approach called D2C,
which is to directly learn the interaction between continuous
and discrete labels, for estimating group cohesion scores.
We also proposed a multi-stream hybrid network combined
with the D2C method to achieve state-of-the-art performance
on the GAF-Cohesion database. Furthermore, the capability
of the D2C was proved through the experimental results
achieved on the AffectNet database. Therefore, our method
can be applied not only in the group cohesion issues but
also in any problem whose data contains two kinds of labels:
discrete categorical and continuous dimensional. The focus
of our future work will be the extension of this method into
sequential data (e.g., video) whereas the cohesion scores are
expressed in both spatial and temporal dimensions. In other
words, we need to take into account the changing of human
behaviors and context through time. In the future, a potential
direction for our work is to discover and utilize the attention
mechanism in the automatic GCS estimation system. The
attention mechanism is able to point out the contribution of
each area in the image, therefore, it can be a crucial factor to
improve the performance of our system.
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