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ABSTRACT A novel method for detection of important scenes in baseball videos based on correlation
maximization between heterogeneous modalities via bidirectional time lag aware deep multiset canonical
correlation analysis (BiTl-dMCCA) is presented in this paper. The proposed method enables detection of
important scenes by collaboratively using baseball videos and their corresponding tweets. The technical
contributions of this paper are twofold. First, since there are time lags between not only ‘‘tweets and
corresponding multiple previous events’’ but also ‘‘events and corresponding multiple following posted
tweets’’, the proposed method considers these bidirectional time lags. Specifically, the representation of
such bidirectional time lags into the derivation of their covariance matrices is newly introduced. Second,
the proposed method adopts textual, visual and audio features calculated from tweets and videos as
multi-modal time series features. Important scenes are detected as abnormal scenes via anomaly detection
based on a generative adversarial network using multi-modal features projected by BiTl-dMCCA. The
proposed method does not need any training data with annotation. Experimental results obtained by applying
the proposed method to actual baseball matches show the effectiveness of the proposed method.

INDEX TERMS Unsupervised important scene detection, time lag aware canonical correlation
maximization, anomaly detection, generative adversarial network.

I. INTRODUCTION
Many video distribution services have recently become pop-
ular due to the development of various network technologies
and devices. The number of viewable videos has therefore
been increasing. There has been an increased interest in sports
during the past ten years or so, and sports video distribution
services such as Rakuten Sports,1 DAZN2 andMLB.tv3 have
therefore become very popular. Since there are many sports
matches held throughout the year, it is difficult for viewers

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .
1https://sports.rakuten.com/
2https://www.dazn.com/
3https://www.mlb.com/

to watch all matches. Unlike basketball or soccer matches,
which last for about 80 minutes, a baseball match lasts for
about 180 minutes. Therefore, techniques for viewers to eas-
ily understand the match context are needed [1].

Generation of highlights would enable viewers to have
an easy understanding of the match context. In conventional
methods [2], [3], baseball video summarization has been
realized on the basis of both metadata for large sports video
archives and deep learning techniques for learning the rela-
tionship between a highlight and non-highlight video seg-
ments. Highlights are generated from many important scenes
such as scenes of scoring, good play and appearance of pop-
ular players. Therefore, many methods for important scene
detection based on video and Twitter analyses have been
proposed [4]–[10]. There are various video analysis-based
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methods for detection of important scenes in which a hidden
Markov model [4], [5] or a maximum entropy model [6] is
applied to cheers of the audience, switching of cameras and
player movements. On the other hand, various methods for
detection of important scenes that can consider the opin-
ions of viewers have been realized by using Twitter4 [7]–[9].
Twitter is one of the microblogging services, and users
of the service post and receive short text messages called
tweets [11]. Tweets have been used to report everything
from daily life stories to the latest local and global news
and events. Conventional methods [12], [13] detect news and
events based on multiassignment clustering, n-grams cooc-
currence and topic ranking. Since tweets are often posted in
real time by users while they are viewing baseball matches,
posted tweets may express the content of the match and
the opinions of viewers. Thus, posted tweets express some
information related to the important scenes of the correspond-
ing match. On the other hand, news is summarized and its
information is limited. Therefore, it is difficult for news to
fully reflect the opinions of viewers. We therefore use Twitter
instead of news to detect important scenes.

Since existing methods can extract semantic information
from tweets, Twitter analysis has an advantage for extraction
of opinions or feelings of viewers. On the other hand, video
analysis is better than Twitter analysis for representation of
player movements and cheers of the audiences. Therefore,
since it is expected that a method combining Twitter anal-
ysis and video analysis would enable high-quality impor-
tant scene detection, a method based on tweets and videos
has been proposed [10]. This method combines burst detec-
tion of tweets and video content analysis using score-box
and audio features. Multi-modal fusion methods were then
proposed [14], [15]. A multi-modal aspect-aware latent fac-
tor model [14] realizes explainable recommendation by lever-
aging user reviews and item images. In addition, Flexible
Multimodal Hashing [15] can adaptively generate hash codes
according to specific query types, and it can deal with the
modality-missing problem in multimedia retrieval. For the
use ofmulti-modal information such as information on videos
and tweets, we have to try to solve the following problem.
Since there is a temporal difference between the timing of
postings on Twitter and the occurrence of the corresponding
previous events, the conventional method [10] focuses on the
time lag between the timing of posts on Twitter and the occur-
rence of the corresponding previous event. However, an event
that occurs affects multiple following posted tweets. There-
fore, not only time lags between ‘‘tweets and corresponding
multiple previous events’’ but also time lags between ‘‘events
and correspondingmultiple following posted tweets’’ must be
considered. In other words, when events occur and tweets are
posted, it is necessary to consider not only past time lags but
also future time lags. A method that considers a bidirectional
time series such as a Bidirectional Long Short-TermMemory
(Bi-LSTM) [16] can represent the features of the time series
data with high accuracy. Therefore, it is expected that highly

accurate detection of important scenes can be achieved by a
method that considers these bidirectional time lags.

In this paper, we propose a method for detection of
important scenes in baseball videos that considers bidirec-
tional time lags. Specifically, the proposed method derives
a novel feature embedding approach considering time lags
between not only ‘‘tweets and corresponding multiple pre-
vious events’’ but also ‘‘events and corresponding multi-
ple following posted tweets’’. The proposed method newly
derives bidirectional time lag aware deep multiset canonical
correlation analysis (BiTl-dMCCA), which is an extended
version of dMCCA [17], to consider bidirectional time lags
depending on events occurring and posted tweets. dMCCA
and BiTl-dMCCA learn non-linear transformations from dif-
ferent modalities to a shared subspace so that the represen-
tations maximize the ratio of between- and within-modality
covariance of the observations. While dMCCA cannot learn
non-linear transformations considering the time lags between
modalities, BiTl-dMCCA can learn non-linear transforma-
tions considering the time lag. Bi-LSTM, which is an
extended version of LSTM, considers bidirectionaly by using
an LSTM network in which past data are recursed into
the future and an LSTM network in which future data are
recursed into the past. On the other hand, BiTl-dMCCA con-
siders the bidirectionaly of time lags. Thus, it is possible to
calculate the features considering bidirectionality with both
Bi-LSTM and BiTl-dMCCA. However, only BiTl-dMCCA
can associate the correlation of features considering bidirec-
tionality. This is the difference between Bi-LSTM and BiTl-
dMCCA. The proposed method extracts textual, visual and
audio features from tweets and baseball videos. By intro-
ducing consideration of the bidirectional time lags into the
derivation of covariance matrices of BiTl-dMCCA, it can
correctly consider their relationships. This is the biggest
novelty of this paper. Moreover, important scenes of base-
ball matches have more interest and excitement than other
scenes. By focusing on the above characteristics, the pro-
posed method detects important scenes as abnormal scenes
via anomaly detection based on a generative adversarial net-
work (GAN) [18] using multi-modal features projected by
BiTl-dMCCA. It should be noted that both feature extrac-
tion via BiTl-dMCCA and the GAN-based anomaly detec-
tion model can be performed in a completely unsupervised
fashion. The method [19] that realizes video summariza-
tion by extracting the most characteristic scenes based on
cross-correlation optimization excludes similar scenes and
extracts meaningful scenes. When this method is applied to
baseball videos, it is possible to detect important scenes to
some extent, but there is a possibility of over-detecting nor-
mal scenes such as scenes showing audiences and benches.
Furthermore, other important scenes that are similar to the
detected important scenes cannot be detected. Therefore,
important scenes that are more exciting and interesting than
other scenes are treated as abnormal scenes, and we real-
ize detection of important scenes by applying the anomaly
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FIGURE 1. Overview of the proposed method. The proposed method has four phases. Textual, visual and audio features are extracted as
multi-modal features as described in Section II-A. In order to consider the bidirectional temporal difference between textual features and the other
features, the proposed method newly performs bidirectional time lag aware canonical correlation maximization as described in Section II-B.
Furthermore, by using the obtained features, a GAN-based model for detection of important scenes is constructed as described in Section II-C.
Finally, we perform important scene detection as described in Section II-D.

detection method. This is the second contribution of this
paper. This paper is an extended version of [20].

The contributions of this paper are summarized as follows.
BiTl-dMCCA enables the transformation of multi-modal
time series features to effective new latent features with
consideration of their bidirectional time lags. Furthermore,
by inputting the calculated features in the novel embedding
space into the anomaly detection model, we can realize unsu-
pervised detection of important scenes in baseball videos.
This paper is an extended version of dMCCA [17]. Specif-
ically, the proposed method introduces the consideration of
bidirectional time lags into the derivation of covariancematri-
ces of dMCCA. By non-linear transformation based on BiTl-
dMCCA, the proposed method realizes flexible embedding
for heterogeneous features with complex relationships.

II. DETECTION OF IMPORTANT SCENES VIA BiTl-dMCCA
In this section, we explain the novel method for detec-
tion of important scenes in baseball videos based on

BiTl-dMCCA. FIGURE 1 shows an overview of the proposed
method. The proposedmethod detects important scenes using
tweets posted by viewers and baseball videos. Specifically,
the proposed method extracts textual features from tweets
using a language model. Visual and audio features are
extracted from baseball videos using a convolutional neural
network (CNN) model (Section II-A). Next, the extracted
features are transformed into features maximizing their cor-
relation with consideration of bidirectional time lags based
on BiTl-dMCCA (Section II-B). Moreover, the proposed
method constructs a GAN-based anomaly detection model
for important scene detection from the transformed fea-
tures (Section II-C). Details of the detection are explained in
Section II-D.

A. MULTI-MODAL FEATURE EXTRACTION
In this subsection, we show the multi-modal feature extrac-
tion for each modality. When an n-th baseball video (n =
1, 2, . . . ,N ; N being the number of training videos) is
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given, the proposed method extracts multi-modal features
xmn,i(i = 1, 2, . . . , In; In being the number of the tweets for
the n-th video). Note that m ∈ {t, v, a} means the modal-
ity. t, v and a mean textual, visual and audio modalities,
respectively.

1) TEXTUAL FEATURES
Tweets posted by viewers watching baseball matches are
important elements for analysis of the content of the match
and the opinions of viewers. Therefore, the proposed method
extracts textual features from these tweets. Textual features
xtn,i are extracted from the main texts of tweets posted by
viewers watching baseball matches based on Tweet2Vec [21],
which is a representative language model. In the proposed
method, the Tweet2Vec model pre-trained by using tweets
related to professional baseball is used. Its scheme is shown in
Section III-A. Tweet2Vec is a type of bidirectional recursive
neural network and is an extended version of LSTM [22]. By
using Tweet2Vec, textual features that are robust to abbrevi-
ations, typographical errors and slang unique to Twitter can
be extracted.

2) VISUAL FEATURES
Since visual sequences in baseball videos are important ele-
ments to understand scene situations, visual features should
be extracted from visual sequences. The proposed method
extracts visual features from shots including frames of base-
ball videos when tweets are posted by inputting these shots
into a 3D ResNet model [23]. Note that 3D ResNet is
pre-trained on the Kinetics dataset [24]. The Kinetics dataset
is a large-scale dataset covering a diverse range of human
actions. Then visual features xvn,i,j (j = 1, 2, . . . , Jn,i; Jn,i
being the number of the divided frames within the i-th shot
of the n-th match) are extracted from the global average
pooling layer of 3D ResNet. The following visual features
are obtained to express shots: xvn,i = (1/Jn,i)

∑Jn,i
j=1 x

v
n,i,j.

3) AUDIO FEATURES
Audio features should be extracted from audio sequences in
baseball videos. Audio features are extracted from a spectro-
gram of each shot based on the pre-trained CNN model. It is
known that the use of spectrogram-based features outputted
from the pre-trained CNN model is effective for representing
audio data [25], [26]. It is not common to extract audio
features using VGG16 trained by using ImageNet. However,
since the effectiveness of the audio feature extraction using a
CNN model trained by using ImageNet has been reported in
the method for detection of important scenes of other sports
videos [27], the proposed method experimentally adopts
VGG16 trained by using ImageNet. Thus, it is expected to
be effective for our tasks. The proposed method calculates
audio features xan,i of the i-th shot from the output of the
final pooling layer of VGG16 [28]. Note that the proposed
method adopts VGG16 pre-trained by using the ImageNet
dataset [29].

B. BIDIRECTIONAL TIME LAG AWARE DEEP MULTISET
CANONICAL CORRELATION ANALYSIS
This subsection shows the new derivation of BiTl-dMCCA.
First, the proposed method applies principal component anal-
ysis (PCA) [30] to xtn,i, x

v
n,i and xan,i to avoid overfitting

in BiTl-dMCCA. PCA is applied to avoid overfitting in
BiTl-dMCCA and to align dimensions of the features of
each modality. Note that BiTl-dMCCA is an extended ver-
sion of dMCCA, which is a method assuming that features
with the same dimensions of each modality are inputted.
Then the proposed method respectively obtains ptn,i, p

v
n,i

and pan,i, which are dp-dimensional vectors, and their fea-
ture matrices Pmn = [pmn,1, . . . , p

m
n,i, . . . , p

m
n,In ] ∈ Rdp×In .

Thus, by transforming the input features Pmn based on a
multi-layered neural network, the proposed method obtains
Ymn = [ymn,1, . . . , y

m
n,i, . . . , y

m
n,In ] ∈ Rdy×In from the last layer

of the neural network.
Tweets posted by viewers are influenced by correspond-

ing multiple previous events. Moreover, an event influences
corresponding multiple following posted tweets. In order to
obtain the canonical correlation between multi-modal fea-
tures with consideration of such bidirectional time lags,
BiTl-dMCCA calculates the covariance matrices with con-
sideration of the bidirectional time lags. Since the influence
of events on tweets tends to be gradually weakened with
increase in their time intervals, we should consider such con-
tinuous influence that occurs due to the bidirectional time lag.
Therefore, as shown in FIGURE 2, BiTl-dMCCA assumes
that posted tweets are affected by present to past events, and
their influence is determined on the basis of the Poisson dis-
tribution defined for time lags. Furthermore, BiTl-dMCCA
assumes that events occurring also affect present to future
tweets, and their influence is determined on the basis of the
Poisson distribution defined for time lags. Since the Poisson

FIGURE 2. Relationships between ‘‘target tweet and corresponding
multiple previous events’’ and ‘‘target event and corresponding multiple
following tweets’’. The proposed method associates the tweet with events
from the present to past as shown in the blue rectangles. Furthermore,
the proposed method associates the event with tweets from the present
to future as shown in the red rectangles. Then they are weighted
according to the degree of influence defined by the Poisson distribution.

84974 VOLUME 9, 2021



K. Hirasawa et al.: Detection of Important Scenes in Baseball Videos

distribution expresses the number of events occurring in a
fixed interval of time, we can regard it as the degree of
influence from tweets and baseball events.

In order to calculate Ymn considering the influence
defined by these bidirectional time lags with optimization
of parameters of the multi-layered neural network based on
BiTl-dMCCA, we maximize the average inter-set correlation
(ISC) [31] defined as

ρ =
1
dy

dy∑
dh=1

ρdh , (1)

where

ρdh =
1

M − 1

ψ>dhRBψdh

ψ>dhRWψdh

. (2)

Note that ψdh ∈ Rdy (dh = 1, 2, . . . , dy) is the optimal
projection common to all modalities, and M (= 3) is the
number of modalities. Then RW and RB are the within-set
covariance matrix and the between-set covariance matrix,
respectively, with consideration of the bidirectional time lags
defined as

RW =
N∑
n=1

∑
m∈{t,v,a}

Cm,m
n , (3)

RB =
N∑
n=1

∑
m1∈{t,v,a}

∑
m2∈{t,v,a},m2 6=m1

C
m1,m2
n . (4)

The same scaling value (In − 1)−1M−1 is omitted. Equa-
tion (3) represents the covariance matrix within each of the
textual, visual and audio modalities. For simplicity of the cal-
culation of within-set covariance, different types of features
are differentiated in Eq. (3). The details of the covariance
matrices are defined as follows:

Cm,m
n = Ŷmn,0Ŷ

m>
n,0 + Ỹ

m
n,0Ỹ

m>
n,0 , (5)

C
m1,m2
n =



∑L−1
l=0

e−λλl
l!

(
Ŷm1
n,0Ŷ

m2>
n,l + Ỹ

m1
n,l Ỹ

m2>
n,0

)∑L−1
l=0

e−λλl
l!

if (m1 ∈ {t},m2 ∈ {v,a})∑L−1
l=0

e−λλl
l!

(
Ŷm1
n,l Ŷ

m2>
n,0 + Ỹ

m1
n,0Ỹ

m2>
n,l

)∑L−1
l=0

e−λλl
l!

if (m1 ∈ {v,a},m2 ∈ {t})

Ŷmn,0Ŷ
m>
n,0 + Ỹ

m
n,0Ỹ

m>
n,0 (otherwise),

(6)

where L determines how many previous events affect the
posted tweet and how many following tweets are affected
by the occurring event. Furthermore, λ is a parameter of the
Poisson distribution and controls the peak of the distribution.
Note that λ corresponds to themean and variance of the distri-
bution. Feature matrices Ŷmn,l = [ymn,L−l, . . . , y

m
n,In−L−l] (l =

0, . . . ,L − 1) and Ỹmn,l = [ymn,L+l, . . . , y
m
n,In−L+l] (l =

0, . . . ,L − 1) are mean-normalized.

BiTl-dMCCA maximizes the average ISC by solving the
following generalized eigenvalue problem:

RBψdh = ρdhRWψdh . (7)

By applying the Lagrange multiplier method to the maxi-
mization problem of Eq. (1), we obtain the general eigenvalue
problem of Eq. (7) [32], [33]. BiTl-dMCCA is an extended
version of dMCCA that solves the problem. The partial
derivation of the eigenvalue ρdh with respect to Ymn can be
written as follows [34]:

∂ρdh

∂Ymn
= ψ>dh (

∂RB
∂Ymn

− ρdh
∂RW
∂Ymn

)ψdh . (8)

Gradients of RW and RB are derived by referring to [35].
Consequently, the proposed method obtains an effective fea-
ture matrix Ymn considering the bidirectional time lags.
The main novelty of this paper is the introduction of bidi-

rectional time lags into the derivation of covariance matrices
of dMCCA [17]. By non-linear transformation based on BiTl-
dMCCA, the proposed method realizes flexible embedding
for heterogeneous features with complex relationships. Since
general canonical correlation maximization approaches often
use the simple between-set covariance matrix, the bidirec-
tional temporal difference between different modalities can-
not be considered. On the other hand, BiTl-dMCCA assumes
that textual features are related to visual and audio fea-
tures before the tweets are posted. Also, it is assumed that
visual and audio features are related to textual features after
events have occurred. The covariance matrices in Eq. (6)
reflect these characteristics. This is the main contribution
for improving the embedding performance of heterogeneous
features in the proposed method.

C. CONSTRUCTION OF A GAN-BASED DETECTION MODEL
Important scenes in baseball matches have more excitement
and interest than those in other scenes. By focusing on these
characteristics, we introduce a new approach for detecting
important scenes as abnormal scenes. The proposed method,
which adopts an extended version of themultivariate anomaly
detection strategy with a GAN (MAD-GAN) [36], detects
important scenes based on an anomaly score that indicates
the degree of abnormality.

In order to construct the MAD-GAN, we have to prepare a
set of normal data not including important scenes. However,
the training data obtained by the procedures described in
the previous subsection may include some important scenes.
For realizing an unsupervised approach, we obtain training
data by the method shown in FIGURE 3. The details of the
method are as follows. First, features in the embedding space
are transformed into data considering the multi-modal time
series data. Given Ymn = [ymn,1, . . . , y

m
n,i, . . . , y

m
n,In ] obtained

by BiTl-dMCCA, we perform clustering of ymn,i and assign
them toC clusters using the k-means algorithm [37]. Then the
proposed method calculates a Bag-of-Feature (BoF)-based
feature vector un,t , for which the elements are the numbers of
vectors assigned to each cluster, for the n-th baseball match at
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FIGURE 3. Method for obtaining normal training data without outliers. First, we perform clustering of the multi-modal features obtained by
BiTl-dMCCA. Next, the proposed method calculates the BoF-based features for N matches of each cluster. Then the normal training data
Umed are obtained by calculating the median of the elements of the BoF-based features. Finally, in order to realize efficient training of the
important scene detection model, we divide the normal training data Umed into sub-sequences.

time t (= 1, 2, . . . ,T ;T being the number ofmatch time divi-
sions). Then we define Un = [un,1, . . . ,un,t , . . . ,un,T ] ∈
RC×T . Note that the number of match time divisions T is
normalized to be the same size in all matches. Next, our
method calculates the median of the corresponding elements
inU1,U2, . . . ,UN to obtain the normal training dataUmed

=

[umed
1 ,umed

2 , . . . ,umed
T ] ∈ RC×T . Note that we normalize

Umed so that the sum of the elements belonging to each
cluster c becomes 1. In our method, since we regard important
scenes as outliers, the synthesized training data Umed includ-
ing only normal data can be obtained by removing outliers
by adopting the median. This scheme is the key procedure of
the second contribution explained below.

Next, in order to handle the multi-modal time series
data, the proposed method constructs a generator (G) and
a discriminator (D) by two LSTMs according to [36].
As with the training of the general GAN model, fake fea-
tures are generated from a random latent space by G and
the generated features are inputted into D. On the other
hand, D tries to distinguish the generated fake features
and the original training data. In order to realize efficient
training of the important scene detection model, the nor-
mal training data Umed are divided into sub-sequences.
Specifically, the proposed method utilizes a step size S
and a window size W to divide the normal training
data Umed into a set of sub-sequences and calculates the
sub-sequence Ûq = [ûq,1, . . . , ûq,k , . . . ûq,W ] ∈ RC×W (q =
1, 2, . . . ,Q; k = 1, 2, . . . ,W ), where Q = T−W

S is the
number of sub-sequences. Then a set of sub-sequences Û =
[Û1, Û2, . . . , ÛQ] ∈ RQ×C×W is obtained from the calcu-
lated sub-sequences. Furthermore, Z = [Z1,Z2, . . . ,ZQ] ∈
RQ×C×W is a set of sub-sequences taken from a random
space. By respectively inputting Û and Z into the important
scene detection model, G and D are trained by solving the
following two-player minimax problem:

min
G

max
D

V (G,D) = EÛ∼pdata
[
logD(Û)

]
+EZ∼pfake

[
log (1− D (G(Z)))

]
, (9)

where Û is the variable following the prior distribution pdata
of real data Û . Similarly, Z is the variable following the latent
distribution pfake of fake data Z . Consequently, the trained
models Ĝ and D̂ are obtained by performing sufficient rounds
of iterations.

The second contribution of our method is the construction
of an unsupervised important scene detection model based on
an anomaly detection scheme. Our anomaly detection model
requires normal data without outliers. However, we real-
ize the model construction without provision of the label
(normal/outlier) by calculating the median of the BoF-based
features included in all data. Thus, important scenes can be
detected in a completely unsupervised fashion, and its details
are shown in the following subsection.

D. IMPORTANT SCENE DETECTION
This subsection shows the detection of important scenes as
a test phase. The proposed method extracts features pti, p

v
i

and pai from a test baseball match to obtain Pm. Then Ym =
[ym1 , . . . , y

m
i , . . . , y

m
I ] is obtained from the last layer of the

neural network of BiTl-dMCCA. Note that I is the number of
tweets of the test baseball video. Next, the proposed method
assigns ymi to C clusters in the same manner as ymn,i. Then
the test data sequence U test

= [utest1 , . . . ,utestt , . . . ,utestT ] ∈
RC×T is obtained. Note that the length of U test is the same
as U , and we normalize U test in the same manner as U .
U test is divided into a set of sub-sequences to calculate the
anomaly score, and we calculate the sub-sequence Û test

q =

[ûtestq,1, . . . û
test
q,k , . . . û

test
q,W ] ∈ RC×W .

Ĝ and D̂ are utilized to calculate the anomaly score. Note
that Ĝ can represent a model based on distributions from the
normal data, and D̂ can distinguish anomaly data and normal
data. Thus, by using D̂ and the residuals between Ĝ and the
test data, the anomaly score at time t is defined as follows:

ASt =
1
Ot

∑
q,k∈{q×S+k=t}

{
α
∣∣ûtestq,k − Ĝ(zq,k )

∣∣
+ (1− α)D̂(ûtestq,k )

}
, (10)

84976 VOLUME 9, 2021



K. Hirasawa et al.: Detection of Important Scenes in Baseball Videos

where α is a parameter, andOt is the number of combinations
of q and k that satisfy q× S+ k = t . Moreover, the proposed
method finds the optimal sample zq,w representing the test
data from the latent space by referring to [36]. Note that
Ĝ(zq,w) outputs data similar to the normal data generated from
the latent space. Therefore, if ûtestq,k becomes more abnormal,
|ûtestq,k − Ĝ(zq,k )| becomes a larger value. Moreover, if ûtestq,w
is more abnormal, D̂(ûtestq,w) outputs a larger value. When
E(ASt , 1) > τ , the proposed method determines the scene at
time t as an important scene. Note that τ is a predetermined
threshold value, and E(·, ·) is the cross entropy error.

III. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTING
(Evaluation dataset) We carried out an experiment to ver-
ify the effectiveness of the proposed method. We used
28 baseball videos (30 fps) and their corresponding tweets.
We collected videos that were broadcasted from June 13th
to September 27th in 2019 by Pacific League TV5 and we
collected tweets by using the query ‘‘#lovefighters’’, which is
an official hashtag of the professional baseball team.We used
23 randomly selected matches as training data and the other
five matches as test data. In the field of computer vision,
it is common to use public datasets. However, private datasets
collected by authors are generally used in experiments using
tweets and videos [10]. Therefore, we cannot verify the
time lags, our biggest novelty, by using public datasets.
We therefore need to use a private dataset. Since previous
works [4]–[6] used 24, 6 and 10 matches for experiments,
the number of baseball matches used in our experiments
is sufficient for verifying the performance of our method.
For training Tweet2Vec, 27 hashtags related to professional
baseball teams were used as queries.

(Ablation studies) For confirming the validity of the pro-
posed method, we used the following comparative methods
(Comps. 1-15).

TABLE 1. Features used in Comps. 1-6.

Comps. 1-3: These are methods using a unimodal feature
shown in TABLE 1. Since these methods use a unimodal
feature, an embedding scheme is not used. These methods
detect important scenes based on the same detection model
as that used in the proposed method. By using Comps.
1-3 in the experiment, we could evaluate the effectiveness of
introducing multi-modal features.

Comps. 4-6: These aremethods using two types of features
shown in TABLE 1. These methods use CCA [38], which is
the simplest embedding scheme. Comps. 4 and 5 consider
time lags. Comp. 6 is a method using visual and audio fea-
tures. Since both visual and audio features are extracted from

5https://tv.pacificleague.jp/ptv/pc/

the videos, there is no time lag. Therefore, Comp.6 does not
need to consider time lags. These methods detect important
scenes based on the same detection model as that used in the
proposedmethod. Comps. 4-6were used to evaluate the effec-
tiveness of introducing multi-modal features by comparing
with Comps. 1-3.

Comp. 7: This is a method that simply integrates detec-
tion models constructed for each modality. Specifically, this
method determines important scenes by majority voting of
detection results using Comps. 1-3. We could evaluate the
effectiveness of introducing a feature embedding scheme by
using Comp. 7.

Comp. 8: This is a method based on [10]. This approach
considers time lags between the timing of posts on Twitter and
the occurrence of only one corresponding event. By compar-
ing the proposed method and Comp. 8, we could determine
whether consideration of tweets and multiple corresponding
events is effective.

Comp. 9: This is a method using dMCCA [17] that does
not consider time lags. This method detects important scenes
based on the same detection model as that used in the pro-
posed method. We could evaluate the consideration of time
lags by using Comp. 10.

Comp. 10: This is a method considering only time lags
between the tweets and their corresponding multiple previous
events. This method detects important scenes based on the
same detection model as that used in the proposed method.
By comparing the proposed method and Comp. 11, we could
determine whether consideration of bidirectional time lags is
effective.

Comp. 11: This is a method considering only time lags
between the events and their corresponding multiple fol-
lowing tweets. This method detects important scenes based
on the same detection model as that used in the proposed
method. As with Comp. 11, by using Comp. 12, we could also
determine whether consideration of bidirectional time lags is
effective.

Comp. 12: This is a method based on [27] using a support
vector machine (SVM) [39] for visual and audio features.
In order to provide a fair comparison, a one-class SVM [40],
which is an unsupervised method, was used instead of a gen-
eral SVM for Comp. 9 in this experiment. By using Comp. 9,
we could evaluate the effectiveness of the use of a GAN for
important scene detection.

Comp. 13: This is a method using LSTM as an anomaly
detection method. This method uses BiTl-dMCCA as the
embedding scheme. Comp. 13 was used to evaluate the effec-
tiveness of utilization of aGAN for important scene detection.

Comp. 14: This is a method based on another video sum-
marization method [41]. This method extracts visual features
from shots based on a CNN and generates a summary based
on Bi-LSTM [16] using visual features.

Comp. 15: This is a method using textual, visual and audio
features based on [41].

(Comparison results) Comparison results are shown in
TABLE 2.
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TABLE 2. Specificity of important scene detection in Ours and Comps. 1–15.

(Baselines) In this experiment, we regarded each at-bat as
important when at least 80% of its length was detected as an
important scene. In Comps., the above percentage was set
to the optimal value in such a way that their performance
became the highest. Note that we define highlights of matches
as ground truth.

Also, dp, dy, L, λ, C , W , S, α and τ were empir-
ically set to 500, 50, 7, 3, 5, 60, 20, 0.5 and 0.7,
respectively. BiTl-dMCCA was used for projecting features
into the same space. In this experiment, the dimension
was experimentally reduced from 500 to 50. In the test
phase, the proposed method takes 10,347 seconds for a
total of 56,760 seconds of test data. Specifically, it takes
9,777 seconds for multi-modal feature extraction, 2 seconds
for BiTl-dMCCA, and 568 seconds for detection of important
scenes.

Comps. 1-11 were used to evaluate the first novel idea
of introducing consideration of the bidirectional time lags
between tweets and events into the derivation of covariance
matrices of BiTl-dMCCA. Comps. 12 and 13 were used
to evaluate the second novel idea of performing detection
in a completely unsupervised fashion based on GAN-based
anomaly detection.

For quantitative evaluation, we compared the proposed
method with the comparative methods by using the speci-
ficity when maximizing the sensitivity (i.e., sensitivity being
almost 1.0). Focusing on the specificity whenmaximizing the
sensitivity means how much over-detection of normal scenes
can be reduced when important scenes are detected.

B. PERFORMANCE EVALUATION
The specificity when maximizing the sensitivity of impor-
tant scene detection in our method (Ours) and Comps. 1-15
are shown in TABLE 2. In order to maximize the sensitiv-
ity of important scene detection, all important scenes must
be detected. Thus, it is difficult to obtain high specificity
when maximizing the sensitivity. Since Ours has a higher
average specificity than those of Comps. 1-6, the effective-
ness of introducing multi-modal features, i.e., textual, visual
and audio features, can be confirmed. Therefore, we can

confirm that utilizing both tweets and videos is effective
for detection of important scenes. Comp. 9 has a higher
average specificity than those of Comps. 4-6, but those of
Comps. 7 and 8 are lower than those of Comps. 4-6. There-
fore, the specificity is not necessarily improved by simply
utilizing multi-modal features. On the other hand, by com-
paring Ours, Comps. 11 and 13 with Comp. 9, which is a
method using dMCCA, we can confirm the effectiveness of
introducing multi-modal features with consideration of time
lags. Since the average specificity of Ours is higher than
those of Comps. 10 and 11, which are methods consider-
ing unidirectional time lags, the effectiveness of introducing
covariance matrices considering bidirectional time lags can
be confirmed. Furthermore, since the average specificity of
Ours is higher than that of Comp. 12, which is a traditional
important scene detection method based on an SVM, and that
of Comp. 13 based on LSTM, we can confirm the effective-
ness of introducing a GAN to detect important scenes. Ours
has higher specificity than the specificity of Comp. 14. The
specificity of Comps. 2 and 14 are about the same. Thus,
the specificity of themethods using visual features are limited
in important scene detection, and the effectiveness of Ours
using textual, visual and audio features has been confirmed.
Moreover, since the specificity of Comps. 14 and 15 are
lower than those of Comps. 2 and 9, respectively, we can
confirm that the methods based on Ours are more effective
than the methods based on [41] for detection of important
scenes. Consequently, accurate detection of important scenes
in baseball videos by anomaly detection via BiTl-dMCCA
considering bidirectional time lags between multi-modal fea-
tures based on a GAN has been realized.

An example of a correctly detected important scene by
Ours and its tweets corresponding to the scene is shown in
FIGURE 4. Scenes surrounded by the blue rectangle rep-
resent batters making chances. The main text of the tweet
surrounded by the blue rectangle includes expectations of the
viewers who saw these scenes of making chances. Further-
more, the important scene detected by Ours surrounded by
the red rectangle represents the captain of the team making
an RBI hit. The main text of the tweets surrounded by the
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FIGURE 4. An example of an important scene detected by Ours and its tweets corresponding to the scene. The horizontal axis
represents time. Note that ‘‘Nakata’’ in the main text of tweets is the batter’s name and he is the captain of the team. A run batted
in (RBI) hit is a hit by the batter who scored a run.

TABLE 3. Specificity of important scene detection in Ours for each
parameter λ of the Poisson distribution.

TABLE 4. Specificity of important scene detection in Ours for each
parameter L of the Poisson distribution.

red rectangle includes the delights of viewers who saw this
important scene. Therefore, there obviously exists bidirec-
tional time lags between posted tweets and corresponding
events. From the qualitative evaluation, we confirmed that
Ours can accurately detect these important scenes by BiTl-
dMCCA.

The results of Ours for each parameter λ of the Poisson
distribution are shown in TABLE 3. It is shown in this table
how much the peak of the distribution should be slid. In other
words, we can understand the relationship of the time lags
between the posted tweets and events that occurred. By com-
paring the specificity when changing the parameter λ, we can
confirm that the highest specificity is achieved when λ is
three. Moreover, the results of Ours for each parameter λ of
the Poisson distribution are shown in TABLE 4. It is shown
in this table how much previous events affect the tweets.
By comparing the specificity when changing the parameter L,

we can confirm that the highest specificity is achieved when
L is seven. Since the viewers post tweets of test data about
every 24 seconds on average, the results suggest that the
bidirectional time lags between tweets and events are about
72 seconds and that events up to 168 seconds in the past affect
the tweets. From the above discussion, we can consider that
calculation using the parameters λ and L of the Poisson dis-
tribution can be an effective indicator to reveal bidirectional
time lags.

IV. CONCLUSION
In this paper, we have presented a new method for detection
of important scenes in baseball videos based on canonical
correlation maximization with consideration of bidirectional
time lags via BiTl-dMCCA. By introducing consideration of
the bidirectional time lags between tweets and events into the
derivation of covariancematrices of BiTl-dMCCA, it can cor-
rectly consider their relationships. Furthermore, the proposed
method can be performed in a completely unsupervised fash-
ion based on GAN-based anomaly detection. Experimental
results verified that the proposed method can correctly detect
important scenes.

In a future work, we will automatically decide the param-
eter λ according to each event. Specifically, events such
as a home run and an RBI hit strongly affect tweets that
immediately follow. On the other hand, events such as the
appearance of popular players have a long-term effect on
tweets. Therefore, the construction of covariance matrices
reflecting these differences should be considered in a future
work.
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