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ABSTRACT Cracks and bugholes (surface air voids) are common factors that affect the quality of concrete
surfaces, so it is necessary to detect them on concrete surfaces. To improve the accuracy and efficiency of
the detection, this research implements a novel deep learning technique based on DeepLabv3+ to detect
cracks and bugholes on concrete surfaces. Firstly, in the decoder, the 3× 3 convolution of the feature fusion
part is improved to a 3-layer depth separable convolution to reduce the information loss during up sampling.
Secondly, the original expansion rate combination is changed from 1, 6, 12, 18 to 1, 2, 4, 8 to improve
the segmentation effect of the model on the image. Thirdly, a weight value is added to each channel of the
Atrous Spatial Pyramid Polling (ASSP) module, and the feature maps that contribute significantly to the
target prediction are learned and screened. To use this method, a database is built containing 16,662 256 ×
256 pixel images of bugholes and cracks on concrete surfaces. The two defects included in those images
are labeled manually. The DeepLabv3+ architecture is then modified, trained, validated and tested using
this database. A strategy of model-based transfer learning is applied to optimize and accelerate the learning
efficiency of the model. The weights and biases of the Xception part of the model are initialized by the
pretrained backbones. The results are 97.63% (crack), 93.53% (bughole) Average Precision (AP), 95.58%
Mean Average Precision (MAP) and 81.87%Mean Intersection over Union (MIoU). A comparative study is
conducted to verify the performance of the proposed method, and the results demonstrate that the proposed
approach performs significantly better in crack and bughole detection on concrete surfaces.

INDEX TERMS Crack detection, bughole detection, deep learning, concrete surface, semantic segmentation.

I. INTRODUCTION
Controlling the surface quality of concrete is one of the
main challenges faced by the concrete industry today. Defects
on the surface of a concrete structure can visually reflect
its durability, safety and maintainability. The most com-
mon factors affecting the quality of concrete surfaces are
cracks and bugholes [1], [2], which are surface defects that
are usually scattered randomly on a concrete surface [3].
Research has demonstrated that cracks can affect the safety
and sustainability of concrete buildings, while bugholes
can reduce the adhesion of fiber reinforced plastic (FRP)
material on concrete surfaces [4]. Moreover, if salt accu-
mulates in bugholes, it can lead to the premature degrada-
tion of reinforced concrete (RC) structures. Therefore, crack

The associate editor coordinating the review of this manuscript and
approving it for publication was Luca Cassano.

and bughole detection is of great significance in building
maintenance.

Traditionally, a common method for assessing defects on
concrete surface is via human visual inspection [5]. However,
owing to the inherent subjectivity of human perception, dif-
ferent people usually produce different judgment results for
the same concrete surface conditions [6]. In addition, human
visual inspection is usually labor-intensive, time-consuming
and unable to consistently produce quantitative objective
results. Therefore, automatic defect inspection is highly desir-
able for efficient and objective defect assessment.

Considering the shortcomings of traditional inspection
methods based on human visual identification, computer
vision-based methods have been widely studied. A large
number of damage detection methods based on image pro-
cessing techniques (IPT) have been proposed. Almost all
surface defects can be identifiable, which is a significant
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advantage of IPT. IPT combined with sliding window tech-
nology was used by Yeum and Dyke to detect cracks [7].
The potential of IPT is well demonstrated in this study.
Liu and Yang [8] used an image analysis approach to
detect surface bugholes and the CIB bughole scale, while an
OTSU image threshold segmentation technique was adopted
to extract the features of the bugholes on the concrete surface.
Cheng et al. [9] used intensity threshold-based algorithms to
identify pavement cracks via setting different threshold val-
ues. However, the detection performance is seriously dimin-
ished when there are a certain number of noisy pixels with
intensities lower than the crack pixels. Since the edges and
cracks have a multitude of similarities in morphology, many
studies [10], [11] adopt filter-based methods which have been
developed for edge detection to detect cracks on pavement
images. Though the IPT-based defect detection approach is
fast and effective, its robustness is far from adequate when
noise, mainly from distortion and lighting, seriously affects
the results [12]. Implementing denoising technology is an
effective way to overcome these problems. As a well-known
technique, total variation denoising can reduce the noise of
image data, so as to enhance the edge detectability of the
image [13]. However, due to the great changes of image data
captured in the real engineering, the applications of prior
knowledge in IPT are limited. The drawbacks of these tradi-
tional crack and bughole detection methods are obvious: each
method is designed for a specific setting or database. If the
setting or database is changed, the crack or bughole detec-
tors often fail. In addition, it is arduous to extract semantic
information (such as the location and width of cracks) from
images. Image processing algorithms are usually designed
to help inspectors detect defects and still rely on manual
judgment to obtain the final results [14].

With the development of image acquisition equipment and
computing capabilities, a host of machine learning algorithms
(such as deep learning) has been used for object recognition
and have achieved acceptable results [15]–[17]. Deep learn-
ing technique is a data-driven approach without requiring
rules designedmanually. In the process of building themodel,
we only need to select an appropriate network structure,
a function to evaluate the model output and a reasonable
optimization algorithm. The Convolutional Neural Network
(CNN) has attracted wide attention as an effective recognition
method [18] and has been highlighted in object detection and
image classification [19]. Liu et al. [20] proposed a deep
learning algorithm to detect the rebar hyperbolas automati-
cally, and the rebar depth is estimated with a high accuracy by
migration of rebar hyperbola. A method based on deep learn-
ingwas developed to detect concrete bugholes [21], [22], con-
crete cracks [23]–[27], road cracks [6], [28]–[30] and other
defects [31]–[33]. When only one defect type is detected,
these methods maybe achieve outstanding performance in
realistic situations. Previous research has focused primar-
ily on using CNNs to locate and classify defects, such as
using a bounding box to determine the localization of each
crack and classify individual cracks in images. The object

detection technology uses a rectangular frame to locate the
object, while the crack and bughole distribution and shape
of the concrete surface are irregular. Therefore, the recog-
nition accuracy of these methods is limited. Subsequently,
a Faster Region-based Convolutional Neural Network (Faster
R-CNN) method was applied by Cha et al. [34] for multi-
ple defects. This method still detects multiple defects at the
grid-cell. In other words, it can effectively detect cracks in
the image, but can hardly provide pixel-level concrete crack
detections. To improve the detection accuracy, the task of
detecting concrete surface defects is regarded as a semantic
segmentation task. The goal of semantic segmentation is to
classify each pixel in the image. As a deep learning network
structure proposed for image semantic segmentation tasks,
FCN is an ideal way to do the image semantic segmentation.
Li et al. [35] proposed a fully convolutional network (FCN)
method for multiple damage types (crack, spalling, hole and
efflorescence). This method still uses several groups of learn-
ing rates for optimal training, and it needs a lot of manpower
work before applying the trained model, so it is complicated
and time-consuming. Therefore, it is meaningful to find a
simple and fast but high precision method.

In this paper, we focus on simultaneous crack and bug-
hole detection at the pixel level. To achieve higher detection
performance for crack and bughole defects, a method based
on deep learning is proposed for crack and bughole detec-
tion on concrete surfaces. DeepLabv3+ [36] is a state-of-
the-art framework for semantic segmentation which extends
DeepLabv3 with an encoder-decoder structure. This model
has a good segmentation effect in the visual field, and it
is improved on this basis. The encoder module encodes
multi-scale contextual information by applying atrous con-
volution at multiple scales, while the simple yet effective
decoder module refines the segmentation results along object
boundaries. In addition, compared with the current training
process for defect recognition, the optimization algorithm
used in the model of this method is able to auto-adjust
the learning rate, avoiding the complexity of using multiple
groups of learning rates to achieve optimization. However,
there are few applications of DeepLabv3+ in defect detection
in the field of civil engineering.

In this paper, the method whose network is improved
based on the visual characteristics of cracks and bugholes,
is used for object detection and semantic segmentation of
cracks and bugholes in concrete surface images. The previous
study mainly focused on detecting only one defect. The first
contribution of this study is to reduce the information loss
during upsampling. In the decoder, the 3 × 3 convolution
of the feature fusion part is improved to a 3-layer depth
separable convolution. To avoid the loss of accuracy, a smaller
expansion rate combination is used and the global polling
layer in the raw image is removed. The original expansion
rate combination is changed from 1, 6, 12, 18 to 1, 2, 4, 8 to
improve the segmentation effect of the model on the image.
This is the second major contribution of the study. Moreover,
based on the idea of the channel Attention mechanism of
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FIGURE 1. Overall schematic flowchart of the original DeepLabv3+.

SENet, a weight value is added to each channel of the Atrous
Spatial Pyramid Polling (ASSP) module, and the feature
maps that contribute significantly to the target prediction
are learned and screened. This can reduce the burden of
processing high-dimensional data and make the network pour
more attention into the crucial part of the input information.
Besides, it can better judge the mapping relationship between
input and output and further improve the model’s prediction
accuracy and generalization ability.

II. METHODOLOGY
To detect and locate cracks and bugholes on concrete sur-
faces, the modified semantic image segmentation framework
DeepLabv3+ is applied in this study. The features of cracks
and bugholes are extracted simultaneously from concrete
images in a database. The overall schematic flowchart of
the original DeepLabv3+ is shown in Fig. 1. The input and
the output are the original image and the recognition result,
respectively. The recognition result shows the class label and
location of the cracks and bugholes. The Xception-65 mod-
ule form, which has achieved accurate calculations and fast
results in the latest image classification and object detection,
is used as the backbone of the network architecture training
in this study [37].

The detailed implementations are described in this section,
including the network architecture construction and the
improved DeepLabv3+.

A. NETWORK ARCHITECTURE CONSTRUCTION
The Xception network structure is mainly based on the
structure of depth wise separable convolution to improve
the multi-scale extraction feature Inception v3 convolution
method.

1) DEPTHWISE SEPARABLE CONVOLUTION
The main implementation process of depth wise separable
convolution is as follows: M represents the number of chan-
nels of the input feature and N represents the number of
channels of the output feature (also the number of convolution
kernels of this layer). Therefore, if the size of the convolution
kernel is assumed to be Dk ∗ Dk ∗ M ∗ N , and the output is
DF ∗DF ∗N , then the amount of computation of the standard
convolution isDk ∗Dk ∗M ∗N ∗DF ∗DF . IfM ∗N is removed
from the above formula, it becomes a two-dimensional con-
volution kernel deconvolving a two-dimensional input feature
map. If the size of the output feature map is DF ∗ DF ,
since each point of the output feature map is generated by a
convolution operation, and each convolutionwill haveDk∗Dk
computation, a two-dimensional convolution kernel decon-
volving a two-dimensional input feature map has DF ∗ DF ∗
Dk ∗ Dk computation. If there are M input feature maps and
N convolution kernels, the amount of computation will be
DF ∗ DF ∗ Dk ∗ Dk ∗M ∗ N .
The algorithm in this paper uses (b) + (c) instead

of (a). Assuming that there are N convolution kernels, each

VOLUME 9, 2021 85711



Y. Sun et al.: Autonomous Crack and Bughole Detection for Concrete Surface Image

FIGURE 2. Filter principle for standard convolution and depthwise
separable convolution: (a) Standard convolutional filters; (b) Depthwise
convolutional filters; (c) 1 × 1 Convolutional filters, referred to as
pointwise convolution in the context of depthwise separable convolution.

convolution kernel has a dimension ofDk∗Dk∗M , the number
of input feature map channels is M and the output feature
map is DF ∗ DF ∗ N . Thus, (b) means convolution with M
convolution kernels of dimension DF ∗ DF ∗ 1 and the input
M feature maps, and M results will be obtained. These M
results do not accumulate with each other. (Note that the
number of convolution kernels is M instead of N , so there is
no N in (b), only M .) Therefore, the amount of computation
is DF ∗ DF ∗ Dk ∗ Dk ∗ M . The result of (b) should be
DF ∗ DF ∗ M . Fig. 2 (b) represents the dimensions of the
convolution kernel. Fig. 2 (c) represents the result of convo-
lution (b) withN convolution kernels of dimension 1 ∗ 1 ∗M .
Namely, the input is DF ∗ DF ∗M , the feature map of DF ∗
DF ∗ N is finally obtained and the amount of computation is
M ∗N ∗DF ∗DF ∗1∗1. The amount of computation using this
algorithm becomesDk∗Dk∗M∗N∗DF∗DF+M∗N∗DF∗DF .
Compared to (a), the amount of calculation is reduced as
follows:
DK ·DK ·M · DF · DF +M · N · DF · DF

DK · DK ·M · N · DF · DF
=

1
N
+

1

D2
K

(1)

For instance, the size of the convolution kernel is 3 × 3
3× 33× 3 and the time of the convolution operation can be
reduced to about 1/9 of the original.

2) ATROUS CONVOLUTION
When the image is input into the network, the network
will perform convolution and pooling operations on the
image. A pooling operation simultaneously reduces the size
of the image and increases the receptive field. However,
since image segmentation prediction is the pixel-wise output,

FIGURE 3. Difference between atrous convolution and standard
convolution.

the deconvolution operation is usually used for prediction by
upsampling the smaller image after pooling to the original
image size. The specific process is shown in Fig. 3.

In Fig. 3, the top row uses standard convolution for feature
extraction on the low-resolution input feature map, which
has a slice of losses. Consequently, the high-resolution input
feature map on the bottom row uses the atrous convolution of
rate = 2 for dense feature extraction.

3) XCEPTION-65
The Xception-65 network structure in this paper adopts the
depthwise separable convolution method to greatly save time
and improve the effect of the model without increasing the
network complexity. The specific network structure is shown
in Fig. 4. The comparison between the Xception-65 net-
work structure and other networks in the model is shown
in Table 1.

TABLE 1. Comparison between the Xception-65 network structure and
other networks in the model.

4) ATROUS SPATIAL PYRAMID POLLING (ASSP)
ASSP is affected by the idea of spatial pyramid pooling in
the object detection algorithm R-CNN, which shows that
by fusing the features extracted from convolutions of mul-
tiple different sizes, regions of any size can be effectively
and accurately classified. ASSP adopts this idea and atrous
convolution is applied to this structure, which is composed
of multiple parallel atrous convolution layers with different
rates. The features extracted from the atrous convolution of
each rate value are first processed in independent branches
and finally fused together to obtain the final result (Fig. 5).
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FIGURE 4. Xception-65 network structure diagram [36].

FIGURE 5. Structural diagram of ASSP.

B. IMPROVED DeepLabv3+
In our research, the proposed DeepLabv3+ is specially
designed for crack and bughole detection to improve the
accuracy and generalization of the model.

First of all, in the decoder, the 3 × 3 convolution of the
feature fusion part is improved to a 3-layer depth separa-
ble convolution to maintain the spatial position information
and depth information, gradually obtain the fine segmen-
tation results and reduce information loss during upsam-
pling (Fig. 6).

The image is small (256 × 256 pixels), and the area
occupied by cracks and bugholes in the image is close. The
scale conversion is not obvious. The detected defects occupy
a small area in the image, and if a higher expansion ratio is
adopted, the extracted features will not be obvious. Using the
expansion ratio combination of the original ASSP module
can easily cause a loss of accuracy. Accordingly, a smaller
expansion rate combination is used and the global polling

FIGURE 6. Replacing ordinary convolution with separable convolution.

layer in the original image is removed at the same time. The
original expansion rate combination is changed from 1, 6,
12, 18 to 1, 2, 4, 8 to improve the segmentation effect of the
model on the image. The expansion rate combination 1, 2, 4,
8 is the smallest combination. Finally, based on the idea of
the channel Attention mechanism of SENet, a weight value
is added to each channel of the ASSP module and the feature
maps which contribute significantly to the target prediction
are learned and screened (Fig. 7).

The original network does not carry out channel weighting
on the feature maps. By default, all channel information is
treated equally, and its contributions to the final target predic-
tion are considered to be the same. In fact, with the accumu-
lation of convolutional layers and the enrichment of semantic
information, each channel carries different feature informa-
tion, and the degree of association between the information
and the target is different. If the channels of the feature map
can be weighted, and the features that contribute significantly
to the target prediction are learned and screened, the burden
of processing high-dimensional data can be reduced. In addi-
tion, this can make the network pour more attention into the
crucial part of the input information, better judge themapping
relationship between input and output and further improve the
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FIGURE 7. Improved SE_ASSP module.

FIGURE 8. Overall schematic flowchart of the proposed method.

model’s prediction accuracy and generalization ability. The
overall schematic flowchart of the proposed method is shown
in Fig. 8.

III. EXPERIMENTS
A. IMPLEMENTATION DETAILS
The operating system used in this study is Linux Ubuntu
16.04.1, and it is equipped with Intel Core (TM) i7-8750H
CPU@2.20GHz, GeForce RTX 2070 graphics and 8GB
memory. The system code for simultaneous detection of

cracks and bugholes was written in Python and reproduced
using the Tensorflow framework. The Tensorflow framework
is an open source software library based on data flow pro-
gramming through which many machine learning algorithms
can be implemented programmatically.

B. IMAGE DATABASE CREATION
In order to facilitate image acquisition, iPhone X with a
12-megapixel wide-angle and telephoto dual-lens camera is
used to acquire images. Images were taken under different

85714 VOLUME 9, 2021



Y. Sun et al.: Autonomous Crack and Bughole Detection for Concrete Surface Image

lighting conditions to ensure diversity and complexity. To col-
lect images of small defects (cracks and bugholes), all images
were taken at a distance of 0.1 meters between the concrete
surface and the smartphone. A total of 2000 raw images
with dimensions of 3024 × 3024 pixels were taken from
the surfaces of concrete buildings. Considering the training
performance of the neural network and the display memory
of the computer, the training efficiency is too low when the
image is too large. Therefore, we use small images when
training features, and we can use original images during
testing if necessary. Each raw image can be automatically
cropped to generate 139 images with dimensions of 256 ×
256 pixels. However, some cropped images do not contain
cracks or bugholes. Consequently, the images containing
cracks or bugholes were meticulously selected from the set
of cropped images. As a result, a total of 16,662 images that
met the requirements were selected to create the database.

There are two kinds of defects (cracks and bugholes) in
the images, and the pixels of the background, cracks and
bugholes are labeled 0, 1 and 2, respectively. The most funda-
mental and crucial step is to label the images when creating
the database. The image label tool ‘‘labelme’’ is used to label
the masks of the objects (cracks and bugholes). Each image
in the database has a corresponding annotation file which
provides an object contour label and an image class label for
each image. In the light of the function, the database can be
divided into three parts: the training set, test set and validation
set. The training set is mainly used for training the model,
the validation set avoids over fitting the model and the test
set is primarily used for testing the performance of the model.
The trained model gives the detection results of each image
in the test set. The accuracy of the model can be calculated
by comparing the results given by the model with the manual
labeling results.

Due to the large difference between the number of bughole
databases and crack databases, the preset data transformation
rules are adopted for the bughole data. Geometric opera-
tions and color transformation are applied to amplify the
data based on the existing data. There are several common
types of image geometric transformations: flipping, rotating,
cropping, deformation and so on. In this study, we have
not used deformation operation, because it will damage the
texture characteristics of bugholes and cracks. We mainly use
flipping and rotating operation to redistribute the pixels of
cracks and bugholes in the image. On the basis of the original
color transformation class, some noise is added randomly.
Furthermore, owing to the different sizes of the bughole and
crack pixels, and the fact that an extremely large proportion
of the background is occupied, when training, the training
weight of the background: crack: bughole is set to 1:10:15,
and the correction of the category imbalance is considered.
The definition of a crack or a bughole in this paper is that it
should be identifiable in images via the naked human eye.

To evaluate the generalization ability of the modified
DeepLabv3+, the database is divided into five parts (80%
for training and validating the model and the last 20% for

TABLE 2. Percentage of the training, validation and testing sets.

TABLE 3. Parameters in the training process.

testing) according to the fivefold cross-validation principle.
Table 2 shows the detailed percentages of the training, vali-
dation and testing sets.

The Tensorflow open source framework, which provides a
unified input data format (TFRecord format), has two main
advantages. One is that all of a sample’s information can be
stored together, even if it includes different data types. The
‘‘protocol buffer’’ binary data encoding scheme is applied to
the memory. The other advantage is that the multi-threaded
operation of the file queue can be used to make the data read-
ing speed and batch processing faster and more convenient.
Accordingly, the database is transformed into the training
format required by the open source framework.

C. MODEL INITIALIZATION
When trainingDeepLabv3+, a strategy ofmodel-based trans-
fer learning [38], [39] is applied to optimize and accelerate
the learning efficiency of the model. In this paper, transfer
learning refers to the method of the feature extraction weights
in other fields based on the main framework Xception of
Deepplabv3+ as the pretraining weight for crack and bughole
detection. According to this strategy, the biases and weights
of the Xception part of the DeepLabv3+model are initialized
by the pretrained backbones. In this paper, we considered the
momentum algorithm and the Adam algorithm, and found
that the loss function value of the momentum algorithm
dropped to the lowest during training. Therefore, the momen-
tum algorithm has good performance. We also considered the
parameters in Table 3 during training. The detection system
was trained 400,000 times with the momentum algorithm,
and the training batch size was 16. Table 3 shows the detailed
parameters of the training process. The curve of the learning
rate in the training process and the loss curve of the training
and validation processes are shown in Fig. 9 and Fig. 10,
respectively.

As shown in Fig. 9, the initial learning rate is 10−4 and the
optimal learning rate is 1.15 × 10−6 for 400,000 iterations.
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TABLE 4. Input and output for crack and bughole detection on concrete surface.

FIGURE 9. Learning rate.

Fig. 10 depicts the record training and validation losses of
the modified DeepLabv3+ under the optimal learning rate
(1.15 × 10−6). It can be seen that the training loss decreases
rapidly at the beginning and then converges around 0.15.

D. ACCURACY EVALUATION METRICS
To evaluate the accuracy of the technique for semantic
segmentation, many evaluation standards have been pro-
posed and used. To measure the effect of per-pixel labeling
approaches on performance, the most common current met-
rics for semantic segmentation are Average Precision (AP),

FIGURE 10. Loss curve of training and validation processes.

Mean Average Precision (MAP) and Mean Intersection over
Union (MIoU). The evaluation metrics can be formulated
as follows:

AP =
1
2

1∑
r=0

max
r ′:r ′>r

Precision(r ′) (2)

mAP =
1
m

m∑
n=1

APn (3)

MIoU =
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

(4)
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TABLE 5. Comparison of prediction results for the proposed DeepLabv3+, FCN and original DeepLabv3+.

where i represents the true value and j represents the predicted
value. pij indicates that i is predicted as j. As shown in Fig. 11,
red represents the true value and yellow represents the pre-
dicted value. The orange part is the intersection of the two
circles, which is MIoU.

E. LOSS FUNCTION OF TRAINING
The output of the network is the pixel-wise softmax, that is:

pk (x) = exp(ak (x))/(
K∑
k=1

exp(ak (x))) (5)

where x is the pixel position on the two-dimensional plane,
ak (x) represents the value of the channel k corresponding
to x in the pixel in the last output layer of the network.
pk (x) represents the probability that the pixel x belongs to
the class k .
The loss function uses negative-class cross entropy to solve

the class imbalance of cracks, bugholes and background.
That is:

E =
∑
x

w(x) log(pl(x)(x)) (6)

FIGURE 11. MIoU metrics.

where pi (x) represents the output probability of x on the
channel where the real label is located and w (x) is the weight
of each pixel. It is unreasonable to treat the loss of each pixel
equally when a certain kind of image is dominant in the cross
entropy loss of semantic segmentation. Different pixel losses
are weighted to give higher weight to the pixels at the bound-
ary of the segmentation target. The idea of weighted loss
enables the DeepLabv3+ model to provide a segmentation
map with a clear boundary when detecting concrete cracks
and bugholes, which makes it easier to distinguish between
each bughole and crack.
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FIGURE 12. Quintessential instances of incorrectly predicted results.

TABLE 6. Comparison results of the proposed DeepLabv3+, FCN and original DeepLabv3+.

F. RESULTS
To understand more intuitively that the trained DeepLabv3+
is to identify cracks and bugholes on a concrete surface,
the input and output images are shown in Table 4.

As shown in Table 4, different kinds of defects (only
crack, only bughole or crack + bughole) can be accurately
identified. No matter how complex the cracks and bugholes
were and howmany cracks and bugholes the image contained,
the modified DeepLabv3+ was effective, simple, and able to
generalize. Satisfactory accuracywas achieved. However, it is
worth noting that there were still cases of failure, as shown
in Fig. 12. We observed that the low resolution of the images
leads to minor errors in defect recognition in the cases of
certain images with narrow cracks and tiny bugholes. In addi-
tion, these minor errors may be caused by the small train-
ing database. Despite the minor errors, the results illustrate
the robust performance of the proposed method in detecting
cracks and bugholes in concrete surface images. Accordingly,
a larger database with higher resolution images of cracks and
bugholes on concrete surfaces under various conditions will
be established to improve the capacity and generalization of
the method in future research.

IV. COMPARATIVE STUDY
To compare the performance of the proposed method based
on DeepLabv3+ and a state-of-the-art semantic segmenta-
tion approach, the established database, including cracks and
bugholes on concrete surfaces, is used to train the origi-
nal DeepLabv3+ [36] and FCN [40] model. The selected
comparison algorithm should be well-known in the field of
semantic segmentation, and the segmentation effect should

be satisfactory. Moreover, the comparison algorithm should
have open source code and parameters set by the author.
When the semantic segmentation algorithm is applied in the
field of civil engineering, the FCN algorithm is widely used
and its effect is also satisfactory, so it is often used as a
comparison algorithm. In addition, our algorithm is improved
on the basis of DeepLabv3+, so it is necessary to compare
with the original DeepLabv3+ algorithm to prove our con-
tribution. The results of the comparative study are shown
in Table 5 and Table 6.

In TABLE 5, there are only cracks in the first original
image. The results predicted by the improved DeepLabv3+
are closer to the crack shape in the original image, and the
performance is better. There are six visible surface bugholes
in the second original image, and all six bugholes can be
identified in the prediction results obtained by improved
DeepLabv3+, but the other two methods can only identify
four obvious bugholes. One crack and three bugholes are
visible to the naked eye in the third original image. The
prediction results obtained by improved DeepLabv3+ can be
correctly identified, but one bughole is missed by the other
two methods. From the comparison of these three methods,
we concluded that the proposed DeepLabv3+ has better per-
formance in detecting concrete cracks and bugholes because
all of its accuracy evaluation metrics (AP, MAP, and MIoU)
are superior to those of the other two methods. Further-
more, this method can successfully detect tiny bugholes, and
its prediction areas are the closest to the true areas, while
the other two methods cannot detect tiny bugholes or thin
cracks. Compared with the other algorithms, which require
a fixed learning rate to train repeatedly for the best results,
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a crucial advantage of the proposed method is the fact that
the optimization algorithm used in the model can auto-adjust
the learning rate very simply.

V. CONCLUSION
Adefect detectionmethod based onDeepLabv3+ is proposed
to detect two concrete surface defects: cracks and bugholes.
A smartphone was used to collect 2000 original images (with
dimensions of 3024× 3024 pixels) from the surfaces of con-
crete buildings. The images were cropped to 256× 256 pixels
to reduce the computation of the training process. Owing
to the large difference between the number of databases of
bugholes and cracks, the preset data transformation rules
were adopted for the bughole data. After data augmentation,
the number of images used for training, validation and test-
ing were 12,608, 2,490 and 3,762, respectively. The image
annotation tool ‘‘labelme’’ was applied to annotate the labels
and the masks of the cracks and bugholes. The DeepLabv3+
architecture was modified to better adapt to the simultaneous
crack and bughole detection, which is described in detail
in Section II.B. A model-based transfer learning strategy is
applied to optimize and accelerate the learning efficiency of
the model. The biases and weights of the Xception part of
the model are initialized by the pretrained backbones. The
proposed method is able to auto-adjust the learning rate. The
results show an AP of 97.63% (crack) and 93.53% (bughole),
a MAP of 95.58% and an MIoU of 81.87%. The testing
images which were not used to train and validate were used
to test the robustness of the trained model. The performance
of the proposed method was also compared with the origi-
nal DeepLabv3+ and FCN-based methods. The comparative
study showed that the proposed method can provide excellent
defect detection results. It can detect tiny cracks and bugholes
at the same time, and the results are more detailed.

The proposed method effectively detects defects (cracks
and bugholes on concrete surfaces) and exhibits low level
of noise. A common drawback of almost all vision-based
methods (including approaches based on CNNs, FCNs and
IPTs) is that they are unable to detect the depth of the defects
as a consequence of the nature of flattened photographic
images.

In the future, more kinds of defect images across more
complex backgrounds will be collected to expand the
database, so as to improve the accuracy and robustness of
the proposed method. The application research can be pop-
ularized and applied in actual engineering in the field of
civil engineering. The improved algorithm in the follow-up
research can be used to develop the detection equipment and
applied it to practical engineering.
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