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ABSTRACT Condition Based Monitoring (CBM) leverages sensor measurements for measuring state of
health of an asset and autonomous diagnosis of faults to trigger remedial actions. Countless deep learning
architectures are available for cloud-based feature engineering, feature extraction and classification of data
for CBM models. However, complex models pose memory and processing speed constraints for edge
implementation, while cloud-based computing poses high latency, high cost of data transmission and storage
and privacy threats. This calls for a data driven machine health diagnosis system that is effective yet
edge-compatible and secure. In this work, we present a model that is light-weight and non-redundant by
optimizing the model size and complexity for edge implementation onto resource constrained, low-cost
hardware. The model is based on a light-weight, edge implementable Convolutional Neural Network (CNN)
algorithm that utilizes vibration sensor measurements for fault event estimation of machines. The model was
trained and tested on two publicly available and widely studied vibration datasets for rolling element bearing
faults. This CNN based classification system using spectrograms is able to achieve near perfect accuracy
for both binary as well as multi-class fault classification. Lastly, the trained model was implemented and
tested on a Raspberry Pi single-board computer, thus realizing an edge-compatible implementation which is
cost-saving, secure and reliable.

INDEX TERMS Condition based monitoring, convolutional neural network, machine health monitoring,

edge computing, vibration analysis.

I. INTRODUCTION

Reliability of machinery is indispensable on a plant floor, not
just for the safety of operators but for sustained economic
benefits of having the production up and running. Condition
Based Monitoring (CBM) focuses on being able to monitor
the current state of a machine and draw future inferences on
its health without disrupting normal operation and simulta-
neously avoiding non-essential maintenance and associated
downtime [1]. CBM is a step towards predictive maintenance
through continuous monitoring and hence is extensively
data-driven. Recent market developments with increasing
commodification of sensors and rapid growth in Artificial
Intelligence (AI) and Industrial Internet of Things (IIoT)
applications have led to a surge in exploration of deep learn-
ing techniques of various forms on raw sensor data from
machines for fault diagnosis.
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Machine fault diagnosis essentially is a pattern recognition
problem. Machine faults can occur over wide spectral and
temporal ranges, and the model must account for the scale
to monitor and diagnose critical machinery continually and
reliably. Moreover, migration of condition based monitoring
models to edge devices is naturally desired, to do away with
costs associated with transmission and storage of sensor raw
data on the cloud for running diagnostic algorithms. Exten-
sive research has gone into improving algorithms for machine
health monitoring viz. classifying wear level of bearings
and gears and estimating their remaining useful life starting
from simple neural networks and regression based techniques
such as Support Vector Machines (SVM) [2], [3] to complex
fusion networks with near-perfect accuracy such as deep
belief network [4], stacked residual convolutions [5], ensem-
ble deep Convolutional Neural Networks (CNNs) [6] etc.
CNN s are the most preferred model architecture in such cases
as they combine feature abstraction and localization with
reduced number of operations [7], [8]. With an appropriate
network architecture with gradient based back-propagation,
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CNNs synthesize a complex decision surface and are capa-
ble of classifying high-dimensional patterns [9]. Researchers
are exploring ensemble transfer CNNs [10], [11], including
implementations based on stochastic pooling and Leaky Rec-
tified Linear Unit (LReLU) on multichannel signals for fault
diagnosis [12]. However, such complex models are incom-
patible with edge devices due to memory and processing
speed constraints [13] and hence most diagnostic solutions
utilize cloud-based post-processing. This cloud-based com-
puting approach has several downsides namely high latency,
connectivity dependence, high cost of data transmission and
privacy threats [14]. However, the shift from cloud processing
to edge computing for CBM has been slow, due to a number
of practical challenges. Misra et al. discuss the problems
faced by VLSI-HNN (Very large-scale integration - hard-
ware neural networks) designers in mapping highly irregular
interconnection topologies on regular two dimensional sur-
faces as they contain complex computations with distributed
communication [15]. Embedded Graphics Processing Units
(GPUs), Application Specific Integrated Circuits (ASICs),
and reconfigurable devices such as Field Programmable Gate
Arrays (FPGAs) are being explored as target devices for deep
learning, but are far from becoming reliable and cost-effective
devices compatible with rugged, harsh industrial plant floor
set-up [16]. Zhang et al. present various strategies to realize
fast, parallel processing designs to develop CNN accelerators
but mention the challenge of encountering mismatch of com-
putation throughput with the memory bandwidth provided by
an FPGA platform [17]. Apart from such design strategies,
another direction that has been explored is the development
of compact, compression resilient and non-redundant neural
network architectures. Edge devices are limited in terms of
performance (memory), cost, and energy while a CNN archi-
tecture is an end-to-end approach and hence computationally
intensive. This presents an inherent trade-off between the
network size and precision. Iandola ef al. have presented
an architecture that has 50x fewer parameters than AlexNet
with comparable accuracy [18]. Hadidi et al. compared in-
the-edge inference of deep neural nets with execution times,
energy consumption, and temperature performance and noted
that hardware and software co-designs with custom support
on edge devices can bring down the inference time [19].

In this work, we propose an extremely light-weight CNN
with softmax classifier and gradient-descent backpropagation
for bearing fault identification and classification of the fault
type. The motivation underlying our work is the realization of
a model that is light-weight and non-redundant by optimizing
the model size and complexity for edge implementation onto
resource constrained, low-cost hardware. Figure 1 shows the
framework of our proposed machine health classification sys-
tem. To test the effectiveness of our system, it was first tested
offline (on a workstation) and found to perform with near
perfect accuracy (98 %-100 %) on two rich, publicly available
and heavily cited bearing fault datasets from Case Western
Reserve University and Center for Intelligent Maintenance
Systems, University of Cincinnati. Next, the trained model
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FIGURE 1. lllustration of CNN-enabled edge-based machine health
classifier.

was implemented on a Raspberry Pi single-board computer
and found to perform efficiently with an inference time of
approximately 1 s per test. The paper is structured as follows:
section II presents a brief review of feature engineering for
vibration signals and CBM algorithms reported in literature,
along with a brief description of the datasets used in this
study. The architecture of the model developed in this work
and results based on validation of the model using the datasets
are reported in sections III and IV respectively. Finally, sec-
tions V and VI present results obtained by running the trained
model on a Raspberry Pi 4 Model B board and conclusions
based on this work respectively.

Il. BRIEF REVIEW OF MACHINE LEARNING

CBM ALGORITHMS

A. TIME-FREQUENCY ANALYSIS OF VIBRATIONS

Bearings are core components of any rotating mechanical
machinery as they provide support to the shaft. Bearing
malfunction is catastrophic and almost always bring signif-
icant downtime with huge repair costs. Bearing fault diag-
nosis is therefore an active research area in the Al-enabled
CBM community [20]. Vibration signature generated from
rolling element bearings is often chosen as the raw data for
application of prognostic techniques since it is one of the
earliest indicators of incipient wear, as compared to other
parameters such as temperature, power consumption, and
lubricant analysis [1]. Representative features from vibrations
are extracted through various signal processing methods and
processed using machine learning models for fault identi-
fication and classification [21], [22]. The sequential nature
of 1-D time series poses additional complexity for feature
extractions leading to heavy pre-processing to evaluate time
domain parameters such as mean value, kurtosis, skewness,
envelope, mean square deviation etc. Fault diagnosis mod-
els using 1-D time series for vibrations requires insight
and application specific expert knowledge for useful feature
selection [23]. Even then, such continuous monitoring sys-
tems possess unique challenges because the fault signatures
appear at totally different temporal and spectral scales with
no definite feature sets to identify all possible faults and
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anomalies [24]. Garcia et al. [25] have presented six differ-
ent temporal to image encodings (Gramian Angular Field,
Markov Transition Field, recurrence plot, grey scale encod-
ing, spectrogram, and scalogram) to implement deep learn-
ing image processing algorithms for unsupervised machine
anomaly detection. Wang et al. [26] explore eight such
time-to-image encodings, including spectrogram, constant-Q
Gabor transform, Hilbert Huang transform etc. to identify
most suitable encoding scheme. Several studies emphasize
that time or frequency domain feature alone cannot explain
the changes in vibration data as it is non-stationary for
all practical purposes. Spectrogram is the traditional and
most widely adopted time-frequency analysis tool for tem-
poral signals across various domains [27]. Mean Peak Fre-
quency (MPF) is a representative feature of spectrograms,
that is obtained by finding the mean of the frequencies cor-
responding to the peak (maximum) Power Spectral Den-
sity (PSD) value of every column. In a spectrogram PSD
image P(¢, w), the MPF is an average of the peak frequency
at each time instant ¢ (denoted as fpeqx ()):

Jpeak(t) = argmax P(t, w)
w

MPF = / Speak (t)dt
t

Yan et al. have reported that the MPF increases sharply with
advancing defects in machines [28]. Therefore, when work-
ing with unlabeled machine vibration datasets, MPF could be
used as a fault labeling parameter.

B. CONVOLUTIONAL NEURAL NETWORKS FOR

BEARING VIBRATION ANALYSIS

Machine health classifier models based on vibration sig-
nal analysis are commonly benchmarked using two pub-
licly available and popular datasets: (i) labeled bearing fault
dataset from Case Western Reserve University (CWRU) [37],
and (ii) unlabeled dataset from Center for Intelligent Mainte-
nance Systems, University of Cincinnati (IMS) [38]. Table 1
shows a comparison of the model presented in this work
with other CBM reports on fault diagnosis, failure detection,
Remaining Useful Life (RUL) estimation, wear level estima-
tion etc. using deep learning techniques implemented on the
CWRU and IMS datasets. The models mentioned in Table 1
are representative of the most popular architectures used in
the deep learning community for fault diagnosis, such as
fuzzy Adaptive Resonance Theory MAPs (ARTMAPs) [3],
CNN-State Vector Machines (CNN-SVMs) [34], stacked
auto-encoder (Auto encoders) [36], deep transfer learning
and residual networks, to name a few. These architectures
range from heavy (multiple hidden layers) to light-weight
(residual connections, with depth separable convolutions)
and their algorithmic complexities range from high (heavy
pre-processing or large floating point computations or both)
to low (no significant pre-processing). A brief summary of the
key operations involved in these methods are also reported,
to provide readers an idea of the level of complexity involved
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in bearing fault detection and diagnosis. The model sizes
reported in literature vary from 17kB [31] to as large as
50317kB [35] with as high as 1.45 x 10® FLoating-point
OPerations (FLOPs). To the best of our knowledge, these
models utilized workstation/cloud-based pre-processing (i.e.
training and testing) and unlike this work, have not been
tested for performance on any embedded platform. Recently,
Lu et al. discussed implementation of fault detection system
on a single board computer, namely Raspberry Pi [39]. The
work presented by Lu er al. was based on their own exper-
imental dataset for bearing vibrations, and not baselined on
these popular publicly available machine vibration datasets.
Next, we provide a brief introduction to the nature of these
datasets and details of their subsets used in our study.

1) CENTER FOR INTELLIGENT MAINTENANCE SYSTEMS
BEARING DATASET (IMS)

This bearing dataset provided by the Center for Intelli-
gent Maintenance Systems (IMS), University of Cincinnati,
is downloadable from the NASA Ames Prognostics Data
Repository [38]. Four bearings were installed on a shaft, and
high sensitivity quartz ICP accelerometers were installed on
each bearing housing for health monitoring. Three datasets
are included in the data packet, wherein each set describes a
run-to-failure experiment. The rotation speed was maintained
at 2000 rpm and a radial load of 60001b was applied onto
the shaft and bearing with a spring mechanism. All failures
occurred after exceeding designed life time of the bearing
(>100 million revolutions). Each dataset consists of individ-
ual files corresponding to 1 s long vibration signal time-series
recorded at specific intervals. Each file consists of 20480
samples obtained at 20 kHz sampling rate [40]. For further
details on the experimental setup, please refer [41]. Out of
the three datasets provided, data for channels 3 and 4 from test
number 3 have been used in this study, since this set has the
maximum number of data files, and thus suitable for training
and testing of the CNN. Since the IMS bearing dataset is an
unlabelled dataset, the MPF of the spectrograms (generated
for each of the 1s long signal recordings) has been used to
distinguish and label the healthy and faulty data series.

2) CASE WESTERN RESERVE UNIVERSITY BEARING DATASET
(CWRU)

Among many publicly available bearing vibration datasets,
the CWRU dataset has been widely used to detect and diag-
nose bearing faults and is accepted as a standard reference
for validating models [42]. Figure 2 shows a photograph of
the test setup [37]. Single point faults were introduced to
the test bearings using electro-discharge machining, resulting
in different bearing fault diameters at two locations - Drive
End (DE) and Fan End (FE). Sensors (accelerometers) were
placed at DE, FE and Base End (BE) of the motor. Table 2
shows the parameters that were varied for the data collection
and Table 3 shows the subset of this dataset used to test
various cases in this paper.
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TABLE 1. Comparison of various CBM methods using deep learning. Glossary — SFAM: Simplified Fuzzy ARTMAP, SVM: State Vector Machine, AE:
Auto-Encoder, CNN: Convolutional Neural Network, IDS-CNN: Improved Dempster-Shafer CNN, LDR-CNN: Lightweight Deep Residual CNN, DFCNN:
Dropout plus Fully connected CNN, DL: Deep learning, TL: Transfer Learning, IMS: University of Cincinnati, Center for Intelligent Maintenance Systems,

CWRU: Case Western Reserve University.

Reference Architecture Dataset | Goal Key operations Accuracy
Ali et al. [3] SFAM IMS Remaining | Weibull distribution fitting of input feature, optimum SFAM structure | 65.46 %
useful life | selection, SFAM classification, smoothing classification
Lu et al. [29] SVM IMS Wear level | Data segmentation, bootstrap resampling, calculation of CEEMD pa- | 98.5 %
rameters, CEEMD-IMF parameter calculation, Kernel SVM for health
condition classification
Chen et al. [30] Stacked AE CWRU Fault Deep hierarchical structure with three layers of auto encoders, three | 91.67 %-
diagnosis hidden layers, one classifier 99.83 %
Wang et al. [26] CNN/Alexnet CWRU Failure Time-frequency input image formation, modified AlexNet classifier | 94.34 %-
detection with five convolutional, three pooling, two normlization and three fully | 100 %
connected layers followed by a softmax layer
Pinedo et al. [22] | CNN/AlexNet IMS Wear level | Feature extraction, Shannon’s entropy calculations, feature clustering, | 99.25 %
signal to image transformation, Alexnet classifier
Li et al. [6] IDS-CNN CWRU Failure Sub-bands and RMS value extraction from time series, 2-D image map- | 89 %-
detection ping, CNN classifier with three convolution, three pooling, one fully | 100 %
connected and one softmax layer, IDS evidence theory implementation
from evidences and modified Gini Index, classified label allocation
Maet al. [31] LDR-CNN CWRU, | Fault Wavelet packet generation, LDR-CNN with one convolutional+CReLU | 100 %
IMS diagnosis unit followed by six units with one each of pointwise convolu-
tional layer, depth separable convolutional layer, CReLU activation
layer,batch normalization layer and an identity shortcut, followed by
an average pooling, fully connected and softmax activation layer
Min et al. [32] CNN CWRU Fault 2-D represntaion by data fusion from multiple sensors, CNN classifier | 96.67 %-
diagnosis with two layers each of convolution, pooling, dropout, and one layer | 100 %
each of fully-connected and softmax
Zhang et al. [33] DFCNN CWRU Fault 2-D feature extraction including Wavelet, FFT and EMD, followed by | 99 %-
diagnosis classification using four convolution, four maxpool,two dropout and | 100 %
two fully connected layers
Yuan et al. [34] CNN-SVM/ CWRU Fault 2-D wavelet transform, input to Resnet-18 (18 layers with skip connec- | 98.2 %-
Resnet-18-SVM diagnosis tions) followed by SVM for classification 99.2%
Wen et al. [35] CNN/LeNet-5 CWRU Fault 2D image formation from raw signals as input to 4 conv layers followed | 99.79 %
diagnosis | by 2 fully connected layers
Vikas et al. [36] AE with DL, TL CWRU, | Fault Relevant feature selection and pre-training of sparse AE, fine-tuning of | 86 %-
IMS diagnosis DNN, deep transfer learning 100 %
This work Basic CNN CWRU, | Fault Time-frequency input image formation, classifier with single convo- | 98 %-
IMS diagnosis lution, pooling and fully connected layer with softmax activation, | 100 %
implementation of trained model on Raspberry Pi
TABLE 2. CWRU bearing dataset overview. TABLE 3. Subset of CWRU dataset used in this study. All fault classes and
motor speeds are considered.
Parameter Types
Label | Fault | Sensor Sampling | Diameter
Sampling rate 12kHz and 48 kHz rate
Fault location DE, FE A DE DE 12kHz 7 mil, 14 mil, 21 mil,
. 28 mil
Sensor locations DE, FE, BE
B DE FE 12kHz 7mil, 14 mil, 21 mil
Fault diameters 7 mil, 14 mil, 21 mil, 28 mil, 40 mil
C DE BA 12kHz 7 mil, 14 mil, 21 mil
Fault classes Healthy, Ball Bearing (BB), Inner Raceway (IR),
Outer Raceway (OR) D DE DE 48 kHz 7 mil, 14 mil, 21 mil
Motor speeds 1720 rpm and 1797 rpm E DE DE, FE, BE 12kHz 7 mil, 14 mil, 21 mil

IlIl. PROPOSED MODEL - CNN BASED MACHINE HEALTH
STATE CLASSIFIER

In this study, we use spectrograms as the input fea-
ture to our light-weight CNN. The three hyper-parameters

considered for STFT are window type: Hanning window,
window size: 1024 points, overlap factor: 50 %, and number
of points in FFT: 1024. The total number of time series
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FIGURE 2. CWRU bearing test setup [37] comprising of a 2 hp induction
motor, torque transducer/encoder, load motor, and control electronics
(not shown). Faulty bearings (with various faults engineered) were placed
at the drive end and fan end and vibration sensors located at drive end
(DE), fan end (FE) and base end (BE) (not shown) of the motor.

data samples taken to generate spectrograms is maintained
as 20480 throughout the study. The resulting spectrograms
are of size 513x39. Since the resolution (quality) of input
image directly influences feature abstraction and the classifi-
cation accuracy achieved by the CNN model, the size of the
spectrogram is maintained across all cases investigated in this
work. It was verified that this resolution was satisfactory and
increasing the spectrogram resolution (either in time or fre-
quency) beyond this size did not result in noticeable improve-
ments in image quality for both the IMS and CWRU datasets.
However, since the CNN model is agnostic to input image
dimensions, the spectrogram size can be modified as per
the raw data quality when working with other datasets. The
structure of the proposed classifier is that of a basic CNN con-
sisting of a single convolution, pooling and fully-connected
(FC) layer as shown in figure 3. Softmax has been used as
the activation function in the FC layer, as it produces outputs
that add up to 1, and therefore can be interpreted as proba-
bility (likelihood) of an image belonging to a particular class.
The CNN model is implemented in python, without using any
deep learning programming platform to avoid package and
library dependencies so as to optimize the program size for
subsequent edge-implementation of the trained model. The
1-D time series vibration signals are converted into spectro-
grams of size 513x39 as part of pre-processing for input
feature generation. The spectrograms are provided as input
to the convolution layer. Across literature, CNNs for image
processing and computer vision applications typically have
odd-sized filters with depth typically ranging from 8 to 512.
The odd size of a filter provides symmetry around the output
pixel. Since our key idea is to keep the model light-weight yet
efficient, the convolution layer has 8 filters of size 3x3. The
input to this layer is a spectrogram image of size 513 x39 and
output is of size 511x37x8, since the convolution operation
uses valid padding. The convolution layer output is then
provided as input to the pooling layer of type maxpool and
size =2, that subsamples the convolved images and provides
an output image of size 255 x 18. The last layer is the FC layer
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with softmax activation. The maxpool layer output is vector-
ized to a size of 36 720x 1 (255 x 18 x 8) prior to plugging into
the FC layer. This is passed through the non-linear softmax
activation, with two or four likelihood outputs (depending on
whether the model is to be trained for binary or multi-class
classification e.g. CWRU). For binary classification, each
spectrogram is labeled/classified as ‘Healthy’ or ‘Faulty’,
whereas for multi-class classification for CWRU dataset,
each spectrogram is labeled/classified into one of ‘Healthy’,
‘Ball bearing fault’, ‘Inner raceway fault’ or ‘Outer raceway
fault’ type of faults. The total number of learnable parameters
in the proposed model for multiclass classification is given
by:

Weony + WEC + bpc =3x3 x 8 + 36720 x 4 + 4=146956

where wcon, denotes the number of weights in the convolution
layer (3 x 3 x 8), wrc denotes the number of weights in FC
layer (36720 x 4) and bpc = 4 is the number of bias nodes
in FC layer. This results in a model size of approximately
587.82kB. The computational complexity in the model is
primarily determined by multiplication FLOPs in the convo-
lutional and FC layers. The number of multiplication FLOPs
per filtering instance (7y) is obtained as:

ng=rrXcf xchy xNg=3x3x1x8=72

where ry, ¢ and chy denote the number of rows, columns
and channels per filter respectively and Ny denotes the total
number of filters in the convolutional layer. The total number
of instances in the convolutional layer (7;,5ance) 1S €xpressed
as: Nipstance = (rf —ri+1) x(cy —c;+1) = 511 x37 = 18907,
where r; and c¢; denote the number of rows and columns in
the input image. The number of multiplication FLOPs in the
convolutional layer is thus expressed as:

Reony = Nf X Ningrance = 12 x 18907 = 1361304

Similarly, the number of multiplication FLOPs in the FC layer
of size spc = 36720 and lyyypur = 4 outputs for multiclass
classification is obtained as:

nre = SFe X loupu = 36720 x 4 = 146880

The total number of multiplication FLOPs is thus specified as
Neony + npc = 1361304 + 146880 = 1508184 ~ 1.5 x 10°.
For binary classification, the total number of learnable param-
eters is 73 514, resulting in a model of size 294.05 kB, and the
total number of FLOPs is obtained as 1.4 x 10°. Note that
the number of FLOPs is dependent on the input size and thus,
scaling the input scales the FLOPs. In this work, the input
spectrogram size is constant across all test cases. However,
one can scale down the input image size to as extent where
the resolution of difference in spectrograms across different
classes is not compromised.

IV. EXPERIMENTAL VALIDATION AND RESULTS
The model was trained and tested multiple times using
different combinations of both CWRU and IMS datasets.
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FIGURE 3. Architecture of the light-weight CNN model that comprises of convolution layer consisting of 8 filters of size 3x3,
followed by maxpool layer and a fully connected layer with softmax activation. Each time-series with 20430 samples is
converted to spectrogram image of size 513x39 that is then used as input to the model. The model produces likelihoods for

each machine health state as the output.
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FIGURE 4. a) Mean peak frequencies (MPF) of 6324 data files from IMS dataset, as the machine run time progresses
towards failure. The MPF progression for vibration sensor data collected from both Bearing 3 and Bearing 4 show a
sharp increase with onset of failure, and is therefore used to label the data as ‘Healthy’ and ‘Faulty’ as shown.

b) and c) Spectrograms of vibration data from IMS dataset corresponding to Bearing 3 recorded at 20 kHz sampling

rate for b) healthy bearing, and c) faulty bearing.

For training, a standard workstation with 16 GB RAM and an
Intel(R) core i7-8700 processor was used. Before generating
the input features, spectrograms and corresponding MPF for
all cases were investigated to understand underlying data
trends. The test accuracy of the model was examined on data
from the same distribution as the training set as well as on
unseen data from a sensor at a different location, sampling
rate or fault location not included in the original training set.

A. DATA PRE-PROCESSING FOR INPUT

FEATURE GENERATION

1) IMS

To test the model on IMS dataset, the third test set in which
outer race fault has occurred on the third bearing at the end
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of run-time was selected. Hence, data corresponding to sensor
placed on the third bearing (Bearing 3) were used to visualize
the spectrograms and the underlying trend in MPF as the
motor run-time progressed towards failure. Since most faults
occur near the end of machine run time, time series recordings
corresponding to healthy data are always invariably large in
number while those for faulty data are scant. Hence, data from
the sensor placed on the fourth bearing (Bearing 4) were also
used to increase the number of faulty data series, so as to
have balanced healthy and faulty classes for model training.
Figure 4(a) shows the variation in MPF of spectrograms of
all 6324 vibration data files corresponding to Bearing 3 and
Bearing 4 as the machine continued to run till failure. It can
be observed that the MPF does not vary significantly for
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FIGURE 5. Spectrograms of vibration data for CWRU dataset for sensor and fault located at drive end sampled at
12 kHz for a) healthy bearing, b) ball bearing fault, c) inner raceway fault, and d) outer raceway fault.

most of the machine run-time since commencement of data
collection, and increases drastically towards the end due to
progression of failure, starting from approximately the 5900
record out of 6324 total records. This information is used
for labeling the spectrograms into healthy and faulty classes
by marking the 1 to 5899 spectrograms as belonging to
the ‘Healthy” class while 5900 to 6324 spectrograms are
labeled as belonging to the ‘Faulty’ class. Similarly, the MPF
of data from Bearing 4 were observed to show sharp increase
from the 6000” spectrogram, and therefore the 6000 to
6324 spectrograms for Bearing 4 are added to the ‘Faulty’
class. Thus, combining the data from Bearing 3 and Bearing 4
provides a total of 750 spectrograms (425 from Bearing 3 and
325 from Bearing 4) labeled as ‘Faulty’. To balance both
classes, 750 spectrograms were chosen at random from the
‘Healthy’ class. Figure 4(b) and 4(c) show spectrograms of
two vibration data files of the third bearing corresponding to
healthy and faulty states respectively.

2) CWRU

Figure 5(a) shows example spectrograms obtained from sam-
ples of vibration data corresponding to the ‘Healthy’ bearing
and 5(b), (c) and (d) from data subset labeled A in Table 3.
Note that most of the spectral content of a healthy bearing is
restricted to lower frequency bands. The spectrograms of BB
and OR faults have significant similarities in the frequency
bands with major differences only in PSD amplitude. The
IR fault spectrogram has signal spread over a large spectral
range, with significant overlap with the other three cases.
Figure 6 shows example spectrograms for CWRU dataset for
7 mil diameter, ball bearing fault chosen from data subsets
A (6a), B (6b), C (6¢) and D (6d) respectively. The data for
the subset D is recorded with 48 kHz sampling rate and was
downsampled by a factor of 4 (Figure 6(d)). We observe that
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a change in sensor location causes significant changes in the
time-frequency representation of a vibration signal.

B. CNN CLASSIFICATION
For the CWRU dataset, six different combinations of
train—+test cases have been examined in this work, whereas for
IMS dataset, one case has been examined. The details of the
training, test and model performance in terms of overall accu-
racy as well as classwise precision (proportion of positive
identifications that are actually correct) and recall (proportion
of actual positives that are identified correctly) are detailed
below. All trainings were performed for 3 epochs with a
learning rate of 0.05. When input batch size for training is set
to 100, the average training time per batch in an epoch was
found to be approximately 0.82 s. The stability is confirmed
through observation of saturation of average loss within 10 to
15 batches of training in all cases. Five iterations of model
testing were performed for each case. The precision P and
recall R are expressed in terms of number of true positives
TP, false positives FP, true negatives TN and false negatives
FN as follows:
TP TP
P=— — R=——
TP + FP TP + FN

The F score of a class (defined as the harmonic mean of
the precision and recall) is used to analyze the class-wise
classification efficiency of a model and has been reported
for all our test cases. Table 4 provides a summary of the
performance of the model performance on all test cases for
both datasets.

1) IMS

Binary classification was performed on the IMS dataset using
data files for Bearings 3 and 4 as described above. A total
of 1500 spectrograms (healthy and faulty) were randomly
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FIGURE 6. Spectrograms from CWRU dataset for a ball bearing fault (7 mil diameter) at the drive end of motor
captured by a) drive end sensor, 12 kHz sampling rate, b) fan end sensor, 12 kHz sampling rate, c) base sensor, 12kHz

sampling rate, and d) drive end sensor, 48 kHz sampling rate.

TABLE 4. Summary of model performance for different cases. Accuracy
range reported based on five iterations of testing. Cases IILA, IIL.B, 111.C
correspond to instances where the model is trained and tested on
different sensors, and it is not surprising that the accuracy is significantly
lower. Including data from all sensors in training results in perfect
accuracy (case IV).

Case | Dataset | Train Test set | Classification | Accuracy
set type

IMS | IMS 3 3 Binary 98.33 %

I CWRU | A A Binary 100 %

II CWRU | A A Multi-class 100 %

LA | CWRU | A B Multi-class 49 %-65 %

LB | CWRU | A C Multi-class 50 %-64 %

II.C | CWRU | A D Multi-class 72 %-76 %

v CWRU | A,B,C | A,B,C | Multi-class 100 %

split in the ratio of 80:20 for train and test respectively,
resulting in 1200 spectrograms for training and 300 for test-
ing. This was repeated five times and test accuracy varied
in the range of 97.33 % - 99.00 %. Figure 7(a) shows the
confusion matrix for one such trial, the F; scores for which
are 0.985for ‘Healthy’ class and 0.982for ‘Faulty’ class.
The F scores of 'Healthy’ class for all the five test cases
lie in the range of 0.972 —0.991 whereas for ’Faulty’ class,
the F; score lies in the range 0.974 —0.989 Higher number
of faulty spectrograms were observed as getting classified
as healthy. It should be noted that this is a run-to-failure,
unlabeled dataset for which MPF has been used for assigning
class labels manually. As can be observed from Figure 4(a),
the MPF of faulty spectrograms near the class separation
boundary will have closer resemblance to healthy ones than
that of the faulty sets towards the end of the progression. This
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FIGURE 7. Confusion matrix showing results obtained for binary
classification performed on a) IMS dataset, and b) CWRU dataset.

phenomenon is reflected in the performance of the model
for samples lying near class boundary which have low confi-
dence for class separation.

2) CWRU

CASE |

Here both train and test samples were taken from the data
subset A (Table 3) for binary classification (‘Healthy’, and
‘Faulty’). The faulty class represents spectrograms with fault
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FIGURE 8. Model performance example for various combinations of subset of CWRU dataset, as described in section IV-B: a) case I, b) case IILA,
c) case II1.B, d) case 111.C, e) case IV. The model has perfect accuracy (100 % when presented with ‘seen’ data in test i.e. data obtained from all

sensors is used for training.

of any type - BB, IR or OR at the DE location, captured
by the sensor at the DE location, whereas healthy signifies
spectrograms of motor at normal running condition, all data
being sampled at a rate of 12kHz. A total of 12000 such
spectrograms were generated from the time-series data files
using a sliding window in time, and were then split randomly
in the ratio of 80:20 for train and test respectively resulting
in 9600 spectrograms for training and 2400 for testing. Five
such trials were performed and a perfect test accuracy was
achieved in all of them. Figure 7(b) shows the confusion
matrix of predictions for this case. Since, all classes were
predicted correctly all the time, the Fy scores for all classes
in this case is 1.

CASE Il

Here again both train and test samples were taken from the
data subset A (Table 3), but used for multi-class classification
into four classes: ‘Healthy’, ‘BB’ (Ball bearing fault), ‘IR’
(Inner raceway fault) and ‘OR’ (Outer raceway fault). A total
of 8000 such spectrograms having 2000 spectrograms from
each class were generated from the time-series data. Spec-
trograms from each class were split randomly in the ratio of
80:20 for train and test respectively, resulting in a total of
6400 spectrograms for training and 1600 for testing. In this
case too, the model was able to predict all the test cases
correctly in all five trials resulting in an F| score of 1 for all
classes. Figure 8(a) shows the confusion matrix of predictions
for one such case.

CASE IlI
In the following three sub-cases multi-class classification was
performed, wherein the model was trained using data subset
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A but tested with data from sensors at different locations and
sampling rates. This was done to check the generalization
and adaptation capability of the model. Without any specific
interventions, the performance of CNNs is expected to be
poor when faced with unseen data (i.e. not used for training).

a: CASEIlIlA

In this case, the spectrograms from the data subset A were
chosen for training, while spectrograms picked from data
subset B (Table 3) were used for testing. This corresponds to
training using data from the sensor placed at DE, while testing
based on data obtained from a different location - FE. The
model was trained for multi-class classification with same
class notations as that of Case 2. A total of 6400 spectrograms
were used for training the model while 1260 spectrograms
(420 for each of the three fault classes - BB, IR and OR) were
used for testing. The obtained test accuracy was in the range
of 49 %-65 %. Figure 8(b) shows an example of the confusion
matrix of predictions for one of the five trials for this case.
The accuracy for this test case is 63.17 % with the class-wise
F scores as Healthy: 0.96, BB: 0.63, IR: 0.51, OR: 0.75.
The class-wise F'y scores for all five trials vary in the range
of 0.84-0.96 for Healthy, 0.19-0.63 for BB, 0.48-0.61 for IR
and 0.67-0.75 for OR.

b: CASE LB

In this case, the spectrograms for training were taken from
the data subset A while for testing, spectrograms were picked
from data subset C (Table 3) corresponding to the sensor
placed at a different location - BE in this case. The model
was trained for multi-class classification with same class
notations as that of Case 2. A total of 6400 spectrograms were
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used for training the model while 540 spectrograms (180 for
each of the three fault classes - BB, IR and OR) were used
for testing. The obtained test accuracy was in the range of
50 %-64 %. Figure 8(c) shows an example of the confusion
matrix of predictions for one of the trials for this case. The
accuracy for this test case is 62.03 % with class-wise F|
scores: Healthy: 0.98, BB: 0.69, IR: 0.71, OR: 0.42. The
class-wise F scores for all five trials vary in the range of
0.97-0.98 for Healthy, 0.68-0.69 for BB, 0.69-0.71 for IR and
0.42-0.48 for OR.

c: CASE Ill.C

In this case, the spectrograms for training were taken from
the data subset A while for testing, spectrograms were picked
from data subset D (Table 3) corresponding to data captured
at a different sampling rate - 48 kHz. The test data were
down-sampled by a factor of 4 before generation of spectro-
grams. The model was trained for multi-class classification
with same class notations as that of Case 2. A total of 6400
spectrograms were used for training the model while 528
spectrograms (176 for each of the three fault classes - BB,
IR and OR) were used for testing. The obtained test accuracy
was in the range of 72 %-76 %. Figure 8(d) shows an example
of the confusion matrix of predictions for one of the trials
for this case. The accuracy for this test case is 75.56 % with
class-wise F scores: Healthy: 1, BB: 0.60, IR: 0.76, OR:
0.90. The class-wise F; scores for all five trials are 1 for
Healthy, and range from 0.60-0.71 for BB, 0.53-0.76 for IR
and 0.903-0.904 for OR.

Thus, when the model is presented with data obtained
from a sensor not included in the training set, the classi-
fication accuracy significantly reduces. This drop is higher
for a change of sensor location from the drive end (set A)
to the fan end (set B) of the motor (case III.A) than to the
motor base (set C) (case III.B). The fan end is physically
located farther from the drive end as compared to the motor
base (Figure 2). When sensor data from same location used
for training, but recorded with a different sampling rate is
presented (case II1.C), the accuracy drops significantly due to
presence of additional information in spectrograms obtained
with larger sampling rate. The drop in accuracy in these three
cases is fundamentally attributed to inability of the model to
approximate data from unseen distribution. This is overcome
by including portions of data from sensors at fan end and
base of the motor into the training set. The model is able to
approximate all test cases correctly, as presented below.

CASE IV

Here, the unseen test data sets from cases III.A, III.B and
III.C above were also included in training. Thus both the train
and test samples were taken from the data subset E (Table 3)
for multi-class classification with same class notations as that
of Case 2. A total of 14 400 such spectrograms having 3600
spectrograms from each class were generated from the time
series data and were split randomly in the ratio of 80:20 for
train and test respectively. It was observed that the model
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TABLE 5. Comparison of run-time per inference (testing) on embedded
platform (Raspberry Pi - RPi) versus desktop workstation.

Case Run time on workstation | Run time on RPi
IMS 151.2ms 1.21s

I 153.8 ms 982.5ms

I 142.2 ms 924.3 ms

LA 148.1 ms 1.003s

II1.B 151.5ms 981.5ms

1I1.C 149.9 ms 997.0 ms

v 151.9ms 1.002s

was able to predict all the test cases correctly when trained
with the entire dataset as expected. Figure 8(e) shows the
confusion matrix of predictions for this case. Here again, F
scores for all classes in all trials are consistently equal to 1.

V. EDGE IMPLEMENTATION ON RASPBERRY PI

The trained model was implemented on a Raspberry
Pi 4 Model B (RPi) single board computer to evaluate the
feasibility of implementation on an embedded platform with
8 GB RAM and 64-bit quad-core Cortex-A72 (ARM v8)
processor. The time taken per inference for all test cases of
CWRU and IMS datasets are tabulated in Table 5. A com-
parison for (trained) model run-time on a standard work-
station with 16 GB RAM and an Intel(R) core i7-8700 pro-
cessor is presented. This workstation is used to perform
model training in all cases. Note that the time taken per
inference on RPi is approximately 1 s, while that on a desk-
top computer is roughly 0.15s. In a typical IIoT setup,
a machine might be diagnosed once every few hours or days,
depending on machine criticality. While edge-computing on
RPi requires 6.75x higher test time than cloud-based or
workstation-based inference, the time scales required for the
computation are insignificant compared to the frequency of
taking such measurements and remedial action as neces-
sary. Using a cost-effective embedded platform such as RPi
provides additional advantages such as scalability (multiple
installations at several locations in a plant), and on-the-spot
diagnosis, that is immune to problems associated with loss of
cloud connectivity and privacy threats.

VI. CONCLUSION

Bearing in mind the requirement of an edge implementable
model, the CNN model presented in this work realizes a
light-weight yet efficient edge-compatible machine health
state classifier. The model has been extensively tested on
the labeled Case Western Reserve University (CWRU) bear-
ing dataset as well as the unlabeled University of Cincin-
nati Center for Intelligent Maintenance Systems (IMS)
bearing dataset. The trained model provides impressive per-
formance (98-100 % accuracy) for learnt distributions of var-
ious data combinations presented in this work, when tested
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on ‘seen’ data. This study also validates the use of mean
peak frequency of spectrograms as a useful machine health
state labeling parameter. To achieve high-performance bear-
ing fault diagnosis under varying sensor locations, load con-
ditions and sampling rates, extensive training can be per-
formed offline and the trained model can then be used for
on-edge diagnosis. We observe that the sensor location and
sampling rate are key parameters that influence the temporal
and spectral scales of a vibration spectrogram and thus it
is advisable to train the model extensively on all possible
combinations of sensor placements and data acquisition rates
for a robust classification accuracy. The work presented in
this paper could be used to realize a cost-effective CBM solu-
tion. The feature engineering, model design and embedded
implementation presented here are applicable across several
domains for data-driven deep learning applications involving
supervised classification.

Our future work will focus on model validation on addi-
tional datasets currently under development in our labora-
tory. Further work is needed to improve the generalization
capability of the model without compromising the require-
ment of edge implementation. This requires optimization on
both algorithmic as well as architectural front, and we aim
to explore methods such as fully convolutional networks
[43], [44], transfer learning techniques for domain adaptation
[45], [46], and layer optimization techniques such as depth
separable convolution [47], [48]. Generation of spectrograms
as input features from time-series signals consumes a signif-
icant percentage of the processing time and thus exploration
of alternate features is another area we seek to explore.
Moreover, the availability of sufficiently large volume of
labeled data collected for all possible faults is a practically
relevant challenge. Therefore, another direction we aim to
pursue in future work is the development of edge-compatible
unsupervised machine health state classifiers.
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