IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 16, 2021, accepted May 27, 2021, date of publication June 10, 2021, date of current version June 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3088236

Wood Product Tracking Using an Improved
AKAZE Method in Wood Traceability System

YONGKE SUN"'!, GUANBEN DU, YONG CAO 2, QIZHAO LIN"“2,
LIHUI ZHONG3, AND JIAN QIU3

!'Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
2College of Big Data and Intelligence Engineering, Southwest Forestry University, Kunming 650224, China
3College of Material Science and Engineering, Southwest Forestry University, Kunming 650224, China

Corresponding authors: Yong Cao (cn_caoyong @ 126.com), Guanben Du (gongben9 @hotmail.com), and Jian Qiu (qiujian@swfu.edu.cn)

This work was supported in part by the Program for Leading Talents of Science and Technology in Yunnan Province under

Grant 2017HAO013, in part by the National Natural Science Foundation of China under Grant 61462095, in part by the Major Project of
Science and Technology of Yunnan Province under Grant 202002AD080002 and Grant 2019ZE005, and in part by the Joint Agricultural
Project of Yunnan Provincial Department of Science and Technology under Grant 2018FG001-108.

ABSTRACT Tracking of the wood product is an important technology in the trade activity of rare plants.
Normally, the factories use Quick Response (QR) and Radio-Frequency Identification (RFID) to identify
the individual wood product, but these technologies are not safe enough because they can be easily falsified.
It can be seen that traditional methods are hard to catch the detail of the slim wood texture from the wood
product. In this study, a novel method is employed to resolve these problems using a biometric feature on
the surface of the real wood product to distinguish the individual wood product. AKAZE is used to extract
the key-point of wood texture. A sub-area detection technique along with a serialization method is then
developed to improve the rate of identification. The sub-area detection technique deals with picking out a
sub-region in which there are enough AKAZE points as small as possible. The serialization method is also
utilized to reduce the redundant process of feature extraction. The experimental results demonstrate that the
values of accuracy, recall, and F'1 reach 0.98, 0.96, and 0.96, respectively. The match time that uses serialized
function is reduced to 1/3 of which has no application in the original image. The validated results also reveal
that our proposed methodology improves the robustness of the wood product identification, and it can be
used in Wood Traceability System (WTS) with the blockchain to resolve the digital trust problem and the

fast distinction issues of the real wood product.

INDEX TERMS Wood identification, AKAZE, trust label, blockchain.

I. INTRODUCTION
Wood is an important natural resource and due to the high
demand for wood products, most rare plants suffer from
illegal logging. The endangered plants in Convention on
International Trade in Endangered Species (CITES) list [1]
have been prohibited from trading, which has led to the high
price of the rare woods. Forgers make wood products with
low price woods to falsify the rare products and sell at a high
price. The wood product identification is a necessary method
to certify whether the product is genuine or fake [2].

Wood Traceability System (WTS) is a technology used
to trace the product information. In relevant factories,
the information related to wood products is written and
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saved in the traceability system. Quick Response (QR)
and Radio-Frequency Identification (RFID) are employed
as labels stuck in the wood surface to identify the individ-
ual wood product. The customer gets the required infor-
mation which includes the wood species by scanning the
label [3], [4], and does not send it to the lab for identification.
It is convenient for customers to get the results quickly. How-
ever, this kind of label is easy to be falsified [3] by copying
or transforming onto the other, and it is not safe and secure at
all.

Deoxyribonucleic Acid (DNA) is a technology used to
identify the wood species and prevent falsifying of the wood
product [5]-[8], and it is a high-accuracy technology than the
others. However, acquiring the DNA sequence is costly and
time-consuming, and it is not suitable for the wood product
because it is hard to extract the DNA from the dried wood [9].
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Furthermore, the DNA technology cannot distinguish the
individual wood product made from the same tree.

On the other hand, image recognition technology is a
fast and cost-effective method that can be also employed to
identify the wood product. Taking the wood image using a
microscope or magnifying glass, and classifying the wood
species with computing models such as neural networks or
deep learning models are the two most discussed topics in this
field. In recent years, the methods based on the image have
succeeded in wood species recognition [10]-[14]. R.Schraml
and H.Hofbauer attempted to use the fingerprint and iris
recognition methods to distinguish the individual wood enti-
ties [15]. According to the performed experiments, they used
cross-sectional images of the log distinguished individual
wood entities with high accuracy around 93%. The findings
revealed that the wood texture is unique, and it is feasible to
identify the individual wood product using the wood texture.

Detecting and describing key-points are important func-
tions in the identification of images. The key-points are
those which have significantly different gray values from
their neighbors [16], [17]. Scale-Invariant Feature Trans-
form (SIFT) [18], Speeded Up Robust Features (SURF), and
Oriented FAST and rotated BRIEF (ORB) [19] are among
the three main image key-point extraction methods. SIFT
has good interference ability for noise, rotation and zoom
[20], [21], and it is often utilized to recognize the face [22],
animal [23], and object [24], [25]. SURF is a variant of SIFT
that has good performance of affine-transformation invari-
ant and fast speed [26], even can be used to trace objects
in real time [27]. ORB is another invariant and resistant-
to-noise method, which has the fastest speed of descriptor
extraction [28]. However, all these approaches are based on
the Gaussian blur methods that smooth the noise in the image.
In fact, most of the wood product surfaces have rich slim
textures that are difficultly detected by SIFT, SURF, and ORB
methods.

AKAZE is a nonlinear diffusion filtering method that
focuses on the texture, and not the color patches [21], [29],
which can detect the features of the slim textures. Fur-
thermore, since the wood structure is anisotropy [30], it is
regarded as the uniqueness of the wood product. Therefore,
it can be also utilized to distinguish the individual wood
product. In this study, we propose a novel method based on
the AKAZE algorithm to identify individual wood products.
A sub-area detection method and a serialization method are
also employed to improve the matching speed. The sub-area
detection method is to find a sub-region of the image which
has enough key-points, and the serialized method is to store
and restore the key-points from the structured data.

Blockchain is a method to resolve the security problem
of the digital data [31], [32]. It succeeded in the Bitcoin
system in 2009, and was rapidly used in the agricultural
supply chain due to the security and the transparency [33].
The wood blockchain that we are researching is similar to the
agricultural blockchain, and it is a data-trusted technology
that can be used to store the digital information about the
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wood products in the WTS [34]. It offers trusty information
for both protection organizations and consumers, and also
offers the identification and relevant information about the
wood product. Furthermore, it can increase the acceptance of
the customers [35], [36].

The workflow of our designed WTS is shown in Fig.1.
Two processes are involved in this system. The first process
is related to uploading, which includes acquiring the wood
product image and then using a key-point detection method
to extract the feature and crop a sub-region as the criterion
image. The second process is the identification, in which the
characterized feats in the traceability system and the customer
image are compared by calculating the similarity between
them.

In the upload process, three steps are executed sequentially
(see Fig.2). The first step seeks all key-points of the images,
the second step tries to pick a sub-region of the image as a
criterion image, and the third step serializes the features of the
sub-region into structured text data. The matching operation
compares the customer image and the serialized features
stored in the traceability system. In the traditional method,
the criterion images are stored in the traceability system.
It needs a key-point detection and descriptor calculation dur-
ing the matching process. In our proposed method, we store
the serialized feature instead of the image in the traceability
system, these features can be read directly, and the processing
of the key-points finding as well as descriptor calculation is
no longer needed. The improved process is represented by
Fig.3. Firstly, the AKAZE key-points are detected. Secondly,
the descriptors of them are calculated. Finally, all key-points
from the customer image and key-points are matched which
are un-serialized from the criterion image serialized data
stored in the traceability system.

The number of matched key-points is similar between the
criterion image and customer image. If the matched number
is larger than the threshold, the wood product is considered
as the one registered in the traceability system.

Il. PROBLEM FORMULA

Our proposed method contains two important processes
named serialized process and identification process. Define
I, € R* as an image, and the serialized process is represented
by formula (1).

string = f3(f2(fi(In))) (D

where the transform f; is AKAZE method, it extracts all
AKAZE points from the image [, the f> is a key-point
filter function that picks a subset of the AKAZE points,
and f3 is a serialization function that packs the picked
key-points into a data structure as the identifier of the wood
product.

When identifying the wood product, the image I, that is
obtained from a different camera is compared to the serial-
ized data. The identification process works as follows. First,
it calculates the AKAZE key-points of the image I,,, which is
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Ill. METHODS

Here, the AKAZE method is proposed to detect the
key-points of the image. The AKAZE method is a nonlinear
diffusion algorithm that focuses on the edges and keeps the
FIGURE 3. Matching process. Our method removes the traditional wood rays better than the Gaussian blur method. It employs
processes drew with dashed lines and increases the matching efficiency. the heat conduction equation defined as formula (8) to pro-
cess the image.

oL

represented by formula (2). 5= div(c(x, y,t) - VL) (8)
t
o /
Ky =hd) 2) where div is the respective divergence and V stands for the
Second, it restores the picked key-points from the serial- gradient operators. Conductivity function ¢ is defined by
ized data using formula (3). formula (9).
ko =f3_1(string) 3) cx,y,1) = g(|VLs(x,y, )|) 9
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where VL, is a Gaussian smooth function, and the func-
tion g contains two different types which are given by for-
mula (10) (11).

|VLy|?
g1 = exp(——75—) (10)
1
= — 11
82 |y P (I
k

where k is the contrast and the g, is the default diffusion
function used in the library of the OpenCV.

1) KEY POINT
AKAZE picks up the key-points using an O octaves and

S sub-levels pyramid. The corresponding scale o is shown
by formula (12).

oi(0, 5)=2°/5 0€l0,...,0—-1],5€[0,...,5—1] (12)

where i is the image index in the pyramid. For the purpose to
simulate the conduction equation, AKAZE maps the o to the
t which is displayed by formula (13).

t = =0, (13)

Assume the image is L, then the filtered image in the
pyramid is calculated by formula (14).

L = — (11 — 1) Y AL 'L (14)
=1

where A;(L") stands for the conductivity matrix of the L,

A Hessian matrix is then used to detect the interest points.
The image of different sizes needs to be normalized with
respect to scale [37] with formula (15). After finding the Hes-
sian matrix, the points with higher gray values than neighbors
are picked up as the key-points. Normally, the neighbors are
narrowed in a 3 x 3 size [38].

Lyessian = O'Z(LxxLyy - L)%y) (15)
2) DESCRIPTOR
The proposed AKAZE utilizes an invariant-rotation descrip-
tor to increase the matching robustness. The first step is
finding the dominant orientation by defining a circle whose
center is the key-point and its radius is 607, and then is divided
into 6 parts with 7 /3 degrees. The domination orientation
is the same as the orientation of which the sliding segment
has the longest derivative responses [39], [40]. The derivative
of the segments is the sum of the L, and the L,. In Fig.4,
the right-upper segment represents the dominant orientation
because it has the longest derivative. The dominant orienta-
tion is the direction of the first segment, and the angle is 6.

Actually, AKAZE uses the M-SURF descriptor that is
employed in the SURF method to describe the key-points.
A 24 x 24 square whose center is the key-point is rotated
to the dominant orientation with angle 6 which is applied to
calculate the features with neighbor pixels [37].
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FIGURE 4. Orientation. The first sliding segment represents the
orientation because it has the longest derivative responses.

overlap=2

FIGURE 5. Descriptor. Every sub-region uses 4 decimals to present and
the square has 16 sub-regions, so, each key point has 64 decimal data.

Fig.5 illustrates this process, first, divides the square into
4 x 4 sub-regions with 2 overlaps, and then calculates the fea-
tures d, for every sub-region. The feature d,, is represented by
formula (16). Since each sub-region has 4 features, a vector
of one key-point includes 64 feature data.

dy=() Lo, Y Ly, Y 1L, Y 1L (16)

where, L, and L, are the first-order derivatives of the
sub-region over different octaves.

A. SUB IMAGE

Since extraction of the key-points from a small sub-area is
faster than the original image, we design a new distance-based
technique to pick up the sub-area as minimum as possible,
which contains at least 500 key-points. Here, the threshold
of 500 came from the statistics of the relevant experiments.
The workflow of the criterion image selection is shown
in Fig.6, in which it collects all key-points of the whole
image. It calculates the center of the image and marks (x., y.),
defines an initial distance threshold »r = 48, measures all
the distances between the center point and every key-point,
and finally, collects those with distances shorter than the
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FIGURE 6. Workflow of the processing of the sub-image extraction.

threshold r. If the collected size is less than 500, the dis-
tance threshold r is increased and it recollects again. The
loop escapes when enough key-points are collected or the
threshold r is larger than the image size.

If there are enough key-points collected, a minimum rect-
angle that contains enough key-points will be then picked up.
This sub rectangle is the criterion image. If the threshold r is
out of the image and still has no enough key-points collected,
the process will return none, which means that this image is
not suitable for this method.

The algorithm 1 illustrates the process of the criterion
image calculation. A raw image and key-point list are needed.
The program calculates the distance between the center point
and every key-point. In order to collect enough key-points,
the variable 7 is limited between 48 pixels and the maximum
width and height of the image.

B. SERIALIZING

The selected key-points are defined by SK, the serialized
key-points sk, sk € SK are given by formula (17). Finally,
sk; has 2 data expressing the key-point position and 64 data
expressing the descriptor. The total length is 66 data.

, dyeal

The serialized feature of the sub-region is a vector given by
formula (18).

sk,' = [x, y, dvl» dvz, . (17)

img = [sky, sky, ... ..sk], kK =~ 500. (18)

C. MATCHING
The similarity is determined by the number of matched
points. The k-NN algorithm [41], [42] is employed to
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Algorithm 1 Getting the Sub-Image and the Key Points
Require: Image and key point list
Ensure: sub-image and key points

1: Define a minimum radius, =48 pixels

2: center=image center

3: Rect=[]

4: for r=48 to max(image.width/2, image.height/2) do

5 selected_keys=[]

6:  for /=0 to length(keyPoints) do
7: d= distance(center keyPoints[1])
8
9

if _d <= r then
: selected_keys.push(keyPoints[/])
10: end if

11:  end for

12:  if len(selected_keys)>=500 then

13: Rect=Rectangle(selected_keys)

14 break

15:  else

16: r = r + 12 /*increasing the pre-distance*/
17:  end if

18: end for

19: if Rect==[] then

20:  return None

21: else

22:  return image[Rect],selected_keys
23: end if

calculate the nearest neighbors. According to the principle of
the k-NN algorithm, every key-point has k matched points,
but some matched points are not similar. For this purpose,
filtering the good matched points, the parameter k = 2 is
adopted to get two Nearest key-points [43]. A key-point in
the first image is defined as Ky4,, and the first two nearest
key-points in the other image are Kp,, and Kp,,. The Hamming
distance [44] from Ky, to Kp,, is di, and the distance from
K4 to Kpy, 1s dp. Only the distance d; < d» x 0.6 the points
K4, and Kp,, is considered to be a good match.

The key-points come from the same position on the wood
surface to meet a project function. Random Sample Consen-
sus (RANSAC) is an iterative method to estimate the project
parameter [45]. In experiments, it is usually used to remove
the outlier key-points once again and keep those that adhere to
the RANSAC project function. A threshold N used to judge
two images are defined to be from the same wood product
image. The minimum of the N is 4 because the RANSAC
needs more than four matched points to estimate the project
function.

D. SIMILARITY

The similarity of the image a with serialized data set C
is defined by sim. The matche_points(a, cj), ¢; € C is the
number of matched points of image a and serialized feature
¢j. sim(a, c;) is defined by formula (19). It means that a is
compared with ¢; € C and returns the one with the largest

VOLUME 9, 2021



Y. Sun et al.: Wood Product Tracking Using an Improved AKAZE Method in WTS

IEEE Access

FIGURE 8. Wood surface images. Each row came from same furniture
surface.

matched point.

sim(a, ¢j) = max{matched_points(a, c1),
matched_points(a, c3),

ey

matched_points(a, c,)} (19)

IV. EXPERIMENTS

A. MATERIALS

The images are acquired from precious wooden furniture
in the HaoDu furniture company which produces real wood
furniture and is located in Yunnan Province, China. As Fig.7
shows, this furniture is a kind of Chinese-style furniture
which is valuable and often counterfeited with cheap materi-
als. All images are acquired by three workers using different
mobile cellphone cameras and three model cellphones used
in the experiment are Huawei Nova7, Huawei Honor 20, and
OnePlus 5T.

The same area is taken into account in different positions
and by different cameras to acquire more images, where
the distance is approximately 40 cm and the angle from
the vertical orientation less than 45 degrees. The original
image is represented by Fig.8, and the size is approximately
4608 x 3456 pixels which depends on the cellphone setting.
Totally, 720 images are collected.
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FIGURE 9. Experimental design.

B. EXPERIMENT DESIGN

We simulate the serializing and matching processes and eval-
uate the identification performance using accuracy, recall,
and F'1, where this experimental workflow is given in Fig.9.

1) EXTRACTING THE FEATURES

In the serializing process used within the uploading sense,
a raw image is detected to extract the key-points and seri-
alize the key-points into structured data. In the experiments,
the key-point is serialized using formula (17). where (x, y) is
the position of the key-point, and d,; represents the descriptor
of the key-point. The serialized feature contains 66 digital
data.

2) TESTING METHOD

At the matching process, we compare the image with the seri-
alized features stored in the traceability system and calculate
the matched points of them. As Fig.9 show, O is defined as
the image data set, and the serialized feature is defined as C
that is stored in the system. The matched result of the image
0i, 0; € O is R(0;) that is calculated by formula (20).

c¢j, sim(oj,cj)) = N

R(o;) =
(01) 0, other

(20)

where N stands for a threshold of confidence.

3) EVALUATION
In this sub-section, all original images are tested with differ-
ent thresholds of N. Three evaluation indexes are employed
to assert the performance: accuracy, recall, and F1 score.
The accuracy is a measurement that describes the abil-
ity of correct recognition ability, which is calculated using
formula (21).
TP + TN
accuracy = 21
TP + TN + FN + FP

where TP represents the number of true positive detection,
FP is the number of false-positive detection, FN shows the
number of false-negative detection, and FP is the number of
false positive detection.

Precision represented in formula (22) is the proportion of
predicted positives that are correct [46], it focuses on the
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TABLE 1. Statistical of the correct-matched number with threshold N = 4.

Methods max mean std Z-Score
AKAZE | 1783 | 131.0 | 167.0 | 5.08e-17
ORB 1865 27.0 59.0 -3.46e-17
SIFT 1198 30.0 43.0 -2.67e-17
SURF 514 25.0 32.0 -1.02e-17

closeness of the positive recognition, and the high precision
means the recognition results are more stable.

TP
TP + FP

The recall is a proportion of real positive samples
that are correctly predicted positive [47] and defined by
formula (23).

precision = (22)

TP
TP + FN

Here, F'1 is a harmonic mean of precision and recall
defined by formula(24), that is widely used in uneven class
distribution [48].

recall = (23)

Fl— 2 X precision x recall

precision + recall @4
where precision and recall calculate using formula (22)
and (23)

We also compare the AKAZE with SIFT, SURF, and
ORB [28] features extraction methods in the experiments.
These methods are used instead of the AKAZE method
to calculate the evaluation indexes again. One necessary
change is distance measure, the SIFT method employs
Euclidean distance [49] to find the neighbors, and the
other methods employ Hamming distance [50] to find the
neighbors.

V. RESULTS AND DISCUSSIONS
A. MATCHED POINT EVALUATION
The AKAZE method has the best comprehensive perfor-
mance for the matching because it has the highest Z-Score.
A Z-Score is a statistical measurement that describes a score’s
relationship to the mean of a group of scores, which is pre-
sented by formula (25).

X-X

TS

where X is the mean of the X, and § stands for the standard
deviation of the X.

A positive Z-Score indicates that the matched points
are above the mean, and a negative Z-Score represents
the matched points that are below the mean. A higher
Z-Score means a better-matched result. Our experiment
results are shown in Table 1 and clearly demonstrate that
the AKAZE method is the best one because of the highest
Z-Score.

The mean of matched points obtained by the AKAZE
method is significantly higher than the others, and the reason

(25)
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(d) SIFT,138 points

(c) SURF,57 points

FIGURE 10. Key-points of the wood surface. (a) 149 points were detected
by the AKAZE method,(b) 140 points were detected by the ORB
method,(c) 57 points were detected by the SURF method, and

(d) 138 points were detected by SIFT method.

probably is that AKAZE uses a nonlinear diffusion method
to blur the image while the other methods employ the Gaus-
sian mean method to do that. Fig.11 displays the contrast
between the nonlinear diffusion and the Gaussian, in which
the wood rays turn into fuzzy when the Gaussian blur method
is applied, but it remains clear when the nonlinear diffusion
method is implemented. This comparison reveals that the
nonlinear diffusion method is more suitable for the wood
texture image.

Fig.10 illustrates a key-point distribution of different meth-
ods, in which the key-points are mainly located in the wood
rays. The thin texture ignored in the Gaussian method is
detected in the AKAZE method. The AKAZE method dis-
covers the most key-points and particularly the key-points
located in the wood rays. Moreover, the ORB method detects
140 key-points, but the key-points scatter near the right ver-
tical wood ray. On the other hand, the SURF method only
discovers 57 key-points and most of them are located in
the wood ray. Finally, the SIFT method detects 138 key-
points, but these key-points do not align the wood rays more
dispersed than the other methods.

B. THRESHOLD

The F1 score is a harmonic measure of the classification
system. The higher F'1 expresses a better recognition perfor-
mance. We test all images and analyze the recognition results,
and the F'1 score of the different feature extraction methods
is shown in Table.2 where the N is the confidence threshold.
A significant tendency is that the F'1 rises with the increase
of the N, and the AKAZE method has always the highest
F1 score.
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FIGURE 11. A comparison between the Gaussian blur and AKAZE conduction. First row: blurred images with different Gaussian kernel sizes and
the kernel is the patch size used in the Gaussian. Second row: Nonlinear diffusion scale space and the k is a parameter of the conductivity
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FIGURE 13. F1, accuracy and recall under different thresholds N. The maximum of F1 sets N=37.

These data also represent that the threshold has less affec-
tion for the AKAZE method. With the increasing of the N,
the SIFT F'1, the SURF F1, and the ORB F'1 increase up to
0.289, 0.525, and 0.435, respectively. However, the AKAZE
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F1 increases only up to 0.0086. These data imply that the
key-points detected by the AKAZE method are more stable.
Due to the images acquired by different devices at differ-
ent positions, the high recognition rate also means that the
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Original image Test image

Sub image

Matched area Matched result

FIGURE 14. Recognition results. Each row comes from different furniture. The first and second columns are captured from the same furniture at
different positions, respectively, and the third and fourth columns are zoomed on the first and second columns, respectively. The last column is the
matched result, and the threshold N = 37.

TABLE 2. F1-Score of different methods under different thresholds.

N | AKAZE | SIFT | SURF | ORB
10 | 0.9595 0.348 | 0.095 | 0.163
13 09616 | 0.402 | 0.132 | 0.222
16 | 0.0.9618 | 0.446 | 0.207 | 0.271
19 | 09634 | 0.474 | 0.248 | 0.324
22 | 0.9655 0.498 | 0.304 | 0.365
25 0.9661 0.521 | 0.346 | 0.419
28 0.966 0.545 | 0.386 | 0.455
31 0.9672 | 0.563 | 0.414 | 0.478
34 | 0.9672 | 0.578 | 0.424 | 0.493
37 0.9684 0.59 | 0.473 | 0.523
40 0.968 0.599 | 0.502 | 0.538
43 0.968 0.606 | 0.504 | 0.56
46 | 09679 | 0.625 | 0.577 | 0.577
49 | 0.9681 0.637 | 0.62 | 0.598

AKAZE based method has better rotational invariance and
blur invariance.

Fig.12 shows the F'1, accuracy and the recall. We test these
three criterion indexes with different methods and thresholds.
The obtained results demonstrate that the AKAZE based
method has the best performance. The SIFT, ORB, and SURF
based methods have different performances in terms of accu-
racy and recall. For example, the SURF has high accuracy
when using threshold N > 40, while it has the lowest recall.
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Although the changing of the AKAZE based method is
small, it still has a tendency. The accuracy increases first,
and then decreases according to Fig.13, and finally, the recall
rate increases. The threshold N = 37 is an optimal value
of the identification system. When this threshold N = 37 is
considered, the F'1 score, accuracy, and recall take the highest
value.

Fig.14 displays the matched result when using the thresh-
old =37. The first column is the original image, and the green
sub-area is the criterion area that is zoomed in and shown in
the third column. The second column is the test image, and
the red sub-area is zoomed in from the fourth column. The test
images in the second column are acquired from the same fur-
niture at different positions. The last column is the matched
result, which states that the method based on the AKAZE
algorithm has rotation invariance and robustness.

C. IDENTIFICATION ABILITY

One AKAZE descriptor is a 64-dimensional vector, and each
dimension has 8 bits. The total length of one descriptor is
64 x8 bits = 512 bits, of which combination is 23!2. In our
experiment, the confidence threshold N = 37 means that
there are 37 key-points as small as possible demonstrating
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FIGURE 15. Comparison of the matching time between the non-serialized
and the serialized method. The y-axis is the mean of the matching time
per image.

the correct identification. The identification space is given by
formula(26).

(2512)1\/:37 (26)

AKAZE uses Hamming distance to measure the similarity.
According to the statistics of the correct matched points,
the mean distance is 50, and the standard deviation is 20.
The small distance implies that the AKAZE based method
has better identification space, and the big distance indi-
cates that the AKAZE based method has a small identi-
fication space. The minimum identification space €2, is
calculated using a big distance 70, which is represented by
formula(27).

Quin = 2712770V @7

The identification space is a theoretical basis for wood
product identification in traceability. In theory, the €2, is
a huge number, and it reveals that this method has enough
ability to identify every woodblock.

D. IDENTIFICATION SPEED

The advantage of the traceability system is data security, but
the transmission speed is a bottleneck. The serializing process
reduces the data size significantly. For example, raw image
size is usually 4608 x 3456 pixels, and the serialized feature
approximate has 500 x 66 data. The data size shrinks to
0.002 times the raw image. The small data size means less
time is needed to transmit the data.

Fig. 15 displays the difference of the matching time
between the non-serialized and serialized methods, and
clearly shows that the comparison time is reduced by the
serialized method. The comparison time of matching for once
is approximately deduced to 1/3 in the AKAZE method. For
SIFT, ORB, and the SURF methods, the serialized method
also reduces the matching time significantly.

The serialized method increases the matching speed. For
the image feature matching system, it means that the method
can afford the identification result in a shorter time than the
non-serialized one. In WTS, it can be utilized to improve
identification efficiency.
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VI. CONCLUSION

Wood product identification is an important technology in
WTS. Traditional image-based methods employ the Gaussian
blur method to get the key features of the image, but the
texture of the wood product often is slim, which is hard to
be detected using the transitional feature detection method.
In this study, we utilized a nonlinear method AKAZE to
detect the texture feature. This method is based on the heat
conduction theory, which could provide better performance
to detect the features of the textures. A sub-area of the image
method and a serialized method were also used to speed up
the matching time.

The wood texture is an innate structure that has anisotropy.
The experiments demonstrated that the AKAZE based
method has the ability to extract the unique texture feature
of the wood product. This feature can be used to distinguish
the individual product. According to the experimental data,
it was revealed that this method yields better accuracy and
robustness than SIFT, ORB, and SURF methods, such that
the F1, accuracy and recall of the AKAZE reached 0.96,
0.98, and 0.96, respectively. We proposed a new sub-image
filter and serialization methods that were utilized to speed up
the matching time of the identification. The findings clearly
showed that these two methods can reduce the matching time
up to 1/3 of original image matching.

All in all, this method uses the innate biometric as the
identifier with no attached labels such as QR code or RFID,
and it is unique and secure. It is a feasible way to use this
improved method to identify the individual wood product.
This study also can be taken into account to distinguish other
real things which contain unique texture on the surface.
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