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ABSTRACT Smart cities and their applications have become attractive research fields birthing numerous
technologies. Fifth generation (5G) networks are important components of smart cities, where intelligent
access control is deployed for identity authentication, online banking, and cyber security. To assure secure
transactions and to protect user’s identities against cybersecurity threats, strong authentication techniques
should be used. The prevalence of biometrics, such as fingerprints, in authentication and identification
makes the need to safeguard them important across different areas of smart applications. Our study
presents a system to detect alterations to biometric modalities to discriminate pristine, adulterated, and
fake biometrics in 5G-based smart cities. Specifically, we use deep learning models based on convolutional
neural networks (CNN) and a hybrid model that combines CNN with convolutional long-short term memory
(ConvLSTM) to compute a three-tier probability that a biometric has been tempered. Simulation-based
experiments indicate that the alteration detection accuracy matches those recorded in advanced methods
with superior performance in terms of detecting central rotation alteration to fingerprints. This makes the
proposed system a veritable solution for different biometric authentication applications in secure smart cities.

INDEX TERMS Deep learning, cyber threats, biometric alteration detection, cybersecurity, 5G network,
smart city, authentication.

I. INTRODUCTION
Use of human biometrics in identity authentication is an
area of interest for researchers from different backgrounds.
Moreover, the identity of a person can be authenticated via
different biometrics such as finger vein, face, fingerprint, and

The associate editor coordinating the review of this manuscript and

approving it for publication was Zahid Akhtar .

iris. Human identification is deployed in several applications
such as access control, cyber security, and blockchains. Fur-
thermore, owing to their uniqueness and animateness, more
recently, the human biometrics are replacing passwords in
several applications. For example, smart phones use the iris
and fingerprint to be the password to access the device.
Additionally, some financial organisations like Paneer have
provided mobile applications for money transfer via the use
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of fingerprints for the client authentication. Furthermore, the
advent of online banking and its pervasiveness have led to
increases in attempts to hack bank accounts via password
spoofing as well as efforts to alter the biometric of the person.
As the most common biometric used in person identifica-
tion, verification and other cyber security applications, fin-
gerprints are frequently targeted by criminals. Consequently,
it is important to determine whether the integrity of such
biometric data has been impugned.

In this regard, various studies for authentication detection
prior to recognition of biometrics have been undertaken.
Among them, Gad et al. [1] proposed a unimodal recognition
methodology based on iris as well as multi-biometric sce-
narios. They proposed new modalities in both segmentation
and feature extraction phases. In the segmentation phase,
they proposed a masking technique for localisation and two
modalities, (delta mean, and multi-algorithm mean) which
they validated using CASIA v.1, CASIA v.4 and UBIRIS
v.1. In [2], Wang et al. proposed an iris recognition tech-
nique based on Navier-Stokes (NS) equation with 1D Gabor
filter used to construct the feature vector. They reported
implementing their proposed technique using iris images
exposed to varying levels of noise. Their experiments vali-
dated the techniques capability to accomplish person recogni-
tion despite the iris biometric being exposed to different noise
conditions.

Other areas of use of iris recognition are in person authen-
tication and identity verification. For example, in [3], Gad
et al. replaced the traditional use of username and pass-
word with the iris as a unimodal biometric trait. The fea-
ture extraction stage of their proposed scheme utilises the
Delta Mean (DM) and Multi-Algorithm Mean (MAM) that
is followed by a feature reduction process to guarantee
good performance. The scheme also has a classification
stage that is undertaken using a Euclidian Distance (ED)
classifier.

Similarly, authentication and identification suing finger
vein have also been proposed. In [4], Peng et al. proposed a
finger vein recognition method using a combination of Gabor
wavelet and Local Binary Patterns (LBPs) with a Block-based
Linear Discriminant Analysis (BLDA) for the task of feature
reduction. Another finger vein recognition approach based on
image quality enhancement was proposed by Peng et al. [5].
They used a Region of Interest (ROI) methodology for finger
vein segmentation. Furthermore, the finger vein method was
deployed for authentication in [6]. Specifically, Gabor filter
was used to select parameters in eight orientations of the
finger vein network, whose patterns are extracted using two
distinct orientations. For their contribution in [7], Peng et al
proposed a multi-biometric authentication system based on
variations of fingerprints including finger knuckle, shape,
vein as well as the original fingerprint of a certain person.
A score-level fusion modality based on triangular norm on
these fingerprints is then used to generate a single image
representing the person’s identity. Finally, they validated their
system on a merged dataset.

Face biometric is involved in the face recognition process
in several applications. In one such application in [8], a fusion
process is performed using Multiscale Complex Fusion for
Gabor Jet Descriptor (MCFGJD). The main idea of this work
is to extract the features from the images using the Gabor
descriptors generated from some block-wise statistics of the
image including mean and standard deviation, which are gen-
erated from the magnitude, phase, real and imaginary parts of
Gabor coefficients. After that, a feature reduction process is
carried out on the extracted features using Linear Discrim-
inant Analysis (LDA) algorithm. Finally, both thermal and
visual images are fused.

Another research trend in biometric-based human identifi-
cation involves a combination of two or more biometrics to
improve security and authorisation. For example, the work
in [9] presented a human identification system based on both
thermal and visible face images as well as iris. This work
depends on 1D Log-Gabor filter to generate a single feature
vector from the dual iris codes. In addition, complex Gabor
Jet descriptors are extracted from the thermal and visible
face images to enhance the representation of their features.
Furthermore, an image fusion technique is used to combine
all biometrics. In [9], an Aczel-Alsina triangular norm (AA
t-norm) technique was used for image fusion. In this way,
the system can be used in both identification and authenti-
cation applications.

Meanwhile, the potency of Deep LearningModels (DLMs)
has led to its deployment in a wide range of applications com-
prising medical image diagnosis [10]–[12], forgery detec-
tion [13], etc. Our proposed system uses a convolutional neu-
ral network (CNN) and a hybrid structure that combines CNN
with convolutional long-short term memory (ConvLSTM) as
DLMs for the detection of different levels of alteration in
biometrics that are employed for person identification.

The remainder of this study is organised as follows.
The outlines of our proposed system are presented in the next
section (i.e., Section II), and the foundations of the proposed
DLMs are discussed in latter parts of the same section. Exper-
imental validation of our system as an effective platform for
detection of alterations in biometric data is reported with
discussions in Section III and IV, respectively.

II. PROPOSED FRAMEWORK AND DEEP LEARNING
MODELS (DLMS)
We envision the deployment of our system as part of appli-
cations in a typical smart city, such as online banking plat-
forms that are important for financial inclusion like electronic
wallets. Like many of the emerging technologies, our sys-
tem seeks to replace traditional username and password cre-
dentials with unique biometric traits of individuals. Despite
enhancing secure access and authentication of users, biomet-
rics are susceptible to the unrelenting efforts of criminals,
such as spoofing to alter the biometrics. Therefore, it is
necessary to discriminate between pristine (i.e., original) and
altered biometrics such as fingerprints.
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FIGURE 1. Conceptual framework in 5G smart city scenario.

Figure 1 presents an overview of the conceptual platform
we envisage for our proposed framework. Its implementation
presupposes a client using his mobile device for online bank-
ing applications, where the client’s fingerprint biometric is
used for authentication and verification in financial transac-
tions. In their illicit effort to violate such systems, criminals
alter the biometric data which could be deemed at one of three
levels (easy, medium, and hard).

This makes efforts to discriminate pristine and altered bio-
metric modalities crucial for financial transactions in smart
cities and Internet-of-Things (IoT) platforms. Developing a
deep learning framework to accomplish this task is the main
objective of our study. Details of our proposed system are
presented in the remainder of this section.

Deep Learning Models (DLMs) depend on multiple layers
to progressively extract higher-level features from unstruc-
tured data. Its use in our proposed biometric alteration detect-
ing system is accomplished via three stages as illustrated
in Figure 2. In the first stage, a pre-processing procedure is
performed on the input images to unify their sizes and convert
them into tensors suitable for DLM processing. In the sec-
ond (i.e., extraction) stage, the features from the images are
transformed using a hierarchy of convolutional (CNV), Con-
volutional Long Short-TermMemory (ConvLSTM), pooling,
Global Average Pooling (GAP) and decision making (dense)
layers. Additionally, activation functions, such as the Recti-
fier Linear Unit (ReLU) and SoftMax functions are used to
evaluate the output of each layer.

FIGURE 2. Proposed framework stages.

This study presents two DLMs. The first model is based
a CNN consisting of three CNV layers followed by three

pooling layers. This sequence of convolutional and pooling
layers is required to extract the features from the input image
tensors. Furthermore, the extracted feature map of each layer
serves as input to an activation function to obtain the output
of this layer. The activation function of each convolutional
layer is the ReLU activation function, whose positive values
are obtained with the same values, while the negative values
are set to be zero at the output of the activation function as
defined in Equation (1).

f (x) = max(0, x) (1)

Another feature extraction process tailored towards feature
reduction is carried out by pooling layers. In this regard, there
are twomain types of pooling process. The first type, theMax
pooling, is required to extract the maximum value of each
block, whereas the second type, i.e., the average pooling,
extracts the average value of each block in the feature map
as depicted in Figure 3.

FIGURE 3. Illustration of Max and Avg. pooling (figure adapted from [12]).

The architecture of the CNN DLM in Figure 4 outlines a
data flow, where input layers are unified into a 224×224×3-
dimensional input. The number and type of filters used deter-
mine the dimensions of the output feature map. For example,
a model whose first convolutional layer has 16 filters and a
stride of 2 would produce a 222 × 222 × 16 output feature
map. The second model utilised in our study consists of a
ConvLSTM layer followed by two convolutional layers each
of which is followed by a pooling layer for feature reduction.
The architecture and data flow of this model is presented
in Figure 5. Additionally, as depicted in Figure 4, the shape
of the output feature map of the pooling layer is reduced in
two dimensions only.

The Long Short-TermMemory (LSTM) is a special case of
the artificial Recurrent Neural Networks (RNNs), which like
the standard RNN, is stable and reliable for long-range depen-
dencies [12]. Despite this, the LSTM is impeded by redun-
dancy of spatial data. The ConvLSTM augment this short-
coming by replacing fully-connected layers in the LSTM
with convolutional layers [12]. In this structure, ConvLSTM
evaluates the same functionality of LSTM in 2D images [13].
Like LSTM, in ConvLSTM, the current state depends on all
previous states as depicted in Figure 5 [12] and formulated in
Equations (2) to (6).

Consequently, it can be inferred that if states are viewed as
they would in the hidden representations of moving objects,
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then the larger transitional kernel of a ConvLSTM should be
capable of capturing faster motions [12]–[18]. Furthermore,
ConvLSTM has the ability to encode the spatio-temporal
information in its memory cells. To ensure that the states have
the same dimensions as the inputs, padding is needed before
applying the convolution operation. Furthermore, all states
are initialised to zero before the first input, which corresponds
to the so-called total ignorance of the future [12].

III. SIMULATION EXPERIMENTS AND RESULTS
This section presents outcomes of extensive simulation-based
experiments undertaken to prove the efficiency of our pro-
posed system in detecting alterations to fingerprint biometrics
employed across different applications for person identifica-
tion and verification.

We begin with an overview of the dataset used in the exper-
iments; definitions of metrics employed for our quantitative
validation of the proposed system as basis for comparisons
with state-of-the-art techniques obtained from similar studies.

it = σ (Wxi ∗ Xt +WhiHt−1 +Wci ◦ Ct−1 + bi) (2)

ft = σ (Wxf ∗ Xt +WhfHt−1 +Wcf ◦ Ct−1 + bf ) (3)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt +WhcHt−1 + bc) (4)

Ot = σ (Wxo ∗ Xt +WhoHt−1 +Wco ◦ Ct + bo) (5)

Ht = Ot ◦ tanh(Ct ) (6)

where:
it : The input gate.
Ct−1: The status at the previous cell (it is hidden).
ft : The forget gate.
Ht : The final state of the latest state.
Ot : The output gate.

A. DATASET DESCRIPTION
The simulation experiments are carried using the Sokoto
Coventry Fingerprint (SOCOFing) dataset [18]. SOCOFing
dataset includes 6,000 fingerprint images from 600 persons,
i.e., 10 fingerprints for each person. In addition, SOCOF-
ing dataset includes three different alteration methodolo-
gies: obliteration, central rotation, and z-cut. Each alteration
method consists of 15,000 altered images. Therefore,
SOCOFing dataset consists of 50,000 images for both pristine
and altered fingerprint images. Figure 6 shows samples of the
fingerprints for a certain person.

B. EVALUATION METRICS
Our proposed system is evaluated using standard metrics as
employed in recent and established studies. The equation
matrix [12] in Figure 7 summarises definitions for speci-
ficity, accuracy, Positive Predictive Value (PPV), Negative
Predictive Value (NPV), F1 score and Mathew’s Correlation
Coefficient (MCC).

Based on standard definitions, True Positive (TP) is the
number of tampered images that were truly detected as tam-
pered images, True Negative (TN) is the number of original
images that were truly detected as original images, False

FIGURE 4. Data flow for CNN model.

Positive (FP) is the number of original images that were
falsely detected as tampered images, and False Negative (FN)
is the number of tampered images that were falsely detected
as original images.
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FIGURE 5. ConvLSTM workflow (figure adapted from [12]).

FIGURE 6. Samples of the fingerprints for a certain person of SOCOFing
dataset.

C. SIMULATION RESULTS
The experiments reported in this section were simulated on
an Intel core i7 8th edition CPU workstation with NVIDIA
4GB DDR5 GPU and 16GB RAM DDR5.

The objective of experiments is to ensure the effective-
ness of the proposed system in detecting the alterations that
may occur in the fingerprints during authentication processes

FIGURE 7. Equation matrix for binary quality metrics (adapted from [12]).

encountered in typical online banking transactions. As pre-
sented earlier in Section III, our study depends on the use of
two deep learning frameworks (i.e., CNN and a hybrid one
that combines ConvLSTM and CNN) for efficient detection
of alterations to fingerprint of authorised users. Furthermore,
the validation reported in this subsection employs fingerprint
images obtained for three levels of alteration (i.e., oblitera-
tion, central rotation, and z-cut) as available in the SOCOFing
dataset [19], [20].

1) RESULTS FOR OBLITERATION ALTERATION DETECTION
The obliteration alteration occurs, when the attacker destroys
traces of some areas of the fingerprint to spoof the original
fingerprint of a certain person. This type of alteration is
considered as a hard alteration, because the outcome imbues
characteristics far from those of the original fingerprint.
Therefore, this type of alteration is easy to be detected.
Figures 8 and 9 present accuracy and loss curves of oblitera-
tion alteration detection using the CNN DLM, while similar
results for the hybridDLMare presented in Figures 10 and 11.
Furthermore, Table 1 presents evaluation outcomes for the
obliteration alteration detection with both models. From the
table, we notice that an average detection accuracy of 92.97%
is recorded for the CNNDLM and 93.88% is recorded for the
hybrid ConvLSTM model.

TABLE 1. Evaluation outcomes for obliteration alteration.

2) RESULTS FOR CENTRAL ROTATION ALTERATION
DETECTION
The central rotation alteration is considered as a medium
alteration that is based on rotation operations on the
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FIGURE 8. Plots of accuracy curves for obliteration alteration detection
using CNN model.

FIGURE 9. Plots of loss curves for obliteration alteration detection using
CNN model.

fingerprint images. Both of our proposed deep learning
models are implemented on datasets with these alterations,
where simulation results revealed that the proposed models
have a high performance in terms of detection accuracy.
Figures 12 and 13 present plots of accuracy and loss curves
for the central rotation alteration detection using the CNN
DLM. Similarly, Figures 14 and 15 present plots of the accu-
racy and loss curves of central rotation alteration detection
using the hybrid model. Furthermore, Table 2 presents the
outcomes of evaluation for central rotation alteration detec-
tion using both models. As reported in this table, the CNN
DLM records an accuracy of 98%, whilst the hybrid DLM
attains an accuracy of 99%.

3) RESULTS FOR z-CUT ALTERATION
The proposed DLMs have been implemented on the z-cut
altered fingerprint dataset [19]. Figures 18 and 19 present
plots of accuracy and loss curves for z-cut alteration detection
using the CNN DLM. Similarly, Figures 20 and 21 present
plots of accuracy and loss curves for z-cut alteration detection
using the proposed hybrid model. Furthermore, Table 3 high-
lights the performance of both DLMs in z-cut alteration
detection. As reported in this table, the proposed CNN DLM

FIGURE 10. Plots of accuracy curves reported for obliteration alteration
detection using the hybrid model.

FIGURE 11. Plots of model loss curves for obliteration alteration
detection using the hybrid model.

TABLE 2. Evaluation outcomes for central rotation alteration.

records a detection accuracy of 98.76%, while the hybrid
DLM attains an accuracy of 99.05%, which confirms the
effectiveness of both models.

IV. DISCUSSION OF RESULTS
With an average detection accuracy of 97%, the results
recorded in the previous section illustrate the effectiveness
of both DLMs in our proposed system as tools to detect
alterations to fingerprint biometrics. To further establish this
performance, in this section we discuss the recorded results
relative to results of a state-of-the-art technique reported in
the literature.

VOLUME 9, 2021 94785



A. Sedik et al.: Deep Learning Modalities for Biometric Alteration Detection in 5G Networks-Based Secure Smart Cities

FIGURE 12. Plots of accuracy curves for central rotation alteration
detection using CNN model.

FIGURE 13. Plots of loss curves for central rotation alteration detection
using CNN model.

TABLE 3. Evaluation outcomes for z-cut alteration detection.

In [20], CNN and ResNet18 DLMs were utilised for detec-
tion of fingerprint alteration, the CNN structure was made up
of convolutional layers with 20 3 3, 40 3 3, 60 3 3, and 80
3 3 kernels. Additionally, the convolutional layers were fol-
lowed by two fully-connected layers with 1000 and 100 hid-
den units, respectively. In another model, ResNet18 pre-
trained model was used.

Table 4 highlights the performance of our proposed DLMs
alongside those reported in [20] in terms of alteration
detection accuracy and Predictive Positive Values (PPV).

FIGURE 14. Plots of accuracy curves for z-cut alteration detection using
CNN model.

FIGURE 15. Plots of loss curves for z-cut alteration detection using CNN
model.

TABLE 4. Performance analysis.

As seen from the table, both systems report acceptable
levels with our system beaten to second place in terms of
PPV for obliteration alteration detection, while it tops in
terms of PPV for the central rotation and z-cut alterations.
Furthermore, our proposed DLMs perform better than [20] in
terms of detection accuracy for the central rotation alteration.
These results indicate the ability of our proposed models to

94786 VOLUME 9, 2021



A. Sedik et al.: Deep Learning Modalities for Biometric Alteration Detection in 5G Networks-Based Secure Smart Cities

match established ones with superior performance for central
rotation alteration detection.

V. CONCLUDING REMARKS
With the advances in intelligent systems engineering, smart
technologies will become ubiquitous in emerging smart
cities. At such stages, fifth generation (5G) networks will
require technologies to mitigate identity theft, enhance per-
son identification and other Intelligent Access Control (IAC)
mechanisms.

In tandem with these advances, biometric identification
will become pervasive. Our study is primarily aimed at pro-
viding additional security to these platforms.

The prime challenge in such IAC systems is the ability to
efficiently discriminate between the original and fake biomet-
rics, where depending on sophistication, efforts to impugn
the integrity of biometric markers could vary from easy to
medium to high. Our study presented an alteration detection
system using deep learning models based on CNNs and Con-
vLSTM. The proposed models are implemented on a dataset
of fingerprint images comprising three types of alterations.
Outcomes of reported simulation-based experiments ensure
the effectiveness of our proposed system in the detection
of fingerprint alterations with superior performance, which
makes it viable for applications in 5G network-based secure
smart cities.
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