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ABSTRACT Clustering has emerged as an effective tool for the processing and assessment of the vast data
generated by modern applications; its primary aim is to classify data into clusters in which the items are
grouped into a given category. However, various challenges, such as volume, velocity, and variety, occur
during the clustering of big data. Different algorithms have been proposed to enhance the performance
of clustering. The landmark-based spectral clustering (LSC) technique has been proven to be efficient in
clustering big datasets. In this study, an algorithm called adaptive landmark-based spectral clustering (ALSC)
is proposed for clustering big datasets. The proposed algorithm comprises the adaptive competitive learning
neural network (ACLNN) algorithm, which can be efficiently used to determine the number of clusters and
the LSC technique. The ACLNN algorithm can also be used with small datasets. Thus, in our implementation,
the original big dataset is split into N small sub datasets, which run in parallel by N copies of the
ACLNN algorithm. To evaluate the performance of the proposed algorithm, two distinctive datasets, namely,
Fashion-MNIST and United States Postal Service are used. The experiments show that the proposed ALSC
algorithm produces high clustering accuracy with the identification of the number of clusters. Results reveal
that the normalized mutual information and adjusted Rand index of the proposed algorithm outperform state-
of-the-art models.

INDEX TERMS Adaptive competitive learning neural network, big datasets, clustering, landmark-based

spectral clustering, parallel processing.

I. INTRODUCTION

The massive volume of data produced every day in recent
years mostly comprises the data generated from satellites,
social media, smart devices, sensors, business transactions,
and computer simulations. These data generate invaluable
information and insight into decision support, forecasts,
intensive data research, and business intelligence. Walmart
stores approximately 2.5 petabytes of data, whereas Face-
book stores approximately 30 petabytes. Such vast data are
referred to as big data; mining is needed to retrieve the
required information [1], [2]. Structured, semistructured, and
unstructured data are the three general categories of data [3].
Majority of data is unstructured and cannot be processed
using conventional approaches. Volume, velocity, and variety
are three distinct parameters that characterize big data [4].
The amount of data in a file or database is simply referred to
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as volume. In most networks, the volume of data is stored at
an exponential scale. Data extraction becomes more complex
as the volume of data increases, and data backup exacerbates
these issues. The speed at which data is exchanged, captured,
and produced is referred to as velocity. Another clustering
challenge faced by data scientists is the pace at which data is
produced. This issue is not just regarding the amount of data
in a network; if networks produce new data at exponential
rates, extracting it in real-time becomes more challenging.
The term “‘variety of data” refers to the different types of
data. Clustered data can be processed in various formats,
making precise comparisons impossible. Most data are con-
tained in structured formats, whereas others are unstructured
wholly. Healthcare, biology, bioinformatics, insurance, bank-
ing, marketing, telecommunications, earthquake studies, city
planning, online document classification, and transportation
services are some of the industries that use big data.
Clustering is an example of an unstructured machine learn-
ing mechanism used for data analysis. It divides data into
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subsets that are identical in content [5]. Traditional clustering
algorithms classify data structures based on their resemblance
to a set of threshold parameters. However, the outcomes of
these algorithms are based on a nondeterministic predefined
threshold parameter [6]. Market research, pattern recognition,
data analysis, and image processing are some examples of the
applications where clustering analysis is used.

The competitive learning neural network (CLNN) is used
for clustering analysis [1], [7]-[9]. It comprises an input layer
and a single competitive learning output layer. Examples of
the CLNN are self-organizing map [10]-[12] and learning
vector quantization [10], [11]. In the CLNN, the output neu-
rons are completely bound to each input node [13]-[15]. Sev-
eral algorithms have been proposed to determine the number
of neurons in the output layer of the CLNN; this number is
considered to be the optimal number of clusters in the input
dataset.

The adaptive competitive learning neural network (ACLNN)
algorithm was proposed to decide the optimum number of
clusters and clustering of a small input dataset. The ACLNN
algorithm determines the optimal number of output neu-
rons using the adaptive competitive learning (ACL) crite-
ria [16], [17]. The ACL criteria assume that the best cluster
configuration comprises balanced, dense, and well-separated
clusters with the fewest parameters to calculate. The ACLNN
algorithm fails to maximize the hardware resources offered
by modern multicore processors. Parallel processing utilizes
more hardware resources, thus eliminating the time taken by
it to complete a job [18], [19].

In general, parallel processing uses graphic processing unit
(GPU) cores instead of central processing unit (CPU) cores
because of GPU Cores large number [19]. The feedforward
neural network is the only neural network whose training
function is parallelized to be applied on GPU cores [20], [21].
By contrast, the training function of the CLNN is sequential
and cannot be applied to GPU cores [20], [21].

The landmark-based spectral clustering (LSC) technique
selects a subset of data points (p) as landmarks and
represents the remaining data points as linear combina-
tions of these landmarks [22]. The Landmark-based rep-
resentation is used to compute the spectral embedding of
data.

In this study, an algorithm for determining the optimal
number of clusters (kKop) is proposed. This number (Kqp) is
used in the clustering of an input big dataset. This algorithm
is referred to as the ALSC algorithm. The proposed algorithm
comprises three phases and uses parallel processing to speed
up its performance. The main advantages of the proposed
algorithm are determining the optimal number of clusters and
producing high clustering accuracy with the identification of
the number of clusters.

The main contributions of this work are as follows:

« proposing the ALSC algorithm to determine the optimal

number of clusters (Kopt),

o using this number (Kop) for the clustering input big

dataset,
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« using multiple samples of the input dataset with parallel
processing to reduce the running time of the ALSC
algorithm and determine the optimal number of clusters,
and

« comparing the proposed algorithm with state-of-the-art
models [23]-[29].

This paper is structured as follows: Related work is pre-
sented in Section 2; the proposed ALSC algorithm is pre-
sented in Section 3; performance evaluation of the ALSC
algorithm is presented in Section 4; the results are discussed
in Section 5; lastly, the study is concluded in Section 6.

Il. RELATED WORK

For clustering, fuzzy c-means (FCM) [23] uses a mem-
bership matrix and an updated rule. Each data object is
assigned to one cluster using K-means [24]. FCM achieved
a performance of 36.44% and 51.59% in terms of adjusted
Rand index (ARI) and normalized mutual information (NMI),
respectively, in the Fashion-MNIST data set and achieved
a performance of 53.93% and 62% in terms of ARI and
NMLI, respectively, in the United States Postal Service (USPS)
dataset. The cornerstone of spectral embedded cluster-
ing (SEC) is a foundation of multiple learning [25]. SEC
achieved a performance of 36.39% and 51.64% in terms
of ARI and NMI, respectively, in the Fashion-MNIST data
set and achieved a performance of 54.5% and 62.56% in
terms of ARI and NMI, respectively, in the USPS data set.
A more sophisticated variant of the K-means algorithm,
i.e., minibatch K-means (MBKM) [24], reduces computa-
tional complexity using a minibatch. MBKM achieved a
performance of 34.5% and 50% in terms of ARI and NMI,
respectively, in the Fashion-MNIST dataset and 51% and
59.93% in terms of ARI and NMI, respectively, in the USPS
dataset. Deep embedding clustering (DEC) [26] is a deep
learning-based algorithm that forgoes the decoder and uses
a specially built distribution. DEC achieved a performance
of 45.71% and 62.83% in terms of ARI and NMI, respec-
tively, in the Fashion-MNIST dataset and achieved a perfor-
mance of 66.22% and 73.52% in terms of ARI and NMI,
respectively, in the USPS dataset. Improved deep embed-
ded clustering (IDEC) [30] is built on the foundations of
deep clustering and a carefully designed distribution. IDEC
achieved a performance of 44% and 60.13% in terms of ARI
and NMI, respectively, in the Fashion-MNIST dataset and
achieved a performance of 67.91% and 75.95% in terms of
ARI and NMLI, respectively, in the USPS dataset. A recon-
struction mechanism is used to regularize the autoencoder.
Deep fuzzy c-means (DFCM) [27] is a deep learning-based
algorithm that combines deep learning and Fuzzy C-Mean.
DFCM achieved a performance of 48.65% and 64.54% in
terms of ARI and NMI, respectively, in the Fashion-MNIST
dataset and 68.15% and 76.36% in terms of ARI and NMI,
respectively, in the USPS dataset. To improve the cluster-
ing process, the encoder—decoder convolutional neural net-
work (CNN) model and the FCM technique are combined in
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the improvised fuzzy c-means (IFCM) [28]. IFCM achieved
a performance of 54.19% and 67.35% in terms of ARI and
NMLI, respectively, in the Fashion-MNIST dataset and 85%
and 89% in terms of ARI and NMI, respectively, in the USPS
dataset. The fuzzy compactness and separation (FCS) cluster-
ing algorithm is an efficient method that estimates the fuzzy
memberships of data using within-and between-cluster dis-
tances. The deep normalized fuzzy compactness and separa-
tion (DNFCS) clustering method was established in response
to the superiority of the FCS algorithm. The graph regularized
deep normalized fuzzy compactness and separation fuzzy
clustering (GrDNFCS) is focused on autoencoder-based data
reconstruction, considering between-cluster separation, and
affinity regularization using pseudolabels [29]. GrDNFCS
achieved a performance of 50.28% and 66% in terms of ARI
and NMI, respectively, in the Fashion-MNIST dataset and
69% and 77.61% in terms of ARI and NMI, respectively,
in the USPS dataset. The performance of the previous algo-
rithms is poorer than that of the proposed algorithm. The NMI
and ARI performance of each dataset and the technique used
in each algorithm are summarized in Table 1.

The Visual Assessment of (Clustering) Tendency (VAT)
clusters data use a dissimilarity matrix. However, this
algorithm is biased toward producing large -clusters.
Moshtaghi et al. [31] clustered data using anomaly detec-
tion and used dendrograms for visual representation. This
algorithm has been applied to several taxonomy applica-
tions. Wilbik et al. [32] proposed a single linkage-based
clustering for segmenting time series-based data. K-means
clusters data efficiently. The advantage of using K-means is
its applicability and simplicity in several fields. As a batch-
based algorithm, K-means has several limitations, such as
poor initialization. Recently, deep learning has produced
satisfactory results in big data clustering [5], [33]. Several
rough or fuzzy-based approaches have been proposed for
handling the uncertainty in clustering data. Deng et al. [5]
proposed a hierarchical approach integrating neural networks
and fuzzy logic for robust clustering. Rajesh and Malar [34]
proposed an approach based on neural networks and rough set
theory for clustering data. However, this approach requires
substantial amount of data for training, thus requiring long
running time.

Semisupervized clustering algorithms have been introduced
to handle clustering data and are used for online learning and
large datasets [33], [35]-[37]. However, these algorithms fail
to achieve high accuracy for noisy and uncertain datasets.

The ACLNN algorithm was proposed for determining the
optimal number of clusters and clustering of input small
datasets. The ACLNN algorithm uses the ACL criterion for
determining the optimal number of output neurons [16], [17].
The ACL criterion is based on the theory stating that the
best cluster structure is composed of balanced, dense, and
well-separated clusters that have the least number of param-
eters to be calculated. The ACLNN algorithm has been
proven to be efficient in identifying the optimal number of
clusters and clustering small datasets [16], [17]. Because
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of its sequential running nature, the ACLNN algorithm has
high time complexity and thus consumes a large running
time, especially when used with big datasets. In addition,
the ACLNN algorithm does not appropriately use hardware
resources provided by modern multicore processors. Parallel
processing allows additional hardware resources to be used
and therefore decreases the running time [18], [19]. Paral-
lel processing requires the algorithm to be parallelized and
divided into numerous independent tasks to avoid problems
such as deadlock, starvation, and race condition [18], [20].

Several clustering algorithms, such as the K-means [24]
and generative mixture models [38], produce clusters that
have a convex geometric shape. Furthermore, these algo-
rithms use iterative functions to learn their parameters,
which seek out local minima. Therefore, multiple restarts are
required to find good solutions [39].

By contrast, spectral clustering (SC) algorithms can pro-
duce clusters with more complex shapes, such as intertwined
spirals or other nonlinear shapes, because SC algorithms do
not impose specific shapes on clusters [40].

SC algorithms use the eigenvectors of the adjacency matrix
to determine clusters. These algorithms are used in image
segmentation [41], text mining, speech processing, and data
analysis and clustering [40]. A survey conducted on SC algo-
rithms can be found in [42].

The LSC technique selects some data points (p) as land-
marks and represents the rest of the data points as linear com-
binations of these landmarks [22]. The spectral embedding of
the data is computed using landmark-based representation.
This algorithm linearly scales with the problem size [22]
and is motivated by the recent progress in sparse coding
and scalable semisupervized learning. The following para-
graphs present some of these efforts, which are summarized
in Table 1.

Ill. PROPOSED ALSC ALGORITHM

The proposed ALSC algorithm comprises three phases.
The second phase uses the ACLNN algorithm and parallel
processing to determine the optimal number of clusters. The
third phase uses LSC for clustering the input big dataset.
Algorithm 1 and Figure 1 show the steps and description of
the proposed ALSC algorithm.

A. PREPROCESSING PHASE (PHASE 1)

All features of the input dataset are normalized from O to 1.
Then, the dataset is divided into N subdatasets of equal sizes
while preserving the dataset’s characteristics.

B. PHASE 2

The created N subdatasets are used as input to N separate
copies, which are working in parallel (multiple CPU cores),
of the ACLNN algorithm. The number of clusters is deter-
mined during this step. In our implementation, the minimum
number of clusters (Kqp) is selected to be the optimal number
of clusters produced as an output of Phase 1 and denoted
by Kopt-
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TABLE 1. Summary of the related work and illustration for each study: algorithm name, dataset name, dataset size, # of classes, clustering algorithms

that were used, and performance metrics values.

Authors Algorithm Dataset Dat.aset # of Clustering Algorithms Performance
Name Size classes Used
= 0
Fashion MNIST 60000 10 . . il _36'44 .
Combination of fuzzy logic NMI = 51.59 %
Venkat et al. [23] Fuzzy c-mean T TY Y AR
USPS 9298 10 and c-mean ARI=53.93 %
NMI =62 %
= 0,
Fashion MNIST 60000 10 LIS SIasR v
NMI =51.64 %
Sculley et al. [24] K-means e K-means - DT o420/
USPS 9298 10 ARI =545 %
NMI = 62.56 %
= 0,
Fashion MNIST 60000 10 ISk & o
. . NMI =55.8%
Nie et al. [25] SEC e Spectral clustering DT 4G AL 0/
USPS 9298 10 ARI =49.36 %
NMI = 64.88 %
= 0
Fashion MNIST 60000 10 . AR 70
Combination of K-means NMI = 50.03 %
Sculley et al. [24] MBKM . Tt et ncos
USPS 9298 10 and minibatch ARI=51.05%
NMI =59.93 %
= 0,
Fashion MNIST 60000 10 ASES T 0
s . NMI = 62.83 %
Girshick et al. [26] DEC e Deep learning DI fZ 7 0/
USPS 9298 10 ARI =66.22 %
NMI =73.52 %
= 0,
Fashion MNIST 60000 10 Combination of deep learn- AR _44'09 %
. NMI =60.13 %
Guo et al. [30] IDEC ing and local structure o 10,
USPS 9298 10 preservation ARI=67.91 %
= NMI = 75.95 %
= = 0,
Fashion MNIST 60000 10 Estlmates the fuzzy mem- ARI 748.65 f)
berships of data using NMI = 64.54 %
Feng et al. [27] DFCM s o~ o 1co0s
USPS 9208 10 within-and between-cluster ARI=68.15 %
distances NMI =76.36 %
— 0,
. Fashion MNIST 60000 10 Combination of fuzzy ARI _54' 19 ?
Improvised . NMI =67.35%
Rayala et al. [28] FCM logic, c-means, and en- ARI=85.01%
- . 0
USPS 9298 10 coder decoder CNN NMI = 8901 %
Combination of autoen- _ o
Fashion MNIST 60000 10 coder-based data recon- A= 50,208 f)
struction, between-cluster LT =642 V%
Feng et al. [29] GrDNFCS L . _
separation, and affinity ARI = 69.03 %
USPS 9298 10 regularization using pseu- T °

dolabels

NMI =77.61 %

C. PHASE 3

The input of this phase is the original big dataset and the
minimum number of clusters produced by Phase 2. These data
are used as input to the LSC technique, which produces the
clustering results for every data object of the input data, and
the corresponding NMI, and ARL

IV. EXPERIMENTS AND RESULTS

The performance of the proposed algorithm is evaluated
and compared with that of state-of-the-art algorithms using
real datasets. All experiments are conducted on a DELL G5
15 laptop that has an Intel i7 processor, 2.20 GHz CPU,
6 GB Nvidia graphics, and 16 GB RAM. Windows 10 is
the operating system used. The Neural Network Toolbox and
Deep Learning Toolbox [10], [11] are used in the MATLAB
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R2018a platform. In Phase 2, the processor starts a pool on the
local machine with 12 workers to run the ACLNN in parallel.
Section A describes the datasets used in experiments. The
state-of-the-art algorithms used in the experiments are pro-
vided in Section B. Section C describes the measures used to
evaluate the clustering performance of all algorithms.

A. DATASETS
Two standard real datasets, namely, the Fashion-MNIST and
USPS datasets, are used in the experiments.

The Fashion-MNIST dataset, which comprises a training
set of 60,000 images and a test set of 10,000 images, is one
of the most common fashion clothing image datasets. Each
image is a 28 x 28 pixel grayscale image with a total res-
olution of 784 pixels and a label from one of ten clusters.
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FIGURE 1. Description of the proposed ALSC algorithm.
Algorithm 1 ALSC Algorithm
Input: Big dataset X
1. Normalize the values of each data feature to range from O to 1.
2. Divide the input big dataset into N small sub-datasets of equal sizes. (Phase 1)
3. Open parallel pool with 12 workers. (Phase 2)
4. Apply steps 5, 6, and 7 in parallel workers on each subdataset obtained in Step 2.
5. Use one of the subdatasets determined in Step 1.
6. (K) = ACLNN (Kmax =16, subdataset) to obtain the best CLNN model that has the minimum value
of the ACL criterion.
7. Save results.
8. Close the parallel pool.
9. From the stored results in Step 7, select the minimum K that is considered the optimal number of clusters (Kopt).
10. (clustering id results) = LSC (Kop, big dataset). (Phase3)
11. Calculate the NMI, and ARI according to clustering id results for every data object in the input dataset.

Output: Koy, clustering id results, NMI, and ARL

Each pixel has a single pixel value that indicates its lightness
or darkness, with higher numbers representing darker pixels.
An integer between 0 and 255 is used as the pixel number.
Assuming x has been decomposed as x =1 * 28 + j, where I
and j are integers between 0 and 27, the aim is to find a pixel in
the image. A 28 x 28 matrix includes the pixels on row I and
column j. Each row contains a different image. In all training
and testing splits, all groups are equally represented [43].
Figure 2 shows samples of the Fashion-MNIST image
dataset.

The USPS digit dataset is one of the most commonly
used datasets for recognizing handwritten digits. The dataset
comprises numeric data extracted from the USPS’s scanning
of handwritten digits from envelopes. Here, the photos here
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been disassembled and size have been normalized from the
original binary scanned digits, which are varying in size and
orientation. It has a total of 9,298 handwritten digit images,
divided into 7,291 training and 2,007 test images. Each
image is a 16 x 16 grayscale image with a total resolution
of 256 pixels and a label from one of ten groups. Each pixel
has a single pixel value that indicates its lightness or darkness,
with higher numbers representing darker pixels. This pixel
value is an integer ranging from 0 to 255. Assuming X has
been decomposed x as x =1* 16 + j, where I and j are integers
between 0 and 15, the aim is to find a pixel in the image. In a
16 x 16 matrix, the pixel is in row I and column j. Each row
contains a unique image [44]. Figure 3 shows samples of the
USPS image dataset.
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FIGURE 2. Samples from the Fashion-MNIST image dataset.

B. STATE-OF-THE-ART ALGORITHMS

This section describes some state-of-the-art algorithms.
FCM [23] uses the matrix of membership and updates rules
for clustering. K-means [24] allocates every data object
into one cluster. SEC [25] is based on manifold learning.
MBKM [24] is a more advanced version of the K-means
algorithm and uses a minibatch to minimize computational
complexity. DEC [26] is based on deep learning, abandons
the decoder part, and has a particularly designed distribu-
tion. Deep clustering and a precisely crafted distribution are
the pillars of IDEC [30]. The autoencoder is regularized
via the reconstruction mechanism. To improve the cluster-
ing process, improvised FCM [28] uses the encoder-decoder
CNN model and FCM technique. The FCS method is an
efficient fuzzy clustering method that estimates the fuzzy
memberships of data using within and between-cluster dis-
tances. DNFCS is established in response to the superior-
ity of the FCS algorithm, whereas GrDNFCS is focused
on autoencoder-based data reconstruction, consideration of
between-cluster separation, and affinity regularization using
pseudolabels [29].
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FIGURE 3. Samples from the USPS image dataset.

C. PERFORMANCE MATRICES

1) NORMALIZED MUTUAL INFORMATION

The measure of mutual dependency between two variables is
known as mutual information. NMI is a metric for assessing
clustering algorithm efficiency [45]. The NMI value ranges
from O (perfect mismatch) to 1 (perfect match). It indicates
the amount of information the clusters have produced.

m k
TXYy=3 " > Pylogy (Py/PiPp), (D)

where Pj; is the probability that a member of cluster j belongs
to class i, P; is the probability of class i, and P; is the
probability of cluster j.

1(X;Y)
VHX)HT)'
where H(X) and H(Y) denote the entropy of X and Y.

NMI (X;Y) = )

2) ADJUSTED RAND INDEX
The Rand index is a calculation of the closeness of two
separate data clusters, and it ranges from O to 1. The higher the
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FIGURE 4. Performance evaluation of the compared algorithms using the USPS dataset.

TABLE 2. Number of clusters according to the number of subdatasets
using the Fashion-MNIST dataset.

# of subdataset K Time (seconds)

1 15 3.118e+03
2 15 1325.64
3 14 867.459
4 15 713.511
5 14 625.343
6 15 591.892
7 16 574.169
8 14 571.567
9 15 476.236
10 15 446.932
11 11 388.742
12 15 289.812
13 14 190.979
14 15 177.409

ARI value, the more accurate is that the received clustering
model [28].

Average Rand index
= (Rand_Index — true negative)
/(max(Rand_Index) — E(Rand_Index)) — 1  (3)

In addition to Tables 2 and 3 show the different sizes of
subdatasets created from a big dataset using the USPS and
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TABLE 3. Number of clusters according to the number of subdatasets
using the USPS dataset.

# of subdataset K Time (seconds)

1 12 3.9042¢ + 02
2 12 143.23

3 12 100.017

4 11 79.88

5 11 87.287

6 10 69.996

7 12 67.628

8 12 65.978

Fashion-MNIST datasets, as well as the effect of subdataset
size on the determination of the number of clusters (K).
Figures 4 and 5 show the performance evaluation of the
compared algorithms using the USPS and Fashion-MNIST
datasets, respectively. Table 4 shows the performance eval-
uation of the proposed ALSC algorithm in determining the
minimum number and the standard deviation of clusters,
the maximum NMI and ARI, and the minimum time in sec-
onds for both datasets.

V. DISCUSSION OF RESULTS

Table 2 shows the different sizes of subdatasets created
from the Fashion-MNIST dataset and the number of clusters
(K) determined by Phase 2 in the proposed ALSC algorithm.
We observe that the best number of subdatasets created from
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TABLE 4. Performance evaluation of the proposed ALSC algorithm using both datasets.

Kopt NMI ARI Time (seconds)
Data MIN STD MAX STD MAX STD MIN STD
USPS dataset 10 2.044 80.72 0.0059 74.004 0.2196 42.985 0.1497
Fashion-MNIST dataset 11 1.5239 74.35 0.0068 65.9554 1.3605 64.1175 0.5949
80
70
60
50
40
30
20
10
0 FCM K-means  MBKM DEC IDEC GrDFCM = DFCM DNFCS  GrDNFCS IFCM ALSC
HARI 36.44 38.44 36.39 34.5 45.71 44.09 50.14 48.65 49.91 50.28 54.19  65.9554
ENMI  51.59 55.8 51.64 50.03 62.83 60.13 65.78 64.54 65.67 66.09 67.35 74.35

FIGURE 5. Performance evaluation of the compared algorithms using the Fashion-MNIST dataset.

this dataset is 11, which are used as input data to 11 separate
copies of the ACLNN algorithm. The minimum number of
clusters (Kopt) produced using the 11 ACLNN algorithms is
11 clusters, which is approximately equal to the exact number
of clusters.

Table 3 shows the different sizes of subdatasets cre-
ated from the USPS dataset and the number of clusters
(K) determined by Phase 1 in the proposed ALSC algorithm.
We observe that the best number of subdatasets created from
this dataset is six, which are used as input data to six separate
copies of the ACLNN algorithm. The minimum number of
clusters (Kop) produced using the six ACLNN algorithms is
10, which is equal to the exact number of clusters.

Figure 4 shows that the proposed ALSC algorithm
achieved 74.004% for the ARI and 80.72% for the NMI using
the USPS dataset. In addition, Figure 5 shows that the pro-
posed ALSC algorithm achieved an ARI value of 65.96% and
an NMI value of 74.35% using the Fashion-MNIST dataset.
These results show that in terms of clustering performance,
the proposed ALSC algorithm outperforms all the state-of-
the-art algorithms used in the comparison study with the
Fashion-MNIST database. In the USPS dataset, the proposed
ALSC algorithm outperforms all the state-of-the-art algo-
rithms used in the comparison study, except the improvised
FCM.
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Table 4 shows that the proposed ALSC algorithm can
determine the number of clusters that is approximately equal
to the exact number of clusters in both datasets used in the
comparison study; by contrast, the other algorithms require
this number to be given as an input parameter.

The reason of the superiority of the proposed ALSC algo-
rithm in clustering performance is its ability to perform SC to
deal with clusters having complex shapes, such as intertwined
spirals or other nonlinear shapes. In addition, this algorithm
does not impose any specific shape on the data clusters.
Lastly, the proposed ALSC algorithm efficiently determines
the number of clusters based on the ACL criterion. This
criterion is efficient in selecting the number of balanced,
dense, and well-separated clusters and has the least number
of parameters to be calculated.

VI. CONCLUSION

In this study, the ALSC algorithm is proposed for cluster-
ing big datasets while determining the optimal number of
clusters. In the ALSC algorithm, the original big dataset is
split into N small subdatasets, which run in parallel by N
copies of the ACLNN algorithm, to determine the optimal
number of clusters of this dataset. Then, it uses this number
to determine the clustering results for every data object in
the input dataset using the LSC technique. A performance
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evaluation study is conducted, and results show that the pro-
posed ALSC algorithm produces high clustering accuracy
with the identification of the number of clusters.

In the future, the proposed ALSC algorithm for high-
dimensional data could be improved using more priors.
To discover a better latent representation of data, novel deep
autoencoder variants, such as denoising autoencoders (DAE),
contractive autoencoders (CAE), and Relation autoencoders
(RAE), must be considered. We plan investigating the online
training of an ALSC algorithm for big data by combining
incremental and reinforcement learning, as inspired by online
clustering.
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