
Received May 16, 2021, accepted June 1, 2021, date of publication June 10, 2021, date of current version June 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3088229

Penetration Frameworks and Development Issues
in Secure Mobile Application Development:
A Systematic Literature Review
IKRAM UL HAQ AND TAMIM AHMED KHAN
Department of Software Engineering, Bahria University, Islamabad 44000, Pakistan

Corresponding author: Tamim Ahmed Khan (tamim@bahria.edu.pk)

ABSTRACT The invention of smartphones has opened a new market for mobile application development.
Amateur android app developers often do not possess knowledge of the latest android vulnerabilities and
thus create applications with attack surface that hackers exploit. In this literature review, many available
frameworks and techniques have been analyzed using ISO/IEC 25010 software quality model and identified
challenges that android developers face in designing a secure application for android. This paper also presents
a comprehensive survey of different penetration tools, evaluated by using criteria such as code analysis, code
review, vulnerability analysis, vulnerability exploit, payload and whether these can be used in vulnerability
modeling during the design phase. Our study effectively identifies the issues and gaps which can further
help develop a framework/tool for designing a penetration secure mobile application by embedding all the
vulnerabilities during the design phase using an android vulnerability repository.

INDEX TERMS Android, penetration testing, android security and privacy.

I. INTRODUCTION
Android is an open-source, Linux kernel-based mobile oper-
ating system. It allows developers to develop native applica-
tions using the Android SDK. According to Gartner Inc. [29],
the sales stats of 2017 showed that 86.1% of mobile phones
users are using Android OS. There are ten different android
operating systems and each version of android OS API vary
in functionality and security. The latest API 29 was used in
version 10.Android applications are in the form of an APK
package. When we decompress an APK package we get the
following files and folders:-
• AndroidManifest.xml: This file contains permissions,
configuration and security details of each of the
component.

• resources.arsc: This file contains compiled resources.
• classes.dex: This file executeswhen the application runs.
It contains the Dalvik Bytecode.

• Res: This folder consists of images etc.
• Assets: This folder contains a database, videos etc.
Android has its own security mechanism and multi-

ple applications utilize a shared memory space. Despite

The associate editor coordinating the review of this manuscript and

approving it for publication was Weizhi Meng .

sandboxing and implementation of security models, android
is prone to vulnerabilities with increased number of malware
attacks [27]. A report showed that 60 games on google play
store were malware-infected [39]. The system resources can
be accessed by an application if the users assign permissions
at the time of installation of the application [70].

The Android architecture, consist of the following
components:-
• Activities: It provides an interface where a user can
perform an activity such as making a call, sending SMS
and so on.

• Services: It runs in the background and performs long
terms desired functionality such as alarm app running in
the background.

• Broadcast receivers: It performs a system vide operation
announcements.

• Content providers: It presents data to external applica-
tions. The application can share data and functionality
using content providers.

Android has a WebKit engine-based browser and for data
storage, it has an SQL database engine (SQLite) [28]. User
can download and install various ‘‘third party’’ applications
from Google Play [70]. There are three types of Android
applications: (1) Native Applications are Platform specific

87806 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-1100-7932
https://orcid.org/0000-0002-8209-6100
https://orcid.org/0000-0003-4384-5786


I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

applications. These applications can have access to camera,
accelerometer, SMS, Contacts, etc. (2) Web applications look
like native application but they are in fact HTML coded pages
loaded in a browser window. These apps do not have access
to the system features like camera, contact etc. (3) Hybrid
Applications have both properties of native as well as web
apps. A part of these app utilizes browser while the rest can
use the system features.

A number of applications being developed for Android OS
are prone to threats and can act maliciously. These applica-
tions can affect the users in a number of ways, from draining
the battery to the theft and loss of user’s personal data. A safe
application can become malicious by acquiring unnecessary
permissions from the user at the time of installation. An appli-
cation can (1) send paid SMS (2) steal personal data (3)
dial calls (4) initiate harmful activities using your mobile
phone as bait. Permission Gap occurs when an additional
set of permissions is acquired by the application which are
not mandatory. This Permission Gap helps the malware to
achieve goals like code- injection [10].

Android applications can interact with each other and can
pass messages to provide services to each other through
android message passing system. Malwares such as viruses,
Trojans and spy tools pose a serious threat to mobile devices
such as by leaking personal information, causing financial
loss, depleting battery power, and degrading network perfor-
mance. It is important to understand that the entry points in
the application can pose a threat to the user data if not handled
properly [18]. Therefore, the changing Android ecosystem
impacts the app performance adversely [42].

Penetration testing, also known as Pen-test, helps in identi-
fying vulnerabilities in an application using test scenarios to
uncover issues that can allow an intruder to gain access to a
data/system. Pen-testing performed at the time of deployment
of the application and is not executed at each stage of the soft-
ware development life cycle. Post-deployment security fixes,
lacking of regression testing, produce ancillary errors and
application can become vulnerable. Lack of pen-testing by
mobile application developers also result in insecure mobile
applications [5].

Unencrypted data in the banking applications leads to
Man-in-the-Middle (MitM) attacks. Enterprises, financial
institutions, banks and third-party laboratories should per-
form vulnerability assessment in detail once a year or twice
a year for security inspection of mobile banking applications
for identification of vulnerabilities and exploits [126]. Eth-
ical hackers can perform penetration testing to gain access
to a system/network and exploit the vulnerabilities in the
system [16]. This type of hacking is considered legal because
vulnerabilities are reported to the owner of the system so that
improvements can be made to the system from a security
point of view [40]. Deficiencies in the system network and
applications can help the hackers in entering the system
where they can damage the system [24]. The security and
reliability (sr) of the application is dependent and directly
proportional to the expertise (e) of the tester (sr ∝ e). Many

pen-test methodologies exist where different tools and tech-
niques are employed but eachmethodology starts after amod-
ule or application is deployed. The pen-test phases involve
gathering application information, vulnerability analysis, and
exploitation [7].

From a secure application development point of view,
it is important that the application designer must have a
complete knowledge of the threat model for the possible
attack surface and threats to the entire application architec-
ture. Lack of developer’s experience and security knowledge
of different vulnerabilities often result in vulnerable appli-
cations [58] [5]. Threats and malware often appear due to
excessive /mishandled permissions [71]. Lack of best pro-
gramming practices while programming an android appli-
cation can lead to a malicious application [17]. Security
implementations during software development receive less
consideration and attention, in an effort to save time and
cost [67].

The solution to complex problems can be acquired through
Model-Driven Development (MDD) [8]. Various modelling
languages may be used to design abstract models that have
significant impacts by translation of model to code using var-
ious tools. Unified Modeling Language (UML), for instance,
is used in the software application development domain
which consists of a set of notations that can be utilised to
model structural and behavioural aspects of the systems [48].
Nowadays, although UML is commonly used to model
android based applications, but no notations and stereotypes
are deployed in UML that can effectively help in modelling
security aspects in applications for Android OS [76], [77].

In this paper, we investigated tools and frameworks which
can help to model threats during mobile app development.
Additionally, we explored the issues developers face during
android application development and made the following
contributions:

1. We discussed android vulnerabilities and how they
affect users’ privacy that can further lead to information
theft as well as resources leakage. The problem orig-
inates when amateur android developers do not take
proper security measure due to lack of android secu-
rity knowledge which hackers exploit through SQL
Injections, gaining privileges, malware penetration for
gaining access to device. To the best of our knowledge,
this is the first work that discusses the android develop-
ment challenges and solutions in relation with existing
penetration frameworks and tools.

2. We also reviewed existing android security framework
and penetration tools through systematic literature
research. We evaluated existing penetration test tools
and frameworks to figure out whether they can help an
amateur designer/developer who do not have android
OS security knowledge. We also discussed chal-
lenges faced by developers while developing android
applications.

A brief background and related work on android OS and
vulnerabilities is given in Sect. 2. In Sect. 3, we presented

VOLUME 9, 2021 87807



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

systematic literature review. Section 4 presents the results of
systematic literature review and answers to research ques-
tions. Finally, Sect. 5 concludes the paper.

II. BACKGROUND AND RELATED WORK
As discussed earlier, the three types of mobile applications
(Native applications, Web Applications and Hybrid Appli-
cations) possess different attack surfaces and threat mod-
els. While developing an application, the developer has a
responsibility to consider the safety of users’ data as well
as threat models and other constraints such as battery usage,
memory constraints and securing possible entry points for
gaining access to mobile applications [15]. Excessive permis-
sions of an application can be vulnerable. Such permissions
are granted at the time of app installation [63]. Security
implementations during software development receive less
consideration and attention. For assuring security in web
application development the emphasis should be given on
security checks implementation during the entire web devel-
opment life cycle [5]. Shuaibu et al. [67] explain that
39 secure frameworks were studied and only 3 percent of the
framework had security incorporated.

Tondel et al. [74] surveyed various approaches regarding
requirement elicitation from a security point of view. Devel-
opers do not consider security during the development of
application and mainly focus on the completion of func-
tionality. Requirement engineering phase does not focus on
security objectives and identifying threats.Microsoft Security
Development Lifecycle [1] is used for developing a secure
application by integrating security in all phases of software
development but it does not focus on how penetration test-
ing should be performed at various stages of SDLC. SDLC
is generic and is not android specific. Xiong et al. [82]
proposed a web penetration framework using the grey-box
approach which could be incorporated in SDLC but it does
not help in securing android application during design and
development. Denis et al. [24] explained different methods,
tools and techniques of penetration testing and performed
tests on smartphones. The attack results showed that 14.6%
issues were due to the lack of application security hardening.
It was also mentioned that despite Google play not allowing
malicious applications, there are still applications that carry
malware or malicious code.

UnifiedModeling Language (UML) helps in modelling the
artefacts for a system [32]. Eoin et al. [81] explained the limi-
tations of UML as it does not have specific elements to model
system interaction. However, UML profile can be enhanced
for specific modelling so that the system can be modelled
accordingly. Goel et al. [31] presented a new methodology
for secure modelling but it does not have any information
on how to model a secure application for Android. Min-
hyuk Ko et al. [46] extended the UML and defined new
elements so that the relationship of entities can be defined.
Bup- ki Min et al. [46] presented new profiles for Windows
7 phones and Android OS respectively but none of these
profiles cover the security aspects on how permissions can

be handled and secure IPC (inter-process communication)
can be modelled. Bo et al. [13] presented mobile test using
event-based approach for the automation of test cases. This
tool does not help in identifying vulnerabilities and producing
test case artefacts during development.

Although penetration testing is gaining importance since
the last few years, there are few systematic literature reviews
available regarding penetration in android based applications.
Mirjalili and Alidoosti [54] reviewed the penetration method-
ologies and vulnerability scanning tools for web-based appli-
cations. The review was based on 4 different web penetration
methodologies and 13 different vulnerability testing scanners
using evaluation criteria. The author further reviewed four test
environments (Webgoat, DVWA, BodgeIt and WackoPicko).
Based on the evaluation the author concluded that there
are many vulnerabilities which existing tools are unable to
identify.

Shanley and Johnstone [64] reviewed six penetration test
frameworks andmethodologies. The author mapped ISO/IEC
25010:2013 quality model as evaluation criteria on two
of the methodologies (OWASP’s OTG and ISSAF) and
found that these frameworks lack domain coverage and have
restrictions. Bertoglio and Zorzo [11] performed a systematic
mapping study on a selection of 1145 papers. A detailed
assessment of penetration testing methodologies, tools, and
models was performed using evaluation criteria in a quan-
titative and qualitative way. The author concluded that how
these tools and techniques may be applied for vulnerability
assessment and what is the limitation of various models used
in penetration testing for a web-based application.

Shah and Mehtre [126] deliberated that in Penetra-
tion testing, potential entry points into a device are
identified using standard hacking tools and techniques.
Different hacking tools were discussed along with compar-
ative analysis of techniques and methodologies and there
implementation on Banking apps to identify vulnerabilities.
Felderer et al. [53] examined various model-based testing
techniques and reviewed 119 publications and concluded how
coverage criteria can impact the feasibility and return on
investment. Al-Ghamdi [2] reviewed various software secu-
rity techniques and how flaws during software developments
can be exploited. The author concluded that the software
developers should take security measures by security valida-
tion and remove security flaws for the effectiveness of the
software application.

Xiao, Liang, et al. [125] proposed malware detection
in mobile phones using Q-learning. The detection per-
formance is improved using Dyna architecture and rein-
forcement learning process. However, the paper does
not discuss how Q-learning can be used to improve
detection using vulnerability repository during application
development.

A. ANDROID THREATS CLASSIFICATIONS
Android’s popularity is increasing and so is the android mal-
ware being developed more frequently. A huge number of

87808 VOLUME 9, 2021



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

TABLE 1. Vulnerabilities detected in 2018–2019.

attack vectors and vulnerabilities are detected in the Android
OS [16]. Table 1 shows security vulnerabilities reported
in 2018 and 2019 in android OS. Major android OS security
vulnerabilities which hacker’s exploit are:

• DoS
• Code Execution
• Overflow
• Memory Corruption
• SQL Injection
• XSS
• Directory Traversal
• Http Response Splitting
• Bypass something
• Gain Information
• Gain Privileges
• CSRF
• File Inclusion

Apart from these security vulnerabilities, there are many
applications which provide attack surface through their
behaviour. These applications include:-

• Spyware Applications which transmit data to the unau-
thorized destination as well as captures the user’s
behaviour.

• MUS (Mobile Unwanted Software) which collects infor-
mation about files, accounts and other device informa-
tion without user authorization.

• Backdoor applications which allow remote operations
and allow access to the device.

• Downloader Applications display security alerts and
force users to download malicious applications.

• Call, SMS, Toll fraud Applications make unauthorized
call or SMS by misleading and tricking users and charge
users.

Figure 1 shows a graph of android OS vulnerabilities for
the year 2016-2019, whereas vulnerability details are shown
in Figure 2.

III. REVIEW PROCESS
During systematic literature review (SLR) process, we will
be identifying, evaluating and interpreting available research
papers which relate to our research question and topic area.
Wewill summarize existing researches for identifying gaps in
the prevailing literature for positioning our research. We will
follow guidelines by Kitchenham et al. [14] as shown
in figure 3.

FIGURE 1. vulnerabilities for the year 2016–2019.

FIGURE 2. vulnerability details.

A. RESEARCH QUESTIONS
In this paper, we present the results of systematic literature
review (SLR) on the topic of model-driven penetration test
framework and tools. We will be reviewing the literature of
the software engineering and software security field. In the
review, the following research questions (RQ) will be studied.

VOLUME 9, 2021 87809



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

TABLE 2. Matching keywords.

RQ1. What are the different penetration test frameworks
and tools and how they help in developing a secure applica-
tion?

RQ2. What challenges Android app developers encounter
and how to meet the secure coding practices in terms of
confidentiality and authentication?

We choose only two questions because we believe that
these RQ could provide two distinct and actionable insight
to the researchers.

B. SEARCH PROCESS
These research repositories were searched for a combination
of keywords i.e. Penetration testing, secure android appli-
cations framework, pen-test framework, android developer
challenges, pen-test and Penetration test in android. Search
keywords were derived from PICO as shown in Table 2.
• Population (P): Mobile Application Security
• Intervention(I): Android penetration testing
• Comparison(C): Existing Pen-test and Security Frame-

works
• Outcome(O): Methodologies, Frameworks, tools, chal-

lenges

C. RESEARCH PROCESS
The research process consisted of three main stages as shown
and explained in Figure 5. The search process for the selec-
tion of research studies was done in two stages, first using
keywords-based search from different following repositories
and second, by manually filtering them.
• ACM Digital Library
• IEEE Explore
• Google Scholar
• HEC digital library
• Springer link
Identification of research from the above sources was man-

ually filtered by the first author on the basis of inclusion
and exclusion criteria. The full text was then analyzed and
duplicates were removed. The entire process was mentored
and audited by the second author.

D. INCLUSION AND EXCLUSION CRITERIA
Search results retrieved a large number of results so Inclu-
sion (IC) and Exclusion criteria (EC) is applied to reduce the
number of papers and to select the quality research papers.
The IC and EC are defined as below.

FIGURE 3. Selection process.

• IC1- The paper or abstract or introduction matched with
the study in question and explains a framework, method-
ology or tool for penetration testing.

• IC2- The paper discusses penetration testing tools for
android applications.

• IC3- Papers written in English and published in Journals,
books and conferences

• EC1- Exclusion of all articles that do not answer
research questions.

• EC2- Articles that cover penetration testing other than
the web and mobile applications

The full text of paper was analyzed and duplicates were
removed.

E. STUDY SELECTION
In the data selection process, initially, the primary studies
identified during search were refined by filtering on the basis
of abstract and then on the basis of full text. The keyword
match search pulled up 1040 results from the search repos-
itories and after removing duplicates and irrelevant papers
we were left with 380 papers. The abstract of the paper was
categorized by the first author in three categories: Uncertain,
include and exclude. The papers in these categories were
discussed by both the authors and as auditing by the second
reviewer we were left with 56 papers. The resulting research
was tabulated to: -

• Show the penetration test frameworks, methodologies
and tools (to address RQ1).

• Identify issues and challenges faced by android
app developers (to address RQ2)

87810 VOLUME 9, 2021



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

FIGURE 4. Search string.

We used logical operators ‘‘AND’’ and ‘‘OR’’ in search string
for selection, shown in Figure 4.

F. QUALITY ASSESSMENT CRITERIA
To evaluate each study using unbiased strategy and to increase
validity for extraction of relevant publications we used qual-
itative assessment criteria based on [14], [55], [56]. The
criteria were based on the following Quality assessment (QA)
questions.
QA 1. Is the research relevant to penetration testing and is

relevant to the domain?
QA 2. Does the paper use the framework, methodology,

tool effectively?
QA 3. Is the framework, methodology, tool discussed in the

paper answer the research question?
QA 4. Does the paper cover issues and challenges related

to amateur android developers
The quality assessment (QA) questions were scored as

follows:
QA 1. Y (yes), the study is relevant to penetration testing;

N (no), the study is not relevant to penetration test-
ing; P (Partly), the study is relevant to penetra-
tion testing but does not mention its implication on
android apps.

QA 2. Y (yes), the study uses a framework, methodology
or tool; N (no), the study does not mention a frame-
work, methodology or tool; P (Partly), the study does
not provide an evaluation of penetration framework,
methodology or tools

QA 3. Y (yes), the study answers the research uestions;
N (no), the study does not answer the research
questions; P (Partly), the study partly answers the
research questions with no validations.

QA 4. Y (yes), the study concludes the challenges; N
(no), the study does not conclude the challenges;
P (Partly), the study partly answers the challenges
related to the tools, methodologies and frameworks.

The scoring procedure for quality assessment questions is
Y (yes) = 1, N(no) = 0 and P(partly) = 0.5. Since we have
four QA questions so the total score is 4.

TABLE 3. Evaluation results.

G. DATA COLLECTION
In the data selection process, all the exclusion and inclusion
criteria were implemented on the search results and duplicate
papers were removed. Initially, the data was collected using
the search criteria which was based on keywords. Further,
the data extracted from each study were:
• Main research topic.
• Main research questions and answers
• Quality evaluation (if any)
• Pentest methodologies and tools
• Issues and challenges

H. DATA ANALYSIS
The collected data was tabulated to: -
• Show the penetration test framework, methodologies

and tools (to address RQ1).
• Identify issues and challenges faced by android

app developers (to address RQ2).

I. PAPER SELECTION
Using the search criteria, initial search pulled up 1040 results
from the mentioned repositories and after removing dupli-
cates and irrelevant papers wewere left with 380 papers. After
applying Inclusion and Exclusion criteria and after reviewing
the title and reading the abstract we were left with 56 papers
as shown in Table 3.

J. QUALITY ASSESSMENT
Quality of the SLR can not only be assessed using inclusion
and exclusion criterias as it may give biased results. Hence,
specific quality assurance(QA) criteria are used to fully eval-
uate the text, thus increasing the selection of lilterature [61].
The desired score for evaluation is 3.5 and the score is cate-
gorized on the basis of availability of several parameters as
mentioned in research questions.

K. QUALITY ASSESSMENT RESULTS
The paper shortlisted using the criteria mentioned above
were further assessed using the quality assessment criteria as
mentioned in section F. The desired score for evaluation is
2.5 and the score is categorized on the basis of availability
of several parameters as mentioned in research questions.
Not many studies revealed a good score. The result discussed

VOLUME 9, 2021 87811



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

in Table 4 are obtained after applying evaluation criteria on
56 papers which match the threshold criteria.

L. THREATS TO VALIDITY
Researcher bias: This can influence the overall research selec-
tion and extraction process by selection of inclusion and
exclusion criteria falsely. This threat was mitigated by the
teamwork of both the researchers. Inclusion and exclusion
criteria were designed by both the researchers and all uncer-
tain cases were discussed and resolved mutually. All the
cases, where the paper was included or excluded was done
on the mutual agreement.

Subjective bias: Subjective bias was mainly related to the
limitations in acquiring results through the use of keywords.
During the search process, we may have missed papers
which were unpublished. Furthermore, our search criteria
were purely based on our knowledge and expertise and there
could be a possibility that we would have missed some papers
that have used synonyms of our search keywords. To mitigate
this issue, initially, we tried a formal search with a keyword
and its synonym. The results were analyzed and in such case
i.e. where we used a keyword ‘‘Android Pen-Test’’ we added
another keyword ’’penetration test’’ to make sure that we do
not miss any research papers.

IV. RESULTS AND DISCUSSION
We discuss our results in this section.

1. Android Penetration test tools and frameworks
(RQ1)

On the basis of our systematic literature review (SLR) and
quality assessment criteria, we have grouped the results in
two categories: Penetration test frameworks and Penetration
test tools. These frameworks and tools were further evaluated
on the basis of two separate evaluation criteria.

2. Penetration test frameworks (RQ1-part 1)
We have selected belowmentioned frameworks from our sys-
tematic literature and will further evaluate these frameworks
on the basis of our evaluation criteria to answer one portion
of our research question.
a. Open Source Security Testing Methodology Manual

(OSSTMM)
Open Source Security Testing Methodology includes a set of
strategies for security and quality that can be implemented
for penetration and vulnerability testing. OSSTMM audit
covers each aspect and relationship among software, system,
people and processes. Through Passive and Intrusive attacks,
a review report is generated which helps both, the developers
and the network professionals to improve security.

OSSTMM consists of (1) COMSEC (communications
security channel) for human and physical interactions
(2) SPECSEC (spectrum security channel) for wireless sig-
nals and communication (3) PHYSSEC (physical security
channel) class for Telecommunications and data networks.
OSTMM focuses on testing of application from penetration
point of view and what measures should be taken after the

tests are performed. This methodology does not cover what
tools should be used for evaluation and testing of various
interactions and classes [95].

b. OWASP (Open Web Application Security Project)

OWASP is a community dedicated to providing security
guidelines, tools, secure coding standard (ASVS) and doc-
umentation to improve application security. OWASP frame-
work consists of (1) Information Gathering (2) configuration
of information (3) logging (4) Session testing (5) authoriza-
tion testing. OWASP Mobile Application Security Verifica-
tion Standard helps in embedding security in mobile apps.

MASVS has two security levels L1 and L2 as well as pro-
tection of app from reverse engineering or tampering. Both
MASVS-L1 and MASVS-L2 guidelines provide best prac-
tices that cover all the aspects of security threats. MASVS
define two security levels (L1 & L2) and resiliency require-
ment (MASV-R) to protect against tempering and reverse
engineering. MASVS-L1 covers standard security require-
ments for mobile applications such as data handling and
interaction of app in mobile environment. MASVS-L2 cov-
ers in-depth security beyond standard security requirements.
App can achieve L2 level if threat model exits and based on
the threat model control have been implemented.

MASVS-R signifies discretionary protective layer for
obstructing reverse engineering and app tampering.
MASVS-R can be applied on apps which handle sensitive
data and functionality is applied. The app can have state of
art security if it has clearly defined tempering and reverse
engineering attacks. To achieve this level, the application can
leverage verifiable techniques for software protection and
hardware security features.

OWASP identifies top ten serious application security risks
and their technical and business. It also provides methods
to deal with these security risks. OWASP top ten security
checklist for secure programming is a great resource for
developers [96]. OWASP provides resources to the develop-
ers to develop controls for the security risks and build secure
applications [97].

c. NIST ISAM (Information Security Assessment
Methodology)

NIST Pen-test methodology consists of Four Phases which
include (1) Planning (2) Discovery (3) Attack (4) Reporting.
During Planning phase objectives are defined, information
about the SUT (System under test) is gathered and vulnerabil-
ity analysis is performed. During execution, various tests are
performed to determine vulnerabilities and finally identified
vulnerabilities are reported. NIST ISAM focuses on devel-
oping policies for penetration test and security assessment.
Policies and technical considerations alongwith standardized
testing techniques can result in improved security [98]. NIST
standard NIST 800-163 [110] provides guidelines for the
security vetting ofmobile application. The application vetting
process is a series of activities to check if themobile app secu-
rity conforms to the security standards of the organisation.
App vetting is done in following steps:-

87812 VOLUME 9, 2021



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

FIGURE 5. Overall SLR process.

• Security Artifacts are reviewed
• App vulnerability testing is done and report is gener-

ated (Test tools are used)
• Compliance with organization security standards is

checked and recommendations are given.

d. Information Systems Security Assessment Frame-
work (ISSAF)

ISSAF methodology is a peer-reviewed framework
designed to assess security and suggest standards for each
domain by reflecting actual scenarios. ISSAF consists of
activities which include information gathering, network map-
ping, vulnerability assessment, penetration testing, privilege
escalation, enumeration, gaining access and covering the
tracks. ISSAF, however, does not provide security guidelines
for mobile phone app development.

e. PTES (Penetration Testing Execution Standard)

Penetration Testing Execution Standard includes several
other standards and guidelines such as OWASP for web
penetration testing for conducting tests in web and other
applications. PTES framework consist of (1) Pre-engagement
Interactions to define scope (2) Intelligence Gathering
to gather information about the target system (3) Threat
Modelling for pen-test execution (4) Vulnerability Analy-
sis for discovering vulnerable behavior and flaws in SUT
(5) Exploitation for establishing unauthorized access (6) Post
Exploitation for covering the tracks (7) Reporting for the
customer with suggestions.

3. Penetration test frameworks Evaluation

The shortlisted above listed penetration test methodologies
and frameworks are evaluated on the basis of following cri-
teria from ISO/IEC 25010:2013 software quality model to
check if these frameworks provide any model-based support
to the developers/ designer:

• Coverage: It refers to the scope of the methodologies
to deal with every aspect of pen-testing ranging from a
web-based application to mobile native apps.

• Flexibility: Flexibility refers to the ability of pene-
tration test methodologies to allow community devel-
opers and testers to extend pen-tests capability by
adding/extending guidelines.

• Adaptability: The framework should have well
defined and non-ambiguous guidelines so that testing
can be performed on android OS-based apps.

• Modelling: Modelling comprehends the realization
of MDE (model-driven engineering) and provides
Model-based support to embed security in design using
prebuild stereotypes and class diagrams.

• Usability for amateur developers: The methodology
Provides a knowledge base and tools which can help
in automatically identifying vulnerabilities during the
modelling of application.

4. Evaluation Results

OSSTMM 3, NIST-ISAM, ISSAF, and PTES show
coverage issues of various application domains from

VOLUME 9, 2021 87813



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

TABLE 4. Literature quality assessment.

87814 VOLUME 9, 2021



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

TABLE 4. (Continued.) Literature quality assessment.

VOLUME 9, 2021 87815



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

TABLE 4. (Continued.) Literature quality assessment.

87816 VOLUME 9, 2021



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

TABLE 4. (Continued.) Literature quality assessment.

VOLUME 9, 2021 87817



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

TABLE 4. (Continued.) Literature quality assessment.

penetration testing point of view. Whereas, OWASP covers
all the aspects of web, software and mobile application devel-
opment domains and can be implemented in all the phases
of SDLC. NIST allows profiling for implementing flexibil-
ity in the framework by defining cybersecurity outcomes
to achieve the desired risk management goals. OSSTMM,
OWASP, ISSAF and PTES have limited flexibility in various
pen-test execution criteria.

OWASP and OSSTMM have well defined and detailed
processes and guidelines for covering differing vulnerabili-
ties in software applications. OWASP framework allows and
provides guidelines that can help the developers to implement
security in all the phases of SDLC.

NIST, OSSTMM, OWASP, ISSAF and PTES do not men-
tion anymodelling tools nor do they provide any technique on
how to embed security and design different threat models dur-
ing designing of the application. OWASP and NIST provide a
guideline on vulnerabilities and how to mitigate certain risks
by secure coding but none of the above has the knowledge
base and tools which can help the designers and developer
to design a secure application by automatically identifying
vulnerabilities during the modelling of an application.

Based on the evaluation tabulated in Table 5, it is evident
that these penetration test frameworks provide guidelines,
tools and techniques to assess security and focus on pene-
tration testing after the completion of an application. These
methodologies are generic and mainly focused on web-based
applications. Developers and testers cannot use them without
having the expertise and knowledge of change effect. Hence,
it is believed no such model-driven methodology for pene-
tration testing in an Android application is available which
can help the designer to use a threat-model knowledge-base
to model vulnerabilities.

5. Penetration test Tools (RQ1-part 2)

Penetration testing tools help in identifying and eliminating
security issues present in the application. The model-based
penetration test methodology is performed by auto-generated
test cases on the basis of SUT models. During our system-
atic literature review, it was revealed that more than 50%
of the tools used model-based methodology and test cases
were automatically generated and executed. We observed

TABLE 5. Pen-test methodologies and frameworks.

during the review that these pen-test tools use various test
methodologies which include model-based, search-based,
fuzzing and mutation-based testing. For better test coverage,
there are many tools which use multiple test methodologies
(EVODRIOD) [111], [112].

There are three types of testing 1) White Box testing is
done at the early stages by testing internal structures. Full
knowledge of source code is required to develop test cases.
2) Black box testing tests the functionality of the application
and 3) Gray box testing can be done with limited knowl-
edge of internal structure and functionality. i.e. for android
apps, tests can be developed by going through manifest file.
Vega at el. [112] benchmarked tools by dynamic analysis of
vulnerabilities and observer that knowledge bases and search
algorithm are periodically updated for improvement in accu-
racy but they still leave some vulnerabilities unaccounted.
Although reviewers and bloggers publish the review about
tools accuracy in various websites, it is difficult for the devel-
opers and users to know which tool is suitable for them and
what sort of vulnerabilities are captured. Munoz et al. [113]
have compared the accuracy of model-based penetration test
tools and compared the result of the vulnerability reported
by the tools. It was observed that a number of tools are not
accurate and show false-positive results.

During our research, we identified and analyzed following
thirteen (13) tools from the selected literature.

87818 VOLUME 9, 2021



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

• Metasploit [89] is a GUI and command-line tool and
has an advance framework for penetration testing.
It uses a payload to perform exploit on target machines
and can be used on network application and servers etc.
Metasploit can also perform manual brute-forcing and
static and dynamic code analysis.

• Core Impact is used for mobile device penetration
testing. It also performs network device penetration
through password identification and cracking [45].

• W3af is a web penetration framework that helps in
penetration testing through vulnerability discovery,
attack and vulnerability audit. W3af has proxy support
and performs HTTP response cache, DNS cache, and
cookie handling and user agent faking [94].

• Wireshark helps in network analysis and it can capture
and display packets in real-time. Packets can also be
captured offline and network packet analyzer provides
details about packet, protocols etc. Wireshark is mul-
tiplatform and runs on various operating systems and
provides decryption support for SSL, TLS, WPA and
IPSec [89].

• Netsparker has a web scanner that helps in identifi-
cation of vulnerabilities and provides a solution. It also
detects and exploits SQL injections and local file induc-
tions [92].

• BurpSuite performs sensitive data searching and IP
scans. It also performs web scanning to detect vulnera-
bilities. Burp Suite is multiplatform and also intercepts
crawling contents [93].

• OWASP ZAP identifies security holes through passive
scanning and also perform brute force attack for pass-
word cracking and directories access. ZAP identifies
and exploits vulnerabilities and can execute Beanshell
scripts [91].

• Nmap is a multi-platform security scanner to detect
network host and displays results in the form of interac-
tive graphs. It can draw topologies and shows changes
in the network hosts and services to track any vulnera-
bilities or services which are down [88].

• Intent Fuzzer is android vulnerability scanner and
finds the bug that can crash the system. It fuzzes all the
components including broadcast receivers. It can only
fuzz a single activity at a time [102].

• Caiipa runs the app in real-time hardware or in the
emulator and performs bugs and fuzzing test. Another
important aspect of Caiipa is that it inspects the
code as well to check if it is draining the system
resources [100].

• IntentDroid [107] dynamically analyses Android apps
for Inter App Communication related vulnerabilities.
It generates attack scenario for vulnerabilities such
as User-Interface, SQL Injection, Unsafe Reflections,
Spoofing and Cross-Site Scripting.

• CRAXDroid tests Android mobile and tablets and test
system and applications in executable form without
source code and uses Android emulator. CraxDroid

automatically crawls execution paths to identify poten-
tial software defects. [101].

• Sapienz performs White, Gray and Black box test-
ing on the application under test. It also unpacks
and repacks the app and uses non-invasive skin
coverage [100].

A. EVALUATION CRITERIA
As shown in table 6, the above tools were evaluated using the
below-mentioned criteria.
Code Analysis: Reconnaissance – Information gathering

on the target and footprinting.
Code Review: Identifying issues in source code.
Vulnerability Analysis: Capability of identifying, classi-

fying and prioritizing vulnerabilities.
Vulnerability Exploit: Proficiency of exploiting the vul-

nerability.
Payload: Reports on test results.
Model bases test generation: The tool automatically gen-

erates test cases.
Vulnerability modelling in the design phase using

UML: The tools supports the modeling of threat vectors.
If the tool supports (3) the assessment criteria the tool will

get 1 score and if not supported (5 ) will get 0 score. Since
we have seven evaluations criteria so the total score is 7.

B. EVALUATION RESULTS
Analysis of penetration test tools mentioned in Fig-
ure 6 revealed that these tools can detect vulnerabilities from
applications after development of application. However, any
vulnerabilities detected can be fixed by the developer post
application development which cost extra time and often lead
to changes in the entire structure. Among selected tools,
we were unable to find functionality which can help in pro-
ducing a secure design by integrating security stereotypes
during the design phase of android application for novice
developers/designers who have little or no knowledge about a
secure design or familiarity around penetration related issues.

6. Conclusion and Discussion
Different penetration test frameworks and tools were ana-
lyzed and each framework has different coverage issues for
Android domain. Although, these frameworks provide guide-
lines, tools and techniques for effective penetration testing
but these methodologies are generic and mainly focused on
web-based applications. Developers and testers cannot use
them without having the expertise and knowledge of change
effect. For effective penetration testing and to test vulnerabil-
ities in the application, all the policy base, static and dynamic
approaches and techniques should be applied to overcome
limitations in penetration testing tools. Different commu-
nication channels such as shared preferences and Content
provider should also be considered for analysis. Below are
a few findings for effectively testing the application for vul-
nerabilities.
• The security level must be decided at the beginning of
the application development and Secure development
techniques should be employed.

VOLUME 9, 2021 87819



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

TABLE 6. Comparison of tools.

• Sensitive data and information should be identified and
handled as per security requirements.

• Functional tests should be performed based on the sys-
tem requirements.

• BothManual and automated testing tools should be used
to test security aspects of the android application.

• Test bed of the applications should not only be limited
to the specific application but it should also cover IPC
(inter process communication) and privilege handling
among different applications.

• Automated code analysis and code review techniques
should be employed.

• Different methods like GET, POST, PUT etc. along
with functionality, data format and data shared between
services should be tested.

• Application should be tested for memory and energy
leaks.

Based on the research and literature review, it is
concluded that no such model-driven methodology for
penetration testing in an Android application is available
which can help the developer to model vulnerabilities during
the design and identify risks during coding stage. There is
an urgent need to develop solutions which can monitor the

source code of the app in real time and can capture and prompt
coding vulnerabilities during the development stage.

The researcher community can focus on developing an
application which can have inbuilt threat repository to
help developer in designing the functionality using custom
secure profile of UML stereotypes for identifying all the
threats/vulnerabilities during coding as well as code auto
correct feature using Java libraries.

V. APP DEVELOPMENT CHALLANGES (RQ2)
Mobile application development involves writing software
applications that can be native or web and uses the same
SDLC. Android devices are different based on hardware fea-
tures and developer must ensure that app should be capable
to run on different devices carrying the same android OS
version. As shown in Figure 7, our literature review con-
cluded that android app developers come across a number of
challenges w.r.t android security and privacy.

A. ADHERENCE TO BEST PRACTICES
Malicious applications in android OS can use other applica-
tions to steal data and drain resources [114]. Various android
security frameworks provide best practices and vulnerability

87820 VOLUME 9, 2021



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

FIGURE 6. Evaluation results of testing tools.

documentation but developers do not adhere to these best
practices and resulting applications are often vulnerable to
attacks. Android apps are built using third party exposed
components and devices. The developer will be responsible
for data security and privacy leak if these components are not
protected through label declaration [115], [116].

B. LIMITING COMPUTING POWER AND RESOURCES
In mobile app design, a major hindrance is the screen size,
limited processing power and limited storage space. A set
of best practices guidelines to deal with issue and chal-
lenges related to mobile app development can greatly help
the designer and developer. For application where developers
do not take proper care of mobile resource utilization, battery
and resource drain may occur [117]. Design limitation often
results in development problems [118].

C. LACK OF SECURITY KNOWLEDGE AND COMPLEXITY
OF TESTING
Due to limited resources and the unique nature of devices,
the mobile app testing faces a number of issues. Applica-
tions often tested with mobile emulator often do not generate
the same real-time device characteristics and do not show
network and hardware related failure due to coding issues.
There is a need for a model-driven testing framework for
Automated testing functional and compatibility testing of
mobile phone apps [119].

D. SECURITY AND PRIVACY
Since the era has changed, Web applications are mostly con-
verted into mobile apps. Android apps are widespread and it’s
the developer’s responsibility to protect and secure user data
by inducing end to end security during the mobile app devel-
opment. These applications should be tested thoroughly for
security through automated testing tools and test cases [120].
Lack of security testing tools and techniques also affect the
reliability of resulting android application [122]. Security
flaws emerge from time to time in various android versions
such as Fakeid, mRST and Hijacking etc. developers often do
not have knowledge of such security flaws which result in a
vulnerable application.

E. MANIFEST FILE CONFIGURATIONS ISSUES
The Manifest file is written by developers and contains
important parameters and configurations to run an appli-
cation. These configurations include security, privacy and
accessibility of an application. Any type of permissions
which are required to access protected parts of system are
defined in the manifest and can lead to serious privacy and
security infringes if not handled properly by developer [121].
Discussion:
Mobile application development is a new field and a num-

ber of programmers are shifting to mobile app development.
Security requirements are not captured during development
and penetration testing since it is considered as nonfunctional
requirement and is performed at the time of deployment.

VOLUME 9, 2021 87821



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

FIGURE 7. Android developer challenges.

This makes the application vulnerable and late pen-testing
and test and patch technique also consumes more time and
cost.

The research indicates that developers lack security aware-
ness and make ad-hoc decisions for implementation of
security during the development stage. Data encryption
and other recommended security and privacy measures and
best-practices are not adhered. Third party tools are often
used for penetration testing which do often cover the com-
plete app environment as well as escalated provisions and
Inter process communications. Non authentic libraries often
used which comprise privacy and result in loss of user’s data.
Security is not considered during the early phases of software
development life cycle. Penetration testing is considered as
a non-functional activity and lack of pen-tests result in a
faulty application. Unified modeling language doesn’t allow
to model android attack vector as it does not have specific
elements to model these interaction for android environment.

Based on the research it is evident that developers can adopt
following practices to secure the application.

• Write efficient and secure code using best coding prac-
tices.

• Data should be encrypted and inter process communica-
tion should be secured.

• Code of third party libraries should be thoroughly tested
for vulnerabilities before embedding them.

• High level authentication code and policies should be
implemented.

• Security policies should be implemented at each stage
of SDLC.

• Application should have a mechanism to detect code
tempering.

• Use of modern malware detetion tools with deep leanrn-
ing abiliteis can secure the application.

• Minimum privileges should be assigned to the applica-
tion and sessions should be handled properly.

VI. FUTURE DIRECTION
The fast-paced android app market is facilitating the busi-
nesses but at the same time it is alarming that a number of
applications are vulnerable. In this research, we have dis-
cussed many frameworks and tools for android penetrations
testing. We have also discussed various developers issues
related to android application development. Based on the
research and answers to the research questions, we will make
the following contributions to help the developers to produce
time-efficient and secure applications:
• Highly proficient hybrid learning enabled intelligent
multivector malware detection mechanism.

87822 VOLUME 9, 2021



I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

• A novel model-based Android Pernetration secure
framework which can out perform both in terms of time
efficiency and detection accuracy.

• A vulnerability repository which can be updated to pro-
vide tooltips while designing the application using Java
classes to identify related threats.

REFERENCES
[1] M. Howard, ‘‘The security development lifecycle,’’ Redmond,WA, USA:

Microsoft Press, 2006.
[2] A. Al-Ghamdi, ‘‘A survey on software security testing techniques,’’ Int.

J. Comput. Sci. Telecommun., vol. 4, pp. 14–18, Apr. 2013.
[3] M. Denis, C. Zena, and T. Hayajneh, ‘‘Penetration testing: Concepts,

attack methods, and defense strategies,’’ in Proc. IEEE Long Island Syst.,
Appl. Technol. Conf. (LISAT), Farmingdale, NY,USA,Apr. 2016, pp. 1–6,
doi: 10.1109/LISAT.2016.7494156.

[4] A. Petukhov and D. Kozlov, ‘‘Detecting security vulnerabilities in Web
applications using dynamic analysis with penetration testing,’’ in Proc.
Appl. Secur. Conf., 2008.

[5] B. Arkin, S. Stender, and G. McGraw, ‘‘Software penetration testing,’’
IEEE Secur. Privacy Mag., vol. 3, no. 1, pp. 84–87, Jan. 2005, doi:
10.1109/msp.2005.23.

[6] Y. Arya, A. Bhalotiya, C. Sharma, V. Kag, and S. Snaghvi, ‘‘International
journal of engineering sciences & research technology a study of metas-
ploit tool,’’ Arya, vol. 5, p. 2, Feb. 2016.

[7] A. G. Bacudio, X. Yuan, B. T. Bill Chu, and M. Jones, ‘‘An overview of
penetration testing,’’ Int. J. Netw. Secur. Its Appl., vol. 3, no. 6, pp. 19–38,
Nov. 2011, doi: 10.5121/ijnsa.2011.3602.

[8] P. Baker and C. Jervis, ‘‘Early UMLmodel testing using TTCN-3 and the
UML testing profile,’’ in Proc. Test., Acad. Ind. Conf. Pract. Res. Techn.
(TAICPART-MUTATION), Sep. 2007, pp. 47–54.

[9] B. Baloglu, ‘‘How to find and fix software vulnerabilities with cover-
ity static analysis,’’ IEEE Cybersecurity Develop. (SecDev), Nov. 2016,
p. 153.

[10] A. Bartel, J. Klein, Y. L. Traon, and M. Monperrus, ‘‘Automatically
securing permission-based software by reducing the attack surface: An
application to Android,’’ in Proc. 27th IEEE/ACM Int. Conf. Automated
Softw. Eng. (ASE), Sep. 2012, pp. 274–277.

[11] D. D. Bertoglio and A. F. Zorzo, ‘‘Overview and open issues on penetra-
tion test,’’ J. Brazilian Comput. Soc., vol. 23, no. 1, pp. 1–16, Dec. 2017.

[12] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, ‘‘Security,
privacy and trust in Internet of Things: The road ahead,’’ Comput. Netw.,
vol. 76, pp. 146–164, Jan. 2015.

[13] J. Bo, L. Xiang, and G. Xiaopeng, ‘‘MobileTest: A tool supporting
automatic black box test for software on smart mobile devices,’’ in Proc.
2nd Int. Workshop Automat. Softw. Test, May 2007, p. 8.

[14] B. Kitchenham and S. Charters, ‘‘Guidelines for performing system-
atic literature reviews in software engineering,’’ Softw. Eng. Group,
Tech. Rep., 2007.

[15] J. Burns, ‘‘Developing secure mobile applications for Android,’’ ISEC,
Tech. Rep., 2008.

[16] C. Carthern, W. Wilson, R. Bedwell, and N. Rivera, ‘‘Introduction to
network penetration testing,’’ in Cisco Networks. Berkeley, CA, USA:
Apress, pp. 759–772, 2015.

[17] Y. Cheon, ‘‘Are java programming best practices also best practices for
Android,’’ Dept. Comput. Sci., Univ. Texas El Paso, El Paso, TX, USA,
Tech. Rep. 16-76, 2016.

[18] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, ‘‘Analyzing inter-
application communication in Android,’’ in Proc. 9th Int. Conf. Mobile
Syst., Appl., services (MobiSys), Jun. 2011, pp. 239–252.

[19] H. M. Z. A. Shebli and B. D. Beheshti, ‘‘A study on penetration test-
ing process and tools,’’ in Proc. IEEE Long Island Syst., Appl. Tech-
nol. Conf. (LISAT), Farmingdale, NY, USA, May 2018, pp. 1–7, doi:
10.1109/LISAT.2018.8378035.

[20] A. Mosenia and N. K. Jha, ‘‘A comprehensive study of security of
Internet-of-Things,’’ IEEE Trans. Emerg. Topics Comput., vol. 5, no. 4,
pp. 586–602, Oct. 2017, doi: 10.1109/TETC.2016.2606384.

[21] G. W. Cross, ‘‘Using a protocol analyzer to introduce communications
protocols,’’ in Proc. 10th ACM Conf. SIG-Inf. Technol. Educ. (SIGITE),
Oct. 2009, pp. 178–181.

[22] D. Menoski, P. Mitrevski, and T. Dimovski, ‘‘EvaluatingWebsite security
with penetration testing methodology,’’ in Proc. Int. Conf. Appl. Internet
Inf. Technol., Zrenjanin, Serbia, 2014.

[23] J. Dawson and J. T. McDonald, ‘‘Improving penetration testing method-
ologies for security-based risk assessment,’’ in Proc. Cybersecurity Symp.
(CYBERSEC), Apr. 2016, pp. 51–58.

[24] R. Shanmugapriya, ‘‘A study of network security using penetration
testing,’’ in Proc. Int. Conf. Inf. Commun. Embedded Syst. (ICICES),
Feb. 2013, pp. 371–374, doi: 10.1109/ICICES.2013.6508375.

[25] B. Duan, Y. Zhang, and D. Gu, ‘‘An easy-to-deploy penetration testing
platform,’’ in Proc. 9th Int. Conf. Young Comput. Scientists, Nov. 2008,
pp. 2314–2318.

[26] X. Qiu, S. Wang, Q. Jia, C. Xia, and Q. Xia, ‘‘An automated method of
penetration testing,’’ in Proc. IEEE Comput., Commun. IT Appl. Conf.,
Oct. 2014, pp. 211–216.

[27] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti,
and M. Rajarajan, ‘‘Android security: A survey of issues, malware pen-
etration, and defenses,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 2,
pp. 998–1022, 2nd Quart., 2015, doi: 10.1109/comst.2014.2386139.

[28] N. Gandhewar and R. Sheikh, ‘‘Google Android: An emerging software
platform for mobile devices,’’ Int. J. Comput. Sci. Eng., vol. 1, no. 1,
pp. 12–17, 2010.

[29] (2019). In Gartner. Accessed: Jul. 11, 2019. [Online]. Available:
https://www.gartner.com/reviews/market/mobile-application-security-
testing

[30] S. Gejibo, F. Mancini, K. A. Mughal, R. A. B. Valvik, and J. Klungsøyr,
‘‘Secure data storage for mobile data collection systems,’’ in Proc.
Int. Conf. Manage. Emergent Digit. EcoSystems (MEDES), 2012,
pp. 131–144.

[31] R. Goel, M. C. Govil, and G. Singh, ‘‘A secure software design method-
ology,’’ in Proc. Int. Conf. Adv. Comput., Commun. Informat. (ICACCI),
Sep. 2016, pp. 2484–2488.

[32] (2019). In: Omg.Org. Accessed: Sep. 19, 2019. [Online]. Available:
https://www.omg.org/spec/UML/2.3/Infrastructure/PDF

[33] H. Gupta and R. Kumar, ‘‘Protection against penetration attacks using
metasploit,’’ in Proc. 4th Int. Conf. Rel., Infocom Technol. Optim.
(ICRITO) (Trends Future Directions), Sep. 2015, pp. 1–4.

[34] M. Gusev, S. Ristov, and A. Donevski, ‘‘Security vulnerabilities from
inside and outside the eucalyptus cloud,’’ in Proc. 6th Balkan Conf.
Informat. (BCI), Sep. 2013, pp. 95–101.

[35] L. Harrison, R. Spahn, M. Iannacone, E. Downing, and J. R. Goodall,
‘‘NV: Nessus vulnerability visualization for the Web,’’ in Proc. 9th Int.
Symp. Visualizat. Cyber Secur. (VizSec), Oct. 2012, pp. 25–32.

[36] V. Y. Hnatyshin and A. F. Lobo, ‘‘Undergraduate data communi-
cations and networking projects using opnet and wireshark soft-
ware,’’ ACM SIGCSE Bull., vol. 40, no. 1, p. 241, 2008, doi:
10.1145/1352322.1352222.

[37] F. Holik, J. Horalek, O. Marik, S. Neradova, and S. Zitta, ‘‘Effective
penetration testing with metasploit framework and methodologies,’’ in
Proc. IEEE 15th Int. Symp. Comput. Intell. Informat. (CINTI), Nov. 2014,
pp. 237–242.

[38] C. Hu and I. Neamtiu, ‘‘Automating GUI testing for Android appli-
cations,’’ in Proc. 6th Int. Workshop Automat. Softw. Test, May 2011,
pp. 77–83.

[39] L. F. Johnson and H. Witchey, ‘‘The 2010 horizon report: Museum
edition,’’ Curator, Museum J., vol. 54, no. 1, pp. 37–40, Jan. 2011, doi:
10.1111/j.2151-6952.2010.00064.x.

[40] G. K. Juneja, ‘‘Ethical hacking: A technique to enhance information secu-
rity,’’ Int. J. Innov. Res. Sci., Eng. Technol., vol. 2, no. 12, pp. 7575–7580,
2013.

[41] Y. Kang, H. H. Cho, Y. Shin, and J. B. Kim, ‘‘Comparative study of pen-
etration test methods,’’ Adv. Sci. Technol. Lett., vol. 87, no. 1, pp. 34–37,
2015.

[42] R. Kapoor and S. Agarwal, ‘‘Sustaining superior performance in busi-
ness ecosystems: Evidence from application software developers in the
iOS and Android smartphone ecosystems,’’ Org. Sci., vol. 28, no. 3,
pp. 531–551, Jun. 2017, doi: 10.1287/orsc.2017.1122.

[43] T. Karygiannis, ‘‘Network security testing using mobile agents,’’ in Proc.
3rd Int. Conf. Exhib. Practical Appl. Intell. Agents Multi-Agent Technol.,
London, U.K., Mar. 1998, pp. 1–7.

[44] N. Kaur and P. Kaur, ‘‘Mitigation of SQL injection attacks using threat
modeling,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 39, no. 6, pp. 1–6,
2014, doi: 10.1145/2674632.2674638.

[45] J.-K. Ke, C.-H. Yang, and T.-N. Ahn, ‘‘Using w3af to achieve automated
penetration testing by live DVD/live USB,’’ in Proc. Int. Conf. Hybrid Inf.
Technol. (ICHIT), May 2009, pp. 460–464.

[46] M. Ko, Y.-J. Seo, B.-K. Min, S. Kuk, and H. Soo Kim, ‘‘Extending UML
meta-model for Android application,’’ in Proc. IEEE/ACIS 11th Int. Conf.
Comput. Inf. Sci., May 2012, pp. 669–674.

VOLUME 9, 2021 87823

http://dx.doi.org/10.1109/LISAT.2016.7494156
http://dx.doi.org/10.1109/msp.2005.23
http://dx.doi.org/10.5121/ijnsa.2011.3602
http://dx.doi.org/10.1109/LISAT.2018.8378035
http://dx.doi.org/10.1109/TETC.2016.2606384
http://dx.doi.org/10.1109/ICICES.2013.6508375
http://dx.doi.org/10.1109/comst.2014.2386139
http://dx.doi.org/10.1145/1352322.1352222
http://dx.doi.org/10.1111/j.2151-6952.2010.00064.x
http://dx.doi.org/10.1287/orsc.2017.1122
http://dx.doi.org/10.1145/2674632.2674638


I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

[47] L. Liu, J. Xu, C. Guo, J. Kang, S. Xu, and B. Zhang, ‘‘Exposing
SQL injection vulnerability through penetration test based on finite state
machine,’’ in Proc. 2nd IEEE Int. Conf. Comput. Commun. (ICCC),
Oct. 2016, pp. 1171–1175.

[48] N. Mahendra and S. Ahmad, ‘‘A categorized review on software security
testing,’’ Int. J. Comput. Appl., vol. 154, no. 1, pp. 21–25, Nov. 2016, doi:
10.5120/ijca2016912023.

[49] C.-K. Chen, Z.-K. Zhang, S.-H. Lee, and S. Shieh, ‘‘Penetration testing
in the IoT age,’’ Computer, vol. 51, no. 4, pp. 82–85, Apr. 2018.

[50] S. Malek, N. Esfahani, T. Kacem, R. Mahmood, N. Mirzaei, and
A. Stavrou, ‘‘A framework for automated security testing of Android
applications on the cloud,’’ in Proc. IEEE 6th Int. Conf. Softw. Secur. Rel.
Companion, Jun. 2012, pp. 35–36.

[51] Y. V. N. Manikanta and A. Sardana, ‘‘Protecting Web applications from
SQL injection attacks by using framework and database firewall,’’ in
Proc. Int. Conf. Adv. Comput., Commun. Informat. (ICACCI), 2012,
pp. 609–613.

[52] F. Martinelli, F. Mercaldo, and A. Saracino, ‘‘BRIDEMAID: An hybrid
tool for accurate detection of Androidmalware,’’ inProc. ACMAsia Conf.
Comput. Commun. Secur., Apr. 2017, pp. 899–901.

[53] M. Felderer, P. Zech, R. Breu, M. Büchler, and A. Pretschner, ‘‘Model-
based security testing: A taxonomy and systematic classification,’’ Softw.
Test., Verification Rel., vol. 26, no. 2, pp. 119–148, Mar. 2016.

[54] M. Mirjalili, A. Nowroozi, and M. Alidoosti, ‘‘A survey on Web penetra-
tion test,’’ Adv. Comput. Sci., Int. J., vol. 3, no. 6, pp. 107–121, 2014.

[55] O. Olsen, P. Middleton, J. Ezzo, P. C. Gotzsche, V. Hadhazy,
A. Herxheimer, J. Kleijnen, and H. McIntosh, ‘‘Quality of cochrane
reviews: Assessment of sample from 1998,’’ BMJ, vol. 323, no. 7317,
pp. 829–832, Oct. 2001, doi: 10.1136/bmj.323.7317.829.

[56] A. D. Oxman, ‘‘Systematic reviews: Checklists for review arti-
cles,’’ BMJ, vol. 309, no. 6955, pp. 648–651, Sep. 1994, doi:
10.1136/bmj.309.6955.648.

[57] M. Refai, ‘‘Exploiting a buffer overflow using metasploit framework,’’ in
Proc. Int. Conf. Privacy, Secur. Trust Bridge Gap Between PST Technol.
Bus. Services (PST), Oct. 2006, p. 74.

[58] B. Rexha, A. Halili, K. Rrmoku, and D. Imeraj, ‘‘Impact of secure
programming on Web application vulnerabilities,’’ in Proc. IEEE Int.
Conf. Comput. Graph., Vis. Inf. Secur. (CGVIS), Nov. 2015, pp. 61–66.

[59] A. Rodriguez-Mota, P. J. Escamilla-Ambrosio, S. Morales-Ortega,
M. Salinas-Rosales, and E. Aguirre-Anaya, ‘‘Towards a 2-hybrid Android
malware detection test framework,’’ in Proc. Int. Conf. Electron., Com-
mun. Comput. (CONIELECOMP), Feb. 2016, pp. 54–61.

[60] S. Sandhya, S. Purkayastha, E. Joshua, and A. Deep, ‘‘Assessment of
website security by penetration testing using wireshark,’’ in Proc. 4th Int.
Conf. Adv. Comput. Commun. Syst. (ICACCS), Jan. 2017, pp. 1–4.

[61] L. Yang, H. Zhang, H. Shen, X. Huang, X. Zhou, G. Rong, and
D. Shao, ‘‘Quality assessment in systematic literature reviews: A soft-
ware engineering perspective,’’ Inf. Softw. Technol., vol. 130, Feb. 2021,
Art. no. 106397, doi: 10.1016/j.infsof.2020.106397.

[62] S. Leonhardt, J. Petersohn, and C. Schmid, ‘‘Penetration testing,’’ STL
GmbH Stuttgart, Stuttgart, Germany, Tech. Rep., 2011.

[63] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and
C. Glezer, ‘‘Google Android: A comprehensive security assessment,’’
IEEE Secur. Privacy Mag., vol. 8, no. 2, pp. 35–44, Mar. 2010, doi:
10.1109/msp.2010.2.

[64] A. Shanley and M. N. Johnstone, ‘‘Selection of penetration testing
methodologies: A comparison and evaluation,’’ presented at the Austral.
Inf. Secur. Manage. Conf., 2015.

[65] K. Shaukat, A. Faisal, R. Masood, A. Usman, and U. Shaukat, ‘‘Security
quality assurance through penetration testing,’’ in Proc. 19th Int. Multi-
Topic Conf. (INMIC), Dec. 2016, pp. 1–6.

[66] S. Faily, J. McAlaney, and C. Iacob, ‘‘Ethical dilemmas and dimensions
in penetration testing,’’ in Proc. HAISA, Jun. 2015, pp. 233–242.

[67] M. B. Shuaibu and R. A. Ibrahim, ‘‘Web application development model
with security concern in the entire life-cycle,’’ inProc. 4th IEEE Int. Conf.
Eng. Technol. Appl. Sci. (ICETAS), Nov. 2017, pp. 1–6.

[68] A. K. Singh and S. Roy, ‘‘A network based vulnerability scanner for
detecting SQLI attacks in Web applications,’’ in Proc. 1st Int. Conf.
Recent Adv. Inf. Technol. (RAIT), Mar. 2012, pp. 585–590.

[69] Y. Stefinko, A. Piskozub, and R. Banakh, ‘‘Manual and automated pen-
etration testing. Benefits and drawbacks. Modern tendency,’’ in Proc.
13th Int. Conf. Modern Problems Radio Eng., Telecommun. Comput. Sci.
(TCSET), Feb. 2016, pp. 488–491.

[70] S. Holla and M. M. Katti, ‘‘Android based mobile application develop-
ment and its security,’’ Int. J. Comput. Trends Technol., vol. 3, no. 3,
pp. 486–490, 2012.

[71] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, ‘‘The evo-
lution of Android malware and Android analysis techniques,’’ ACMCom-
put. Surveys, vol. 49, no. 4, pp. 1–41, Feb. 2017, doi: 10.1145/3017427.

[72] T. Dimkov, W. Pieters, and P. Hartel, ‘‘Two methodologies for physical
penetration testing using social engineering,’’ in Proc. 26th Annu. Com-
put. Secur. Appl. Conf. (ACSAC), Dec. 2010, pp. 399–408.

[73] V. Tilemachos and C. Manifavas, ‘‘An automated network intrusion pro-
cess and countermeasures,’’ in Proc. 19th Panhellenic Conf. Informat.,
Oct. 2015, pp. 156–160.

[74] I. A. Tondel, M. G. Jaatun, and P. H. Meland, ‘‘Security requirements for
the rest of us: A survey,’’ IEEE Softw., vol. 25, no. 1, pp. 20–27, Jan. 2008,
doi: 10.1109/ms.2008.19.

[75] E. Ungan, S. Trudel, and L. Poulin, ‘‘Using FSM patterns to size security
non-functional requirements with COSMIC,’’ inProc. 27th Int. Workshop
Softw. Meas. 12th Int. Conf. Softw. Process Product Meas., Oct. 2017,
pp. 64–76.

[76] M. Usman, M. Z. Iqbal, and M. U. Khan, ‘‘A product-line model-
driven engineering approach for generating feature-based mobile
applications,’’ J. Syst. Softw., vol. 123, pp. 1–32, Jan. 2017, doi:
10.1016/j.jss.2016.09.049.

[77] S. Vaupel, G. Taentzer, R. Gerlach, and M. Guckert, ‘‘Model-driven
development of mobile applications for Android and iOS supporting role-
based app variability,’’ Softw. Syst. Model., vol. 17, no. 1, pp. 35–63,
Feb. 2018.

[78] B. L. V. V. Kumar, K. R. Kumar, and V. Santhi, ‘‘Penetration
testing using linux tools: Attacks and defense strategies,’’ Int. J.
Eng. Res. Technol., vol. 5, no. 12, Dec. 2016. [Online]. Available:
http://dx.doi.org/10.17577/IJERTV5IS120166

[79] J. Walden, ‘‘IntegratingWeb application security into the IT curriculum,’’
in Proc. 9th ACM SIGITE Conf. Inf. Technol. Educ. (SIGITE), Oct. 2008,
pp. 187–192.

[80] H.-L. Wen, C.-H. Lin, T.-H. Hsieh, and C.-Z. Yang, ‘‘PATS: A parallel
GUI testing framework for Android applications,’’ in Proc. IEEE 39th
Annu. Comput. Softw. Appl. Conf., vol. 2, Jul. 2015, pp. 210–215.

[81] E. Woods, ‘‘Harnessing UML for architectural description—The con-
text view,’’ IEEE Softw., vol. 31, no. 6, pp. 30–33, Nov. 2014, doi:
10.1109/ms.2014.139.

[82] P. Xiong and L. Peyton, ‘‘A model-driven penetration test framework
for Web applications,’’ in Proc. 8th Int. Conf. Privacy, Secur. Trust,
Aug. 2010, pp. 173–180.

[83] P. Vats, M. Mandot, and A. Gosain, ‘‘A comprehensive literature review
of penetration testing & its applications,’’ in Proc. 8th Int. Conf. Rel.,
InfocomTechnol. Optim. (Trends FutureDirections) (ICRITO), Jun. 2020,
pp. 674–680.

[84] T. Borja, M. E. Benalcázar, L. V. Caraguay, and L. I. B. López, ‘‘Risk
analysis and Android application penetration testing based on OWASP
2016,’’ inProc. Int. Conf. Inf. Technol. Syst.Cham, Switzerland: Springer,
Feb. 2021, pp. 461–478.

[85] Z. Qu, S. Alam, Y. Chen, X. Zhou, W. Hong, and R. Riley, ‘‘DyDroid:
Measuring dynamic code loading and its security implications in Android
applications,’’ in Proc. 47th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw. (DSN), Jun. 2017, pp. 415–426.

[86] S. Y. Yerima, M. K. Alzaylaee, and S. Sezer, ‘‘Machine learning-
based dynamic analysis of Android apps with improved code coverage,’’
EURASIP J. Inf. Secur., vol. 2019, no. 1, Dec. 2019, pp. 1–24, doi:
10.1186/s13635-019-0087-1.

[87] S. Bojjagani and V. N. Sastry, ‘‘STAMBA: Security testing for Android
mobile banking apps,’’ in Adv. Signal Process. Intell. Recognit. Syst.
Cham, Switzerland: Springer, 2016, pp. 671–683.

[88] A. Alanda, D. Satria, H. A. Mooduto, and B. Kurniawan, ‘‘Mobile appli-
cation security penetration testing based on OWASP,’’ IOP Conf. Ser.,
Mater. Sci. Eng., vol. 846, no. 1, May 2020, Art. no. 012036.

[89] S. Aymaz, T. Cavdar, S. Aymaz, and E. Ozturk, ‘‘An analysis of load
balancing strategies with wireshark in software defined networks,’’
in Proc. Int. Conf. Artif. Intell. Data Process. (IDAP), Sep. 2018,
pp. 1–5.

[90] P. Shi, F. Qin, R. Cheng, and K. Zhu, ‘‘The penetration testing frame-
work for large-scale network based on network fingerprint,’’ in Proc.
Int. Conf. Commun., Inf. Syst. Comput. Eng. (CISCE), Jul. 2019,
pp. 378–381.

[91] B. Mburano and W. Si, ‘‘Evaluation of Web vulnerability scanners based
on OWASP benchmark,’’ in Proc. 26th Int. Conf. Syst. Eng. (ICSEng),
Dec. 2018, pp. 1–6.

[92] M. B. Seyyar, F. Ö. Çatak, and E. Gül, ‘‘Detection of attack-targeted scans
from the apache HTTP server access logs,’’ Appl. Comput. Informat.,
vol. 14, no. 1, pp. 28–36, Jan. 2018, doi: 10.1016/j.aci.2017.04.002.

87824 VOLUME 9, 2021

http://dx.doi.org/10.5120/ijca2016912023
http://dx.doi.org/10.1136/bmj.323.7317.829
http://dx.doi.org/10.1136/bmj.309.6955.648
http://dx.doi.org/10.1016/j.infsof.2020.106397
http://dx.doi.org/10.1109/msp.2010.2
http://dx.doi.org/10.1145/3017427
http://dx.doi.org/10.1109/ms.2008.19
http://dx.doi.org/10.1016/j.jss.2016.09.049
http://dx.doi.org/10.1109/ms.2014.139
http://dx.doi.org/10.1186/s13635-019-0087-1
http://dx.doi.org/10.1016/j.aci.2017.04.002


I. U. Haq, T. A. Khan: Penetration Frameworks and Development Issues in Secure Mobile Application Development

[93] O. Aslan and R. Samet, ‘‘Investigation of possibilities to detect malware
using existing tools,’’ in Proc. IEEE/ACS 14th Int. Conf. Comput. Syst.
Appl. (AICCSA), Oct. 2017, pp. 1277–1284.

[94] T. Jain and N. Jain, ‘‘Framework for Web application vulnerability dis-
covery and mitigation by customizing rules through ModSecurity,’’ in
Proc. 6th Int. Conf. Signal Process. Integr. Netw. (SPIN), Mar. 2019,
pp. 643–648.

[95] OSSTMM 3—The Open Source Security Testing Methodology Man-
ual. Accessed: Nov. 21, 2019. [Online]. Available: https://www.isecom.
org/OSSTMM.3.pdf

[96] (2019). Accessed: Sep. 3, 2019. [Online]. Available: https://www.
owasp.org/index.php/Category:OWASP_Top_Ten_Project

[97] OWASP Mobile Security Project—OWASP. Owasp.Org. Accessed:
Oct. 28, 2019. [Online]. Available: https://www.owasp.org/index.php/
OWASP_Mobile_Security_Project#Top_Ten_Mobile_Risks

[98] Technical Guide to Information Security Testing and Assessment.
Accessed: Sep. 4, 2019. [Online]. Available: https://nvlpubs.nist.gov/
nistpubs/Legacy/SP/nistspecialpublication800-115.pdf

[99] W. G. J. Halfond, S. R. Choudhary, and A. Orso, ‘‘Penetration testing
with improved input vector identification,’’ in Proc. Int. Conf. Softw. Test.
Verification Validation, Apr. 2009, pp. 346–355.

[100] L. Clapp, O. Bastani, S. Anand, and A. Aiken, ‘‘Minimizing GUI event
traces,’’ in Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw. Eng.,
Nov. 2016, pp. 422–434.

[101] Š. Packevičius, A. Ušaniov, Š. Stanskis, and E. Bareiša, ‘‘The testing
method based on image analysis for automated detection of UI defects
intended for mobile applications,’’ in Proc. Int. Conf. Inf. Softw. Technol.
Cham, Switzerland: Springer, Oct. 2015, pp. 560–576.

[102] F. Palma, N. Realista, C. Serrao, L. Nunes, J. Oliveira, and A. Almeida,
‘‘Automated security testing of Android applications for secure mobile
development,’’ in Proc. IEEE Int. Conf. Softw. Test., Verification Valida-
tion Workshops (ICSTW), Oct. 2020, pp. 222–231.

[103] R. Mahmood, N. Mirzaei, and S. Malek, ‘‘EvoDroid: Segmented evolu-
tionary testing of Android apps,’’ inProc. 22nd ACMSIGSOFT Int. Symp.
Found. Softw. Eng., Nov. 2014, pp. 599–609.

[104] R. R. Asaad, ‘‘Penetration testing: Wireless network attacks method on
Kali Linux OS,’’ Acad. J. Nawroz Univ., vol. 10, no. 1, pp. 7–12, 2021.

[105] A. Avancini and M. Ceccato, ‘‘Security testing of the communication
among Android applications,’’ Proc. 8th Int. Workshop Automat. Softw.
Test (AST), May 2013, pp. 57–63.

[106] O.-E.-K. Aktouf, T. Zhang, J. Gao, and T. Uehara, ‘‘Testing location-
based function services for mobile applications,’’ in Proc. IEEE Symp.
Service-Oriented Syst. Eng., Mar. 2015, pp. 308–314.

[107] P. Zhang and S. Elbaum, ‘‘Amplifying tests to validate exception handling
code: An extended study in the mobile application domain,’’ ACM Trans.
Softw. Eng. Methodology, vol. 23, no. 4, pp. 1–28, Sep. 2014.

[108] K. Yang, J. Zhuge, Y. Wang, L. Zhou, and H. Duan, ‘‘IntentFuzzer:
Detecting capability leaks of Android applications,’’ in Proc. 9th ACM
Symp. Inf., Comput. Commun. Secur., Jun. 2014, pp. 531–536.

[109] K. B. Dhanapal, K. S. Deepak, S. Sharma, S. P. Joglekar, A. Narang,
A. Vashistha, P. Salunkhe, H. G. N. Rai, A. A. Somasundara, and S. Paul,
‘‘An innovative system for remote and automated testing of mobile phone
applications,’’ in Proc. Annu. SRII Global Conf., Jul. 2012, pp. 44–54.

[110] (2019). Vetting the Security of Mobile Applications.
Accessed: Aug. 9, 2019. [Online]. Available: https://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800-163r1.pdf

[111] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, ‘‘Auto-
mated testing of Android apps: A systematic literature review,’’ IEEE
Transactions on Reliability, vol. 68, no. 1, pp. 45–66, Sep. 2018, doi:
10.1109/TR.2018.2865733.

[112] E. A. A. Vega, A. L. S. Orozco, and L. J. G. Villalba, ‘‘Benchmarking
of pentesting tools’’ Int. J. Comput., Elect., Automat., Control Inf. Eng.,
vol. 11, no. 5, pp. 602–605, 2017, doi: 10.5281/zenodo.1130587.

[113] F. R. Muñoz, E. A. A. Vega, and L. J. G. Villalba, ‘‘Analyzing the traffic
of penetration testing tools with an IDS,’’ J. Supercomput., vol. 74, no. 12,
pp. 6454–6469, Dec. 2018, doi: 10.1007/s11227-016-1920-7.

[114] Y. K. Lee, J. Y. Bang, G. Safi, A. Shahbazian, Y. Zhao, and
N. Medvidovic, ‘‘A SEALANT for inter-app security holes in Android,’’
in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng. (ICSE), May 2017,
pp. 312–323.

[115] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl,
‘‘A stitch in time: Supporting Android developers in WritingSecure
code,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 1065–1077.

[116] A. K. Jha and W. J. Lee, ‘‘Analysis of permission-based security in
Android through policy expert, developer, and end user perspectives,’’
J. UCS, vol. 22, no. 4, pp. 459–474, 2016.

[117] A. Aldayel and K. Alnafjan, ‘‘Challenges and best practices for mobile
application development,’’ in Proc. Int. Conf. Comput. Data Anal.,
May 2017, pp. 41–48.

[118] W. Ahmad, C. Kästner, J. Sunshine, and J. Aldrich, ‘‘Inter-app communi-
cation in Android: Developer challenges,’’ in Proc. 13th Int. Conf. Mining
Softw. Repositories, May 2016, pp. 177–188.

[119] C. M. Prathibhan, A. Malini, N. Venkatesh, and K. Sundarakantham, ‘‘An
automated testing framework for testing Android mobile applications in
the cloud,’’ in Proc. IEEE Int. Conf. Adv. Commun., Control Comput.
Technol., May 2014, pp. 1216–1219.

[120] A. Pandey, R. Khan, and A. K. Srivastava, ‘‘Challenges in automation
of test cases for mobile payment apps,’’ in Proc. 4th Int. Conf. Comput.
Intell. Commun. Technol. (CICT), Feb. 2018, pp. 1–4.

[121] A. K. Jha, S. Lee, and W. J. Lee, ‘‘Developer mistakes in writing
Android manifests: An empirical study of configuration errors,’’ in Proc.
IEEE/ACM 14th Int. Conf. Mining Softw. Repositories (MSR), May 2017,
pp. 25–36.

[122] M. Linares-Vasquez, C. Bernal-Cardenas, K. Moran, and D. Poshyvanyk,
‘‘How do developers test Android applications?’’ in Proc. IEEE Int. Conf.
Softw. Maintenance Evol. (ICSME), Sep. 2017, pp. 613–622.

[123] (2019). HTBridge/pivaa. GitHub. Accessed: Sep. 16, 2019. [Online].
Available: https://github.com/HTBridge/pivaa

[124] (2019). Yaazhini—Free Android APK & API Vulnerability Scanner |
Vegabird. Vegabird.com. Accessed: Oct. 14, 2019. [Online]. Available:
https://www.vegabird.com/yaazhini/

[125] L. Xiao, Y. Li, X. Huang, and X. Du, ‘‘Cloud-based malware detection
game for mobile devices with offloading,’’ IEEE Trans. Mobile Comput.,
vol. 16, no. 10, pp. 2742–2750, Oct. 2017.

[126] S. Shah and B. M. Mehtre, ‘‘An overview of vulnerability assessment and
penetration testing techniques,’’ J. Comput. Virol. Hacking Techn., vol. 11,
no. 1, pp. 27–49, Feb. 2015.

[127] S. Bojjagani and V. N. Sastry, ‘‘VAPTAi: A threat model for vulnerability
assessment and penetration testing of Android and iOS mobile banking
apps,’’ in Proc. IEEE 3rd Int. Conf. Collaboration Internet Comput.
(CIC), Oct. 2017, pp. 77–86.

IKRAM UL HAQ received the M.S. degree in
software engineering from Bahria University,
Islamabad, Pakistan, in 2013. He is currently a
Computer Forensic Investigator with specializa-
tion in design of information systems. He has over
19 years of experience in the field of information
systems, software development, team manage-
ment, and project management. His main research
interests include cyber security, big data, deep
learning, and artificial intelligence. He is serving
for Public Sector Organization.

TAMIM AHMED KHAN received the B.E. degree
(Hons.) in software engineering from The Univer-
sity of Sheffield, U.K., in 1995, the M.B.A. degree
in finance and accounting from Preston University,
Islamabad, Pakistan, in 1997, the M.S. degree in
computer engineering from CASE, Texila Uni-
versity, Pakistan, in 2006, and the Ph.D. degree
in software engineering from the University of
Leicester, U.K., in 2012. He is currently working
as a Professor with the Department of Software

Engineering, Bahria University, Islamabad. His research interests include
service oriented architectures, e-learning, and software quality assurance.

VOLUME 9, 2021 87825

http://dx.doi.org/10.1109/TR.2018.2865733
http://dx.doi.org/10.5281/zenodo.1130587
http://dx.doi.org/10.1007/s11227-016-1920-7

