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ABSTRACT Non-small cell lung cancer (NSCLC) is a serious disease and has a high recurrence rate
after surgery. Recently, many machine learning methods have been proposed for recurrence prediction. The
methods using gene expression data achieve high accuracy rates but expensive. While, the radiomics features
using computer tomography (CT) image is a cost-effective method, but their accuracy is not competitive.
In this paper, we propose a genotype-guided radiomics method (GGR) for obtaining high prediction accuracy
at a low cost. We used a public radiogenomics dataset of NSCLC, which includes CT images and gene
expression data. Our proposed method is two steps method that uses two models. The first model is a
gene estimation model, which is used to estimate the gene expression from radiomics features and deep
features extracted from CT images. The second model is used to predict the recurrence using the estimated
gene. The proposed GGR method is designed based on hybrid features which is the fusion of handcrafted-
and deep learning-based features. The experiments demonstrated that the prediction accuracy can be
improved significantly from 78.61% (existing radiomics method) and 79.09% (ResNet50) to 83.28% by the
proposed GGR.

INDEX TERMS Non-small cell lung cancer, prediction of recurrence, radiogenomics, genotype-guided

radiomics.

I. INTRODUCTION

Non-small cell lung cancer (NSCLC) is one of the most fatal
diseases in humans [1], [2]. The NSCLC occurs in about
80% - 85% of lung cancer patients and can be treated by
surgery [1]. There is a high risk of recurrence even after
treatment with NSCLS [3]. According to statistics, the recur-
rence of NSCLC cancer causes the death of about 50%
of patients [4]. With an accurate prediction of recurrence,
doctors will be able to treat patients on time. If doctors and
patients have an accurate prediction of the risk of recurrence,
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the doctor will be able to prepare and look after patients
appropriately [5].

Several machine learning methods have been pro-
posed to develop a computer-aided diagnosis. In 2012,
Lambin er al. proposed the concept of radiomics [6].
Lambin er al. used the medical image to extract
high-throughput mining of quantitative image features
(sometimes called handcrafted features or radiomics signa-
tures) [6]. Thus, the extracted features were used to support
the systems to improve diagnostic and predictive accu-
racy [6]. Kumar et al. surveyed a research to support the
performance of the radiomics in several kinds of image
and the phenotype including CT image and NSCLC [7].
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Kumar et al. also found a correlation between the extracted
features and genotypes [7]. In 2014, Aerts et al. found
the association of the handcrafted features and underlying
gene expression association [8]. In 2016, Gillies et al
re-emphasized the radiomics core ideas and reported
the radiomics potential power to facilitate better clin-
ical decision-making in cancer patients [9]. In 2018,
Alahmari et al. was successful in the use of radiomics
to predict lung nodule malignancy [10]. In 2019,
Wang et al. used the radiomics technique to make the pre-
operative recurrence prediction of NSCLC using principal
component analysis (PCA) [11] for feature selection then
used several machine learning methods such as decision
tree, random forest, etc. to make the classification [12].
In 2020, Lee et al. applied the radiomics technique using
the Relief-F method [13] for feature selection and performed
classification using machine learning methods [14]. In 2021,
Christie et al. used the least absolute shrinkage and selection
operator (LASSO) [15], [16] for both feature selection and
classification [17]. To support and improve the capacity of
radiomics signature, many radiomics signature-based meth-
ods have been proposed [10], [18]-[20]. All studies demon-
strated that the handcrafted feature is a potential biomarker
for the recurrence prediction of NSCLC.

Recently, many deep learning-based approaches were also
used for malignant tumor classification tasks. In 2014,
Karen et al. proposed the model named the very deep con-
volutional networks or known as VGG [21]. The VGG uses
the convolutional layers to extract the image deep features and
uses the neural networks to classify [21]. In 2016, He et al.
proposed a well-known deep learning model named deep
residual learning networks or known as ResNet [22] (more
details in section III (B 2)). In 2018, Gao et al. also proposed
the model named densely connected convolution networks,
known as DenseNet [23]. Many researchers in the medical
field also proved that the deep learning models are excellent
at working with medical imaging [24]-[26].

In our previous research [27], we extracted features
through handcrafted and deep learning modules to use the
benefits of both feature types.

However, the previously mentioned techniques use only
the image information, the classification performance is lim-
ited [28]. Many modern studies attempted to use gene expres-
sion instead of using only the image. Lu er al. [4] and
Lee et al. [29] proposed the methods that use gene expression
to increase the performance of the models. Subramanian used
the fusion of image and gene expression together to maxi-
mize the prediction accuracy [3]. Many more genomics-based
methods were also proposed to improve the performance of
the classification and regression tasks [30]—[32].

Although the genomics-based methods achieved high pre-
diction accuracy, an invasive process is needed to gain gene
expression. Furthermore, the cost of the gene expression
is high compared to the CT image. In many cases, some
required gene expressions are undetected. The gene expres-
sion cannot be obtained from the patients who are unable to
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undergo surgery. In paper [3], they use the combination of
genomics and radiomics, which has produced the highest
results. The limitations in [3] are the possibility of operation,
availability of gene expression data, and the high cost due
to the complexity of the examination, this is an invasive
diagnostic method [33].

Thus, the primary aim of our study is to propose a tech-
nique that can maximize the recurrence prediction accuracy
using CT image and gene expression in the training phase
and CT image in the testing phase. We use the associa-
tion of the image and gene expression [7], [8], Due to the
strong relationship between the gene expression and the
phenotype [3], [4], [29], [31], [32] we have developed a
new method. We propose a genotype-guided radiomics-based
approach (GGR). Our proposed method consists of two mod-
els. The first model is used to estimate the gene expression
from CT images. The second model is used to predict the
recurrence based on the estimated gene expression which
we have achieved from the first model. After the GGR is
trained (using image, gene expression, and recurrence label),
the GGR does not require the gene expression data in the test-
ing phase. The GGR model significantly improves the accu-
racy and provides the possibility of examining the patients
who are unable to undergo the surgery.

Il. MATERIALS

In this research, we used a radiogenomics dataset of
NSCLC [34], which is now publicly available for use
in The Cancer Imaging Archive (TCIA) [35], [36] for
the experiment. The RO1 cohort from Stanford University
School of Medicine and Palo Alto Veterans Affairs Health-
care System were recruited between April 7th, 2008, and
September 15th, 2012. Subjects signed written consent forms
according to the guidelines of institutions’ IRBs. This dataset
was collected from the NSCLC cohort of 162 subjects and
the data of every subject can be separated into two types
including image data and gene expression data [34].

A. IMAGE DATA AND IMAGE PRE-PROCESSING

Image data is collected from preoperative CT scans at the
Stanford University Medical Center. Imaging data has a thick-
ness of 0.625-3 mm and an X-ray tube current at 124-699 mA
at 80-140 kVp. The type of CT image is in the DICOM format
and consists of 162 patients in total [34]. Some samples
were eliminated due to established rules, including the patient
without tumor mask and the patient without gene expression
data, recurrence data, or died before recurrence occurs due to
unknown reasons.

The initial segmentation was received from the axial
CT image series using the unpublished automatic segmen-
tation algorithm [34]. All these divisions are seen by tho-
racic radiologists with experience over 5 years and corrected
the data as needed using ePAD software [34]. The final
segmentation is revised and made the final approval (tumor
discussion and amended as appropriate) by additional
thoracic radiologists [34]. The Tumor masks are stored
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in DICOM format [34]. Some examples of image data and
tumor mask areas are shown in Figure 1.

(a)

FIGURE 1. Two examples of image data (a) image data and (b) tumor
mask area.

For image pre-processing, we select the slice with the
largest tumor mask area and its two neighbor slices (the above
and below slices) for each volume. These three images are fed
into the network as three channels. We use three slices for
our research because we want to include 3D information of
the volume data. In our previous work [37], we have shown
that the performance of multiple slices is better than that of
a single slice. Detailed information about feature extraction
will be described in Section III A. Here, the Hounsfield unit
observation range setup was performed to get the suitable
radio information. We cut the intensity information outside
the range of —1000 HU ~ 4400 HU (Hounsfield Unit).
This range covers the information that is needed from the
CT Image [38], and normalized value in the entire three
slices to greyscale value with range O to 255 using the linear
transformation (Figure 2). The CT image and its correspond-
ing tumor mask image are multiplied. Then we crop the
area outside the bounding box around the masked image and
resized the cropped image to 224 x 224 pixels.

B. GENE EXPRESSION DATA AND GENE SELECTION

To examine gene expression, biologists must collect the
tumor samples. All tumor samples were collected during
surgery from volunteers taking not any medications or drugs.
After tumor removal, the surgeon cuts 3-5 mm thick pieces
along the longest axis of the cut tissue, which is frozen
within 30 minutes after removal. The tissue was analyzed
using the expression of RNA sequences.

The gene expression data used in this study is
RNA-sequencing data. The gene expression data availabil-
ity is depending on the availability and quality of existing
tissues. The gene expression was sequenced by HiSeq 2500
(Illumina) following the manufacturer’s instructions. The
130 tissue-set samples have been sequenced in 3 batch sizes:
16, 66, and 48. The gene expression was pre-processed
by Centrillion Bioscience. Finally, the gene expression is
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FIGURE 2. Full CT images with the red masking area (left) and the images
after pre-processing (crop and normalization; right).

estimated in Fragments per Kilobase of Transcript Per Mil-
lion (FPKM) unit [34]-[36], [39]. 22,127 genes were pro-
vided for each patient [34]. In the dataset, there are only
130 patients from 162 patients whose gene expression data
exist [34]. Most patients’ gene expression data has shown
unclear expression, in some patients, indicated by N/A. These
ambiguous gene expressions are removed from our work.
Finally, 5,587 gene expression data are available in the study
dataset for each patient. After examining the data, the dataset
includes images from 88 patients that meet our experimental
requirement. The dataset details are presented in Table 1.

TABLE 1. Clinical characteristics of the screened subjects.

Total n = 88 patients

Age (year) 46~85 (median = 69)
Gender Male 64 (72.72%)
Female 24 (27.27%)
Smoking status Nonsmoker 15 (17.05%)
Current 14 (15.91%)
Former 59 (67.05%)
Cell type ADC 68 (77.27%)
SQC 17 (19.30%)
Not specified 3 (3.41%)
Recurrence No 29 (32.95%)
Yes 59 (67.05%)

Total n = 88 patients

Due to the large gene dataset that contains more than
20,000 gene expression data for each patient, the massive
gene expression data will significantly increase the compu-
tational cost and decreases the prediction accuracy. In other
words, spending time for the estimation of 20,000 genes is
worthless. Thus, we must select only the associated gene that
we want to estimate before training the model.

Based on the large data of genes from a patient, relevant
genes need to be selected before declaring the regression
model. In other words, we will not declare the regression
model for the non-relevant gene. By the gene selection,
the genes which are not associated with the recurrence
of NSCLC are removed. We use several feature selection
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FIGURE 3. Overview of genotype-guided radiomics (GGR) for recurrence prediction of non-small-cell lung

cancer.

methods to select the associated genes including
LASSO [15]-[17], F-test (ANOVA) [40], [41], CHI-2 [42],
and the intersection of the three feature selection methods.
Finally, we select 74 related genes. The detailed results will
be reported in Section IV.

lll. METHODS

The workflow of the proposed method is shown
in Figure 3. The whole process of the method consists of
three parts: (1) data pre-processing; (2) radiomics feature
extraction and selection (input features); (3) prediction (gene
estimation and recurrence prediction models). Our proposed
method is mainly contributed to the third prediction part.
We called this proposed prediction part the genotype-guided
radiomics (GGR) model. The traditional radiomics-based
method uses one model to predict the recurrence from the
CT images, the proposed genotype-guided radiomics (GGR)
method consists of two models. Both models were trained
using the NSCLC public radiogenomic dataset [34], which
includes CT images and corresponding gene expression data.
The key proposal of the GGR is that we only use CT images to
predict recurrence, while the models are trained by pairs of
gene expression data and CT images in the training phase.
That means the trained GGR model can represent some
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relationship between the CT image and its gene expression.
Therefore, we can use the gene expression estimated from
the CT image for recurrence prediction even though we do
not have gene expression data in the test phase.

Since the first part (data pre-processing) has been
described in Section II, we will focus on the second and the
third parts in this section.

A. RADIOMICS FEATURE EXTRACTION AND SELECTION
The image feature extraction is used to reveal the information
from the image. We perform two types of feature extraction,
including handcrafted feature extraction and deep feature
extraction as shown in Figure 4.-6., for the gene estima-
tion model. The handcrafted feature extraction will show the
information at the macro-level from the image and the deep
feature extraction will show the information at the micro-
level [27]. Using both features allows us to get higher gene
estimation and recurrence prediction performance.

1) HANDCRAFTED FEATURE EXTRACTION

We currently have 3 slices of cropped CT image. On each
slice, 150 radiomics features will be extracted using
gray level co-occurrence matrix (GLCM) in 4 direc-
tions, 0, 45, 90, and 135 degrees, and histogram-based
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FIGURE 4. (a) The result of five filters LoG on one slice. (b) The examples of convolution products from intermediate layers
of deep learning-based features extraction (conv1 and res2a_branch2a layers).

statistics [16], [18], [38], [43]. In the calculation of each
feature, Laplace of Gaussian (LoG) has been performed.

The LoG is the combination between the Laplacian filter
and the Gaussian filter. Technically, the Gaussian filters make
images smoother to reduce noise, and Laplacian filters focus
on areas that change quickly or work like edge detection.
To calculate LoG, we first calculate the Gaussian distribution
using equation (1) [44].

x2 +y2

1
Vior P 302
where x and y are the coordinates on the x and y axis, respec-
tively, and o is the standard derivation or the biometrics filter
parameter [44]. The Gaussian scale-space representation of
the image f(x, y) can be computed as equation (2)

Lx,y;0) =f (x,y) * Gx,y; 0) (@)

From equation (2), L(x, y; o) is the Gaussian scale-space
of the image f (x, y), and * is a convolutional operator [44].

From both equation (1) and equation (2), we apply the
Laplacian operator V2 to the Gaussian scale-space represen-
tation of the image. We can calculate V2 as equation (3).

Gx,y;0)= ey

a3f 9%
vie L4 2 3
9x2  9y? )
Then, the LoG can be summarized as equation (4).
1 2., .2 242
V2G (x,y) = — Il P S
mo? 202

From LoG equations (1) - (4), five different o filters
(o =0, 1, 1.5, 2, 2.5; Figure 4 (a)) were assigned to the
calculation.

GLCM features of four directions, which involves angles at
0°, 45°,90°, and 135°, were calculated from each LoG filter.
Radiomics features include contrast, entropy, relationships,
homogeneity, and energy are calculated from each degree of
angle. In addition, the intensity features use the first-order
statistic to quantify the radiomics feature. The first-order
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statistics include mean, standard derivation (SD), percentiles
mean (10, 25, and 50 percentiles), percentiles SD (10, 25,
and 50 percentiles), kurtosis, and skewness [16], [19]. The
structure of radiomics features is shown in Figure 5. The
radiomics features are extracted from the selected three slices.
Accordingly, 450 radiomics features are extracted from one
patient.

Each band of

CT-image
Laplace of
Gaussian (5)
GLCM (4) Histogram
Contrast Correlation
= Mean
Entropy Homogeneity SD
—  Kurtosis
Energy  [— SD percentile | | Skewness
3) L] Mean
percentile (3)

FIGURE 5. The radiomics feature structure from each band of CT image.
(The number in parentheses indicates the number of the features’

groups.)

After radiomics feature extraction, the extracted radiomics
features which is not related to the recurrence are
removed. In the conventional radiomics methods includ-
ing [3], [8], [12]-[19], [20], [27], the feature selection is
used to select the radiomics features of the top associa-
tion to the recurrence of the NSCLC. As reported in [27],
we found that the F-test (ANOVA; Analysis of Variance) has
shown the highest accuracy and AUC in recurrence predic-
tion using CT image compared to various feature selection
methods. In this work, we used F-test [40], [41] to select
the associated radiomics features to predict the gene related
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FIGURE 7. The DNN regression model’s structure used to estimate a single gene from the extracted and selected features.

to the recurrence. With F-test, we can reduce the number
of radiomics features from 450 radiomics features to only
12 associated radiomics features. The selected 12 features are
used to estimate the gene expression. The radiomics feature
extractions are shown in the left part (blue color) of Figure 7.
Our radiomics codes are now released and available at URL:
https://github.com/aonpong/radiomics.

2) DEEP FEATURE EXTRACTION

In deep feature extraction, we applied a ResNet50 struc-
ture [22]. The network is initialized using the pre-trained
weights of ImageNet dataset [45] and eliminated the fully
connected layers. Many studies reported the pre-training
model using the ImageNet can improve the ability of medical
image classification tasks [46], [47].

ResNet50 is a convolutional neural network model that is
50 layers deep [22]. The ResNet50 consists of many residual
blocks. In each block, it has convolution modules and a skip
connection that pass the information calculated from the pre-
vious block to the next block. It has been observed in earlier
layers, the learned features correspond to the lower seman-
tic information. Without skip connection, the information
will turn to abstract because of the long-chain connection.
In other words, the non-skip connection is the cause of very
small gradients in the deeper layers and has a probability
to become zero. For this reason, we cannot update the early
layer at all. As shown in Figure 6 (a), x represents the input,
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H (x) represents the output, then, the residual knowledge of
the shortcut connection is F'(x) H(x) — x. The skip
connection can reduce loss from the deep calculation, which
is affected by the chain rule in the backpropagation because
this provides the alternative path for the gradient and allow the
information to pass through. The information that passed the
skip connection will be attached to the calculated information
via addition. The structure of the ResNet50 model is shown
in Figure 6 (b).

The NSCLC recurrence-related output features extracted
from the ResNet50 will be selected using the F-test
method [40], [41] as the feature selection, 27,481 deep
features were selected. The features are further reduced
to 12 using a fully connected (FC) layer to have the same
dimension as the handcrafted features. The deep feature
extractions are shown in the left part (orange color) of
Figure 7. Finally, the 12 deep features and 12 handcrafted
radiomics features are used for gene estimation as shown
in Figure 7.

B. PREDICTION (GENE ESTIMATION AND RECURRENCE
PREDICTION)

Unlike the traditional radiomics-based method, which uses
one model to predict the recurrence from the CT images,
the proposed genotype-guided radiomics (GGR) method con-
sists of two models. The first model is used to estimate the
gene expression data from CT images and the second model
is used to predict the recurrence using the estimated gene.
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FIGURE 8. The GGR's structure uses to predict the recurrence using estimated genes. The grey blocks show the source of estimated genes
(previous gene estimation models). The grey numbers show the number of features that pass the process.

1) GENE ESTIMATION (THE FIRST MODEL)

We use a deep neural network (DNN) regression model
to estimate gene expression as shown in Figure 7. As we
described in the previous sub-section (Section III A), we use
two features (handcrafted and deep features) as the inputs of
the model. Both features are 12-dimensional vectors. We con-
catenate them to form a 24-dimensional feature for gene
estimation (regression).

The gene expression data is only required to train the
model (the mapping function between the CT image and
gene expression) but not for the testing phase because we can
estimate the gene from the CT image using the trained model.
Note that one regression model is used to estimate one gene.
As we described in Section II B, we select 74 related genes
to reduce the computation cost and enhance the prediction
accuracy. That means we trained 74 regression models for
74 genes (one model for each gene). All regression models
have the same structure as shown in Figure 7 but have dif-
ferent weights for the individual gene estimation. For all the
DNN regression models, we use the mean square error [48]
as a loss function which can be calculated using equation (5).

1 m ~
‘Cgene = ; Zi:l HGi - G;

where Lgeqe is the mean squared error loss between the
actual gene expression (G) and the predicted gene (f}), m is
the number of training samples, ||.| is the L2 norm. The
learning rate was set to a very small value of 5e-6 to fit every
gene estimation. The decay and momentum were set to le-6
and 0.9, respectively.

2

&)

2) RECURRENCE PREDICTION

After gene estimation, the estimated gene expression data are
used as inputs of the recurrence prediction model (the sec-
ond model). The recurrence prediction is done as a task of
two-class classification (i.e., recurrence and non-recurrence).
We proposed an ANN-based model to predict the recurrence
of NSCLC using estimated genes as shown in Figure 8.
We use stochastic gradient descent (SGD) [49] as an opti-
mizer. The learning rate, decay, and momentum were set
to 0.05, le-6, and 0.9, respectively. The loss function used
in GGR is binary cross-entropy loss [50] which can be
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calculated by equation (6).

1 m N N
Lree ==~ Irlnfi+ (1 —r)in(l = 7] (©)

where Ly, is binary cross-entropy loss, m is number of train-
ing samples, r is actual recurrence label and 7 is recurrence
prediction output.

IV. EXPERIMENTS

Every experiment in this study is performed based on
ten-fold cross-validation to find the average performance.
On each fold, we used CT images and gene expression data
of 79-80 patients as training sets and only the CT image
of 7-8 patients as the validation set (gene expression data
does not require). We also used an area calculation under the
characteristic curve of the receiver operating characteristics
(AUC) [51] to assess the efficiency of each candidate model.
We performed these experiments on a computer driven by
CPU Intel®core™i7-8700k @3.20-4.60GHz, 48 GB of
random-access memory (RAM), and RTX 2060 graphic
accelerator. We used Keras-GPU library version 2.2.4 on
python 3.6 to perform these experiments. The related work
models are compared to the proposed GGR methods using
the same control data set.

A. GENE SELECTION RESULTS

We performed this experiment to observe the gene effec-
tiveness and to choose the best gene set, which is the
most relevant to the recurrence of NSCLC. We com-
pared four feature selection methods, including non-selected,
LASSO, F-test, CHI-2, and the intersection of the three. The
gene features which have LASSO’s zero coefficient were
removed [16], [19]. The P-values from F-test and CHI-2
were set the threshold at P-value < 0.02 [40]-[42] The
genes are selected based on the results obtained using the
intersection of all the three methods including LASSO,
F-test, and CHI-2. We test each output gene obtained from
the various feature selection method to directly classify the
recurrence. The gene set that provided the best accuracy will
be chosen to predict the recurrence in model 2. The results
of gene selection performance are presented in Table 2. Since
the method of the intersection of the three achieves the best
performance, we used 74 genes selected by the intersection
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TABLE 2. Performance of the radiomics method using selected real gene
data from different gene selection methods.

Feature selection method Selected genes Accuracy
Non-selected 5587 81.14%
LASSO 1123 82.97%
F-test 131 86.89%
CHI-2 2325 83.39%
Intersection of LASSO, F-test,

and CHI-2 74 94.30%

(P-value < 0.02)

of the three methods for our studies. The 74 selected genes
list has shown in Table 3.

B. GENE ESTIMATION RESULTS

This section shows the comparison between the estimated
gene expression data derived from the model and the real
gene expression data in FPKM. Due to the complexity of the
data, Figure 9. shows the comparison between the estimated
genes using the hybrid of handcrafted features and deep
features, and the actual values of one sample. In Figure 9,
the x-axis shows 74 genes of one sample patient, which
are selected by the intersection of the three gene selection
methods, and the y-axis shows the actual gene expression
FPKM values (the blue line), the estimated gene expression
from the fusion of handcrafted features and the deep features
in FPKM values (the orange line; average MSE = 29293.07).
The graph depicts that the majority of the estimated genes
show satisfying estimation performance.

C. ABLATION STUDY

In this section, we validated the effectiveness of each key
component for recurrence prediction. The ablation results
are summarized in Table 4. Model 1 and model 2 are base-
line models with handcrafted features or deep features only,
respectively. Model 3 is a model with combined handcrafted
and deep features, which is our first contribution but without

Estimated gene values compared to expected gene values
300 ‘
250 ‘
200
150
100

) ‘\,V,\,\,/\/\Aﬁ/\/\%,\\,\fj\ \/\/\ /\,Jv/\" /

0
1 4 7 10131619222528313437404346495255586164677073
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FIGURE 9. Comparison between estimated gene values and actual gene
values from one patient as an example.

gene guidance. Model 4 (i.e., the proposed GGR model) is a
model with gene guidance, which is our second contribution.
As shown in Table 4, we can see that the AUCs of model 1
and model 2 (baseline models) are about 0.66 and 0.67,
respectively. The AUC can be improved to 0.71 by combining
the handcrafted and deep features (model 3). The AUC can be
further improved to 0.77 using gene guidance (model 4).

D. COMPARISON WITH STATE-OF-ART METHODS

We also compared the proposed GGR method with state-
of-the-art methods. The comparison results are summa-
rized in Table 5. The first seven methods are handcrafted
radiomics-based methods and the 8®'-10" methods are deep
learning-based methods. The proposed method is indicated
in bold. Furthermore, Figure 10 shows the comparison
between the average ROC curves of 10-fold cross-validation
to the other recurrence prediction methods. As shown
in Table 5 and Figures 10., deep learning-based meth-
ods [25], [27] achieved better performance than handcrafted
radiomics-based methods [12], [14], [17], [27] The pro-
posed GGR method improves the performance significantly
and achieves an accuracy of 83.28%. The results demon-
strated that the use of the genotype-guidance in the training

TABLE 3. The 74 genes selected by the intersection of the three methods (P-value < 0.02).

Gene list
ABCCO  ANKLE2 ANK§D 3 ANKZFI  APIG2  ARRDC2  ATAD2  ATG4B ATIC BARDI
BCL6 BMS1 BRAP BTG2 CBXS5 CD2AP  CEBPZ CIRBP  CREBL2 CRK
CYBSA  CYBRDI  DCAFI3 DCLREIC  DDX42  DDXS5l DENR  DHCR24  DNAJB6  DNPEP
DPYSL2  DROSHA  EMP2 ENY2 ERCI ERCC6 ETNKI  FAMI22B  FAM20B  FANCL
FOXK2  FRMD4B GAK GCNILI GGA3 GLUDI GMDS  GTPBP2  GTPBP4  HIPK3
HISTIHID HISTIH4B HISTIHAC  IL6ST  KIAA0368  LAMB2 LOC019010 133 |PAR6  LRPPRC  MAPKI4
MAT2A  MBOAT2  MCM4 MCM7 MYOI0  NAA25 NOP56  PTGES3 ~ RBMS3  RICTOR
SELENBPI SNORA37  SPG7 TXNIP
VOLUME 9, 2021 90251



IEEE Access

P. Aonpong et al.: GGR Signatures for Recurrence Prediction of NSCLC

TABLE 4. The ablation study results of the proposed method for recurrence prediction.

Handcrafted Deep Gene

featurcs features guidance AUC Specificity Sensitivity Accuracy
Model 1 X 0.6567 0.56 0.9 78.61%
Model 2 X 0.6714 0.59 0.89 79.09%
Model 3 X X 0.7078 0.51 0.97 82.08%
Model 4 (GGR) X X X 0.7667 0.59 0.95 83.28%
TABLE 5. The performance of GGR compared with the state-of-the-art methods.
Method ACC AUC Specificity Sensitivity
Wang, et.al. (2019) [12] PCA+DT 61.36% 0.5716 0.45 0.69
Wang, et.al. (2019) [12] PCA+SVM 67.05% 0.5833 0.31 0.85
Wang, et.al. (2019) [12] PCA+RF 68.18% 0.6189 0.21 0.92
Lee, et. al. (2020) [14] Relief-F + SVM 68.18% 0.5605 0.14 0.95
Lee, et. al. (2020) [14] Relief-F + RF 67.04% 0.5745 0.28 0.86
Christie, et al. (2021) [17] LASSO 61.36% 0.6756 0.62 0.71
Aonpong, et. al. (2020) [27] F-test + ANN 78.61% 0.6567 0.56 0.9
Aonpong, et. al. (2020) [27] ResNet50 79.09% 0.6714 0.59 0.89
Aonpong, et. al. (2020) [27] DenseNet121 77.36% 0.6788 0.38 0.97
Marentakis, et al. (2021) [25] Radiomics + deep learning 82.08% 0.7078 0.51 0.97
GGR (proposed method) Gene guidance 83.28% 0.7667 0.59 0.95
79.09% accuracy (AUC = 0.6714) for the deep learning-based
101 (ResNet50) and 67.88% accuracy (AUC = 0.6788) for
the deep learning-based (DenseNet121). By the proposed
o8] GGR, the prediction accuracy and AUC were significantly
2 improved to 83.28% (AUC = 0.7667). The proposed pre-
= ey diction methods used genotype information to guide the
% e model training, the prediction models can learn more useful
% 0.4 1 information for early recurrence prediction and the pro-
3 e posed method only uses CT image for prediction in the
02 | test phase. We also performed experiments with real gene
R expression for early recurrence prediction. From our exper-
0.0 4 GG (AU =077 iments, we can achieve 94.30% accuracy (AUC = 0.8915)

0.0 0.2 0.4 0.6 0.8 10
False Positive Rate

FIGURE 10. Average ROC of recurrence prediction using deep
learning-based radiomics methods and the proposed GGR method.

phase is important to learn more useful features and enhance
the CT-based recurrence prediction accuracy.

V. DISCUSSION AND CONCLUSION

In this paper, we studied the recurrence of NSCLC pre-
diction using CT image analysis to help the doctor and
patient to prepare for the risks that may occur. Since the
traditional radiomics-based methods or recently proposed
deep learning-based methods used only CT information,
the prediction performance was limited. From the experi-
ments, we can achieve 78.61% accuracy (AUC = 0.6567)
for the best handcrafted based radiomics (F-test with ANN),

90252

for gene-expression analysis and 94.44% accuracy
(AUC = 0.9158) for the fusing between gene-expression
and CT radiomics signature. Both are much higher than the
proposed method and can be considered as the upper limit
performance of the proposed method. As our future work,
we will improve the models and increase the training dataset
to improve the prediction performance and make them closer
to the genomics-based methods but use only the CT images.
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