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ABSTRACT The problem of foreign object intrusion onto the track bed often occurs in the actual operation
process of high-speed railways. To solve the problem, we propose an anomaly detection method for the
ballastless track bed, which is based on semantic segmentation. Firstly, we put forward the RFODLab
semantic segmentation network according to the randomness of foreign objects distribution, and a small
proportion of target pixels in the track image. The segmentation results of track image obtained through
this model can be used to obtain the accurate pixel information of foreign objects. To further improve the
recall and precision, the channel attention mechanism is introduced for the backbone network of the model
to aggregate the context information of images, which achieves the weighted constraints of the model on
the area to be recognized. Furthermore, to improve the model performance affected by unbalanced sample
category distribution during the anomaly detection, we modify the loss function by balancing distribution
of each category. The experimental results show that our proposed method can effectively segment various
types of anomalies on the ballastless track bed including broken elastic strips, animal carcasses, and fallen
pieces. The precision of anomaly detection on the test set can reach 90% while the recall can be maintained
at more than 95%. The anomaly detection results on actual lines also verify the effectiveness of the method.

INDEX TERMS Foreign object, railway safety, deep learning, anomaly detection, semantic segmentation,

attention mechanism, loss function.

I. INTRODUCTION

China’s railway lines feature the long mileage, large spatial
span, and complex and changeable conditions, thus raising
high requirements for the efficient operation and maintenance
of railway infrastructures. Due to the strong airflow generated
by the train running at a high speed, the broken parts or
foreign abnormal objects that are very likely to appear beside
the ballastless track bed might collide with the train body.
If so, these foreign objectswill cause structural damage and
serious safety hazards to the train. Thus, detection and
removal of foreign objects on the track bed in an accurate
and efficient manner is required to ensure the safe train
operation. At present, track bed anomalies are detected
mainly through manual inspection. However, this method
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has such disadvantages as low detection efficiency, large
influence by human factors, and massive missed detection.
Therefore, more effective technical means are needed for
detection of foreign objects on the ballastless track bed.

We design to continuously collect image information of
rails and their vicinity through specialized inspection trains,
so as to identify foreign objects in a timely manner according
to such information. The ballastless track bed images
collected through the vehicle-mounted dynamic detection
method are specific in shape and pattern, but foreign objects
on the ballastless track bed usually appear randomly in
small quantities. In other words, few foreign objects on the
ballastless track bed need to be identified according to a
large number of normal track images. The key point is to
distinguish foreign object that does not belong to the inherent
track facilities from a large number of normal track images.
Therefore, this problem belongs to the category of anomaly
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detection. To be specific, it is necessary to identify the
location and shape of any foreign object (if any) shown in
the images. Thus, higher requirements are raised for final
anomaly detection.

However, it is really hard to find out foreign objects on
the ballastless track bed because some track bed facilities
really resemble certain foreign objects. Thus, a false alarm
might be given during anomaly detection. In addition, foreign
objects usually occupy a low proportion in the collected track
image samples, and there exists the problem of unbalanced
distribution in the category of image samples.

In order to solve the above problems, we mainly study
the semantic segmentation network for anomaly detection of
the ballastless track bed, and optimize the network according
to the image characteristics of ballastless track. Specifically,
we propose to develop the semantic segmentation network
RFODLab (Railway Foreign Object Detection Lab) through
which the pixel-level information of foreign objects on the
track bed can be extracted out of track images. In addition,
the mask generated by the network can be filtered according
to the contour area to avoid false alarms, and then the pixel
information of foreign objects can be obtained. Moreover,
the attention mechanism is introduced for the backbone
network of the model, to aggregate the context information
of images. The loss function combining Focal Loss and
Dice Loss is also developed to achieve a balance in sample
category.

Our innovative contributions are summarized as follows:

1. We put forward a semantic segmentation network for
anomaly detection of the ballastless track bed through the
semantic segmentation network RFODLab. This method
makes it possible to accurately distinguish the foreign
objects from the image background, and enables the anomaly
segmentation of the ballastless track bed at the pixel level.

2. The attention mechanism is introduced for the backbone
part of the RFODLab network, to aggregate the context
information of images through the semantic segmentation
network. The model imposes the weighted constraints on
the images to be identified, and further improves the
segmentation fineness. Most importantly, the model makes
it possible to solve the problem of a large number of false
alarms caused by the great similarity between some foreign
objects and certain existing facilities of the ballastless track
bed.

3. The loss function combining Focal Loss and Dice Loss
is adopted for the RFODLab network. Through this loss
function, a balance is achieved in the category proportion
of foreign objects and backgrounds, and the problem of
unbalanced sample category distribution caused by the
excessive proportion of backgrounds in track images is solved
to a certain extent.

Il. RELATED WORK

Foreign objects on the track bed bring great potential
dangers to the safe operation of railways. To detect for-
eign objects, multiple non-contact technologies have been
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developed and applied, including ultrasound, radar, and
infrared technologies. For example, Fernando J. Alvarez et al.
used the ultrasonic detector to detect foreign objects [1].
A. Mroue’ et al. put forward a method for detecting the
platform track area through the radar UWB (Ultra-Wideband)
transmission technology [2]. Dhiraj Sinha et al. used the track
accelerometer to detect any vibrations caused by falling for-
eign objects at specific locations [3]. Juan Jestis Garcia et al.
proposed to detect the foreign objects on the track by using
multiple sensors such as infrared and ultrasonic sensors [4].

The aforesaid methods are all effective to detect the
foreign objects fallen on the track bed in specific areas,
with the desired results achieved. However, such fixed-point
monitoring methods are costly and hard to practice. What’s
worse, they are limited in the detection range, and only appli-
cable to the long-term fixed-point monitoring of certain key
areas of railway. Compared with the fixed-point monitoring
methods, the method of vehicle-mounted dynamic detection
based on the computer vision technology (hereinafter referred
to as ‘“‘the computer vision method”) is characterized by
large range and low cost of detection, and enables the
large-scale detection of track bed state. Therefore, the
computer vision method is more ideal for the detection of
foreign objects on the track bed along the whole railway
line [5]. In recent years, it as an effective method for
anomaly detection has been widely applied in many fields,
with remarkable results achieved. Liupeng Jiang et al. used
the improved Canny operator edge detection (image edge
detection) method to identify the foreign objects in the port
transportation channels [6]. Haoyu Xu et al. proposed to
identify the possible foreign objects on the airport runway
by making use of the deep convolutional network [7].
Jinguo Zhu suggested detecting the foreign objects along
the electric transmission lines by using the deep learning
method based on the regression strategy [8]. Deqgiang He
put forward a object detection method combining SSD and
MobileNet, which is favorable in the detection of foreign
objects under the high-speed trains [9]. Hongxia Niu et al.
suggested the rapid detection of foreign objects by using the
method of background modeling and pixel differencing [10].
Baoqing Guo et al. came up with a method for the detection of
intrusive objects according to the YOLO v3 object detection
network and the images of pedestrians and animals in railway
areas generated by using GAN [11]. Wang Shengchun et al.
proposed to detect foreign objects on the track bed in the
high-speed railway running scenario by using a variety of
object detection techniques based on deep learning [12].

At present, the methods of anomaly detection based on the
computer vision technology have been developing rapidly,
and been gradually applied for industrial detection. The
methods of object detection, image segmentation, generative
adversarial network, meta-learning and others have been put
forward in succession [13].Dong Gong et al. designed the
autoencoder named MemAE which is augmented with a
memory module, to strengthen anomaly detection by ampli-
fying the error between the abnormal reconstruction sample
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FIGURE 1. Anomaly detection algorithm of the ballastless track bed based on semantic segmentation.

and the original image [14].Hyunjong Park et al. proposed to
introduce the memory module with a new update scheme into
the convolutional neural network for anomaly detection, and
train the memory according to new feature compactness and
separateness losses [15]. Muhammad Zaigham Zaheer et al.
presented a method of anomaly detection based on the images
reconstructed by GAN. The approach uses the discriminator
of GAN to distinguish the quality of the reconstructed images,
so the discriminator can detect subtle distortions that often
appear during the reconstruction of the anomaly inputs [16].
Jihun Yi et al. put forward a method of anomaly detection
and anomaly segmentation through the deep learning variant
based on support vector data description (SVDD) at the
patch level [17]. In addition, Shashanka Venkataramana et al
design a Convolutional Adversarial Variational Autoencoder
with Guided Attention (CAVGA) to locate anomalies and
preserve spatial information through the convolution latent
variable [18]. Yingda Xia et al. came up with a method
of anomaly detection through comparing the original image
with the image reconstructed according to the results of
semantic segmentation [19].

Traditional techniques of image processing and object
detection are usually adopted for anomaly detection of
the ballastless track beds of high-speed railways. However,
anomaly detection results are mostly at the bounding box
level (relatively rough), so that it is hard to distinguish
the foreign objects accurately, and is likely to cause false
alarms. In contrast, the method of anomaly detection based
on the semantic segmentation technology is favorable and
characterized by image classification in pixel level. The
semantic segmentation technology makes it possible to
distinguish the foreign objects on the ballastless track bed
from the surrounding background and locate the anomalies
by pixel, thus significantly improving the fineness of anomaly
detection. Compared to the method of anomaly detection
based on semi-supervised / unsupervised semantic seg-
mentation, our method based on fully-supervised semantic
segmentation enables more effective and precise detection
because a certain amount of foreign object data has been
accumulated during previous researches, and clear data label
information is available.

lll. METHODOLOGY
A. PRELIMINARY

The algorithm for anomaly detection of track bed based on
semantic segmentation is detailed as follows. Foreign objects
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on the ballastless track bed are segmented and extracted
through the semantic segmentation network, and then accu-
rately identified and located according to the segmentation
results. The detection process is shown in Figure 1.

As shown in Figure 1, the algorithm of anomaly detection
of track bed based on the semantic segmentation according to
the track image I (x, y) is described as follows:

1) Obtain the mask image from the input image by using
the semantic segmentation network, which is formulated as:

seg (I (x,y)) = Im (x,y), e))

where: seg() represents the semantic segmentation network
for the detection of foreign objects on the ballastless
track bed; I,,(x,y) denotes the mask image obtained after
segmentation.

2) Conduct contour extraction of the mask image, which is
formulated as:

Nini ]s J:
cetn v~ J U UL, e, @

n=1

where: ce() represents the contour extraction algorithm; Nj,;
denotes the number of contour areas initially extracted;
Ir/n(n,x,y) refers to the mask image for the n contour
area of segmentation, which satisfies the condition of
L)/ (n, x,y) CL,(x,); [Ip, Is] and [Jp, J5] indicates the pixel
coordinate range of the mask contour area.

3) Compare the extracted contour size with the contour
threshold, which is formulated as

. Nini I Js /
filt (Un=1 U, T, y))

threshold Niarge I Jy 1
et o U s, G
U UL e, o

where: filt() represents the contour area filtering algorithm;
threshold refers to the contour area threshold; Njgge
denotes the number of contour areas higher than the
threshold; I,,”(n, x,y) indicates the mask image for the
nth contour area higher than the threshold, which satisfies
the condition of I,,”(n, x,y) CL,'(x, y); [ Iy land[Jy' ,J,']
represents the pixel coordinate range of the mask contour area
greater than the threshold, which satisfies the condition of
', Is'1 € Up, Is] and [}, J5'] S [Jp, J5].

4) Obtain the contour pixel information after confirming
the contour size, which is formulated as:

Niarge | I Js ’
loc (Un:lg U)C=I[7 Uy:JbIm(ny X, )’))
Niar. I J. .
- Unzalge UX.:I}, UyS:prlx(nv X, y)a (4)
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FIGURE 2. Overall framework of RFODLab.

where: loc() represents the algorithm of contour pixel
information localization; pix(n,x,y) denotes the pixel
information of the nth contour area higher than the
threshold.

Whereas the foreign objects on the ballastless track
appear randomly, and foreign object images occupy a small
proportion, the ballastless track images should be firstly
introduced to the semantic segmentation network to obtain
mask images. The mask contour will be searched and
extracted to identify any possible foreign objects. In order
to prevent the almost negligible sporadic pixel interference
in the anomaly detection due to the similarity between
foreign objects and track facility components, the area greater
than the contour area threshold should be delimited by
comparing the extracted contour size with the contour area
threshold. If the contour area is greater than the threshold, it is
deemed that there exist foreign objects, and the pixel-level
information of foreign objects will be returned. Otherwise,
it is judged that no anomaly is detected.

B. RFODLab SEMANTIC SEGMENTATION NETWORK

For more effective anomaly detection, higher requirements
are raised for the efficiency of segmenting and extracting
foreign objects through the semantic segmentation network.
The segmentation effect of the model directly affects the
possibility of finding out foreign objects. We propose
to establish the semantic segmentation network named
RFODLab according to the characteristics of images on
foreign objects on the ballastless track beds of high-speed
railways.

RFODLab adopts the encoder-decoder structure similar to
that of DeepLab v3+ [20] network. The encoder is composed
of the backbone network and ASPP module. For the backbone
network, the features are extracted through the ResNet 50[21]
network with the channel attention mechanism, and the ASPP
module behind the backbone network structure is used to
extract multi-scale features of the feature map outputted by
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the backbone network. In addition, up-sampling and feature
fusion operations are performed for the decoder. The loss
function combining Focal Loss [22] and Dice Loss [23] is
adopted. The structure of the RFODLab network is shown in
Figure 2.

After the feature information of the encoder is extracted
from the given pictures, the feature map will be resized to fit
the original image through the decoder to obtain segmentation
results. The encoder-decoder structure avoids the loss of
accuracy caused by the massive image upsampling, and
improves the edge accuracy of semantic segmentation, so that
foreign objects can be distinguished from the surrounding
environment to the greatest extent, thus reducing false
alarms.

The foreign object images inputted in the encoding
process are processed through the backbone network with the
channel attention mechanism to obtain corresponding feature
maps, some of which (one layer) will be inputted in the
subsequent decoding process to realize the effective fusion of
low-layer feature location information and high-layer feature
semantic information. The feature maps obtained through
the convolutional layer are processed via the ASPP module
to obtain the features of different scales, so as to combine
a wide range of contextual semantic information. Because
foreign objects occupy a small proportion in the image area,
and the excessively large receptive field plays a limited
role in improving the effect of feature extraction, the atrous
rates of atrous convolution for the ASPP module are set
as 1,3, 6,and9.

In the decoding process, the final feature map obtained
through encoding process is subject to channel dimension
concatenation firstly, and then upsampling by 4 times.
Final feature maps are connected with the previous feature
maps outputted by the convolutional network from the
channel dimension, and then subject to upsampling by
4 times, followed by the calculation through the loss function
combining Focal Loss and Dice Loss.
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FIGURE 3. RFOD backbone network block. (a) Original ResNet block;
(b) ResNet block with channel attention mechanism.

C. CHANNEL ATTENTION MECHANISM

In order to further improve the semantic segmentation
network’s capacity to extract the features of foreign objects on
the track bed, the channel attention mechanism is introduced
for the backbone network (ResNet 50) of the model. The
foreign objects on the track bed look very small in the
corresponding images collected. To be specific, the size
of a foreign object is only about 0.045-0.08 of the entire
image size in length or width, with a relatively small pixel
occupancy. Because foreign objects appear randomly, very
high requirements are raised for the model’s capacity to
extract effective features of images. The attention mechanism
based on the characteristics of human attention can be
deemed as a kind of adaptive pooling of the model. The
greater weight can be allocated to the specific location in
an image according to the contextual semantic information
captured. After the introduction of the attention mechanism,
more weight can be allocated to the area whose features are
similar to those of foreign objects, to detect foreign objects
more effectively.

The two-branch channel attention mechanism is introduced
for the original backbone network of ResNet [24]. The
ResNet module structure before and after the improvement
is shown in Figure 3.

The feature map obtained after the feature fusion through
the RFODLab’s ASPP module is visualized via the Grad-
CAM [25] operation, so as to analyze the area more
concerned by the RFODLab network. The obtained activation
heat map is shown in Figure 4. The redder the area is, the more
sensitive the model is.
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FIGURE 4. Activation heat map of output feature map processed by
Grad-CAM (a) input image; (b) Activation heat map of output feature map
by original ResNet 50 backbone network; (c) Activation heat of output
feature map by ResNet 50 backbone network with attention mechanism.

When extracting features, the backbone network with the
introduced attention mechanism can effectively capture the
contextual semantic information of track images, adaptively
allocate larger weights for the pixels that may be recognized
as foreign objects, and inhibit the areas around the image
pixels whose features are more similar to those of the
background. As shown in the activation heat map, the model
with the attention mechanism effectively integrates the
relevant features of channel dimension mapping at the time of
feature fusion, and adaptively allocates the weights according
to the context information, allocating more weight for the
areas around the pixels whose features are similar to those of
foreign objects. The results of subsequent anomaly detection
show that, the model can effectively distinguish the inherent
infrastructure of the track bed that is allocated with a higher
weight according to the extracted context information of
images, thus avoiding the false alarms about foreign objects.

D. LOSS FUNCTION

The semantic segmentation network classifies each pixel
usually through the cross-entropy loss function, and then
averages all pixels. In essence, it is a process of learning of the
same importance for each image pixel, which, however, might
give rise to a problem. Specifically, if multiple categories of
image pixels are unbalanced in representation, the training
will be dominated by the category of pixels with the largest
proportion.
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At present, we have summarized foreign object datasets
manually labeled by pixel category. There are 9,580,666 pix-
els labeled as foreign objects, accounting for only 0.27%
of the total 3,599,373,056 pixels. In addition, foreign object
image samples are significantly imbalanced in category, and
there are far more background pixels than foreign object
pixels. Due to the cumulative effect, background losses take
up a large proportion, while foreign object losses occupy a
small proportion. In the training process, the model is more
inclined to learn the background, which reduces the network’s
capacity to extract foreground objects, and affects the model’s
performance in detecting foreign objects on the track bed.
In this context, we adjust the loss function for the model,
adopting the loss function combining Focal Loss and Dice
Loss.

This loss function has the characteristics of both Focal loss
and Dice loss. Due to the reduction of loss function weights
for easy-to-classify samples through the Focal loss, the model
can focus more on difficult-to-classify samples during
training, which can effectively lower the large proportion of
easy-to-classify background pixels in the loss function. For
the Dice loss, all the pixels of the same category can be
regarded as a whole, and the proportion of the intersection
will be calculated. Not subject to the influence by a large
number of background pixels of the ballastless track bed,
the Dice loss is applicable to anomaly detection of the
ballastless track bed in case of serious imbalance between
foreground and background samples. In addition, desired
results are achieved in the segmentation of small targets
through the combination of Focal Loss and Dice Loss [26].
This means the loss function is an ideal choice for detection
of small and medium-sized foreign objects on the ballastless
track bed.

The formula of the loss function combining Focal Loss and
Dice Loss is as follows:

TPy (@ = 3 pa (@) ©), )
N
FNp(©) =) (1= pu(@)gn (©), ©)
N
FPy(e) =) pu(@) (1 =g (c), ™
L = Lpice + ALFocal
c—-1 TP, (c)
=C-— Z P

=0 TP, (c) +aFN, (c) + BFPy (c)

1 _
_kﬁ ZCC:OI Zivzl gn(€) (1 = py ())?
xlog((pn (¢)), )

where: TP, (c), FN, (c) , FPp (c) respectively represent the
true positivity, false negativity, and false positivity of category
¢; pn (c) denotes the prediction probability of pixel n; g,(c)
refers to the possibility of pixel n as that of category c
(0 indicates that pixel n belongs to the category c, while
1 means that pixel n does not belong to the category c); A is
used to balance the proportions of Dice Loss and Focal Loss;
o and  are used to balance the proportions of false negativity
and false positivity.
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IV. EXPERIMENTS

A. DATASET AND PREPROCESSING

The datasets used herein are collected from the images of
track components of high-speed railways collected by the
integrated inspection trains through the non-contact dynamic
detection method. Because there are very few foreign objects
along the actual railway lines, the accumulated data of foreign
objects are relatively limited. We select 1,217 ballastless track
images in which partial foreign objects and complex track bed
backgrounds are included, mainly including broken elastic
strips, fallen rocks, animal carcasses, fallen wastes, scattered
debris, etc. In fact, the situation reflected in such ballastless
track images is in line with the distribution of foreign objects
along the actual railway lines. To be specific, there are 675,
63, 84, 156, 167, 21 and 51 images about broken elastic
strips, fallen rocks, animal carcasses, fallen wastes, scattered
debris, other foreign objects, and complex backgrounds,
respectively. Among all foreign objects, broken elastic strips
occupy a large proportion, mainly because a large number
of rail fasteners are used, some of which might be broken.
In addition, there are 906 training images and 311 testing
images (including 212 foreign objects). At present, foreign
objects shown in the datasets are limited in category, so all
foreign objects are classified as those of the same category.
The data are labeled through the Labelme labeling toolbox,
and stored at the VOC 2012 format. The dataset images and
labeled images of foreign objects on the ballastless track bed
are shown in Figure 5.

The hardware configuration of the experimental computing
platform is as follows: Intel Xeon@2.4GHz CPU, Nvidia
Geforce TitanX GPU x 4 and 256GB memory. The software
configuration is Ubuntu 16.04, Pytorch 1.3.1, Python 3.7, and
CUDA 10.1.

Because the railway line environments are complex and
diverse, and the illumination conditions at the time of image
collection are different, the model needs to overcome the
interference of image data by different conditions, having
strong robustness. In order to extend the datasets and
enhance the robustness of the anomaly detection method,
some preprocessing operations are performed in the training
process of the semantic segmentation network, including
random image resizing, random cropping, random flipping,
and image measurement distortion. All these preprocessing
operations aim to improve the model’s anomaly detec-
tion capacity under different conditions in the training
process.

B. MODEL TRAINING

In order to accelerate the convergence in the training
process, the backbone network model pre-trained on the
ImageNet [27] dataset is adopted. 64 images are set for
each training batch, and iterative training is performed for
40,000 times in total. The Online Hard Example Mining
(OHEM) [28] method and the pixels with a confidence coef-
ficient of less than 0.7 (particularly the difficult-to-classify
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FIGURE 5. Image and annotation of foreign object data set on ballastless track bed (a) Broken elastic bar (b) Falling rocks
(c) Animal carcasses (d) Falling garbage (e) Scattered debris (f) Complex background.

pixels) are adopted for the model training, to improve the
semantic segmentation effect.

C. EVALUATION INDICATOR

For the anomaly detection model, such indicators as recall
and precision are used to evaluate the effect of detecting
foreign objects on the ballastless track bed. At the same time,
mIOU indicator is introduced to assess the segmentation
effect of the semantic segmentation network, so as to compare
the model’s capacity to extract the features of foreign objects.
The recall, precision, and mIOU calculation formulas are
shown below.

TP
Recall = —— x 100% O]
TP + FN
- TP
Precision = — x 100% (10)
TP + FP

where: TP is the number of true foreign objects correctly
identified, FN represents the number of true foreign objects
unidentified, and F'P indicates the number of articles wrongly
identified as foreign objects.

1 Pii

1
mlOU = — E ]
2 =0 Y P+ Yo Pii — Pi

where: p;; represents the number of pixels whose true value
is i and is predicted as j.

(11)

D. RESULTS AND ANALYSIS
311 images (including 212 foreign objects) extracted from
the datasets are selected to evaluate the performance of
the semantic segmentation network in anomaly detection.
Firstly, the confidence thresholds of pixels for the RFODLab
semantic segmentation network are set as 0.3, 0.5 and 0.7,
respectively. The experimental results are detailed in Table 1.
When the confidence threshold is set to 0.5 (rather
than 0.3 or 0.7), the RFODLab semantic segmentation
network achieves a good balance in terms of recall and
precision. The confidence threshold is ultimately set as 0.5.
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TABLE 1. Performance of RFODLab Network with different confidence
thresholds on test set.

Foreign
Confidence

objects TP  FP  Recall Precision
threshold

number
0.3 207 52 97.64%  79.92%
0.5 212 205 19 96.70% 91.52%
0.7 173 11  81.60%  94.02%

The segmentation results of images on foreign objects on
the track bed shown when the threshold is 0.5 are shown
in Figure 6.

As shown in the results, the RFODLab network with
the introduced attention mechanism can better capture the
contextual semantic information of images, and allocate more
weights to the image areas where foreign objects really exist.
The mask segmentation results show that the RFODLab
network enables the accurate segmentation and extraction of
foreign objects on the ballastless track bed, while preventing
the misclassification of some inherent infrastructures of track
bed as foreign objects.

The ablation experiment was conducted for the RFODLab
network is composed of the attention mechanism for the
backbone network, and the loss function combining Focal
Loss and Dice Loss. The backbone network refers to the
ResNet50 network without/with the attention mechanism.
Five loss functions are adopted, including the cross-entropy
loss, weighted cross-entropy, Dice loss, Focal loss, and Dice
loss 4 Focal loss. The performance of the RFODLab network
is assessed, and the results of the ablation experiment are
shown in Table 2 and Figure 7. The performance parameters
of the backbone network ResNet 50 are not bold in Table 2,
and the performance parameters of the backbone network
ResNet 50 with the attention mechanism are bold in Table 2.
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FIGURE 6. Segmentation result of foreign object image through RFODLab (a) Input image;
(b)Heat map of output feature map; (c) Segmentation mask.

TABLE 2. Performance of RFODLab network in ablation experiment on test set.

Loss function

Backbone network type type TP FP Recall Precision mIOU

Cr"sst:st“’Py 193/197 26/19 91.04%/92.92% 88.13%/91.20% 77.25%/80.09%

“gtgr}:;;‘ f:;:s 194/198 24/17 91.51%/93.40% 88.99%/92.09% 77.43%/81.39%
ResNet50

/ResNet50 with attention Dice Loss 195/203 21/13 91.04%/95.75% 90.19%/93.98% 78.57%/83.26%
mechanism

Focal Loss 195/200 2317 91.98%/94.34% 89.45%/92.17% 78.45%/81.96%

Dice Loss + o o o o o o
Fooal Lo 197/205 23/19 92.92%/96.70% 89.55%/91.52% 79.06%/83.78%

TABLE 3. Anomaly detection result of multiple semantic segmentation
networks on test set.

Dice Loss + Focal Loss —
Foreign
Focal Loss - Method objects TP FP Recall Precision mlIU

number
Dice LS r FCN 191 25 90.09% 88.43% 78.35%
Deegfab 194 18 91.51%  9151%  80.09%

Weighted Cross Entropy Loss r v

CCNet 193 20 91.04% 90.61% 79.56%
Cross Entropy Loss [T - DANet 212 194 23 9151%  89.40%  79.43%
72.00% 74.00% 76.00% 78.00% 80.00% 82.00% 84.00% §6.00% GCNet 196 25 92.45% 88.69% 80.41%
H ResNet50 with attention mechanism  WResNet50 DNLNet 198 22 93.40% 90.00% 81.32%
RFODLab 205 19 96.70% 91.52% 83.78%

FIGURE 7. mIOU of RFODLAB network in ablation experiment on test set.

Experimental results show that the RFODLab network network enhances the capacity to obtain the contextual
with the attention mechanism introduced in the backbone semantic information, which significantly improves the
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TABLE 4. Performance of anomaly detection algorithm for ballastless track bed based on semantic segmentation in actual line test.

Foreign
objects
number

Picture
number

Line

TP
type

FP

Recall Precision Accuracy

Line 1 173702 81 80

Line 2 149054 56 56

Line 3 104250 106 103

234

157

379

98.77% 25.48% 99.86%

100.00% 26.29% 99.89%

97.17% 21.37% 99.63%

weighted constraints on the area to be recognized. As a
result, the recall and precision of anomaly detection, as well
as the fineness of anomaly segmentation increase greatly.
Experimental results also show that the RFODLab with
adjusted loss function combining Dice Loss and Focal loss
has a very outstanding performance in the recall and the
mlOU. It proves that the improved loss function reduces
the excessive proportion of the background pixels, which,
to a certain extent, can ease the negative impact from the
imbalance in the sample category. The precision of the model
decreased slightly means that the valid feature of foreign
object has been extracted effectively by the model, but may
cause inherent facilities with features close to foreign objects
have a greater chance to be recognized as false alarm.

Despite the loss function combining Dice Loss and Focal
loss slightly reduces the anomaly detection precision to
91.52%, it significantly improves the recall. In view of
railway safety foreign objects should be detected to the
greatest extent. Therefore, this loss function is most ideal
choice for the RFODLab network, which is conducive to
ensuring the safe operation of railways and the effective
anomaly detection.

From the perspectives of anomaly detection and semantic
segmentation performance, the RFODLab segmentation
network is compared with the recent state-of-the-art semantic
segmentation networks such as FCN[29], DeepLab v3+,
CCNet[30], DANet[31], GCNet[32], DNLNet[33]. All the
confidence thresholds of the semantic segmentation network
pixels are set as 0.5, with the experimental results shown in
Table 3 and Figure 8.

As shown in the Table 3, compared to the state-of-the-art
semantic segmentation network, the RFODLab semantic
segmentation network shows the optimal performance in the
recall, precision, and segmentation fineness mIOU (these
indicators are used to evaluate the performance of anomaly
detection on the ballastless track bed) on test set. In contrast
with other semantic segmentation networks, the RFODLab
semantic segmentation network proposed herein is more
applicable to the anomaly detection of the ballastless
track bed.

E. ACTUAL LINE TEST
The RFODLab semantic segmentation network for anomaly
detection of the ballastless track bed is tested along three
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FIGURE 8.
test set.

Performance of multiple semantic segmentation networks on

sections of high-speed railway lines. The original detection
results are obtained by manually checking and reviewing the
images continuously captured by the integrated inspection
trains, and compared with the results of anomaly detection
through the RFODLab semantic segmentation network. The
indicator Accuracy is added to verify the actual overall
performance of the model.

TP + TN
TP+ FP+ TN + FN

where: TP is the number of true foreign objects correctly
identified, TN denotes the number of backgrounds correctly
identified, FN refers to the number of true foreign objects
unidentified, and FP indicates the number of foreign objects
wrongly identified.

The experimental results of RFODLab semantic segmen-
tation network in actual line test are shown in Table 4.

To ensure the safe operation of high-speed railways,
foreign objects should be detected in the actual scenario as far
as possible. In case of ensuring the recall as much as possible,
the original limitation conditions of model detection, and
the effect of distinguishing the foreign objects from the
objects with similar features will be weakened (in other
words, various shapes of paint or normal facilities, cables and
other objects may be identified as foreign objects). Therefore,
certain false alarm is allowed to some extent.

In reality, the results of anomaly detection through the
detection model need to be manually reviewed. Experimental
results show that the recall and accuracy of detection in

Accuracy = x 100%

12)
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actual scenes of three existing lines all exceed 97% and 99%,
respectively. Compared to the original method of manually
reviewing the foreign object images, the new method
combining the semantic segmentation network detection
and manual image reviewing is more applicable to actual
scenarios, which can significantly reduce the manpower.

V. CONCLUSION

We propose the RFODLab semantic segmentation network
for detection of foreign objects on the ballastless track
bed. In order to improve the model’s capacity to extract
the features of foreign objects on the ballastless track
bed, the channel attention mechanism is introduced for the
backbone network, which can allocate more weights to
the image areas in which foreign objects to be identified.
In consideration of the extreme imbalance exist in the
category distribution of samples for anomaly detection of
the ballastless track bed, the loss function combining Dice
Loss and Focal loss is adopted for the RFODLab semantic
segmentation network, to improve the recall. The RFODLab
semantic segmentation network shows a good performance
in the anomaly detection of the ballastless track bed. To be
specific, the precision and recall on test set reach up to
90% and 96.7%. In multiple actual scenarios, the recall and
accuracy exceed 97% and 99%, respectively. All these prove
that this model is effective to detect foreign objects on the
ballastless track bed.

The semantic segmentation network for the anomaly
detection of the ballastless track bed is a method of supervised
anomaly detection based on sample data. In the future,
we will further explore the methods of unsupervised anomaly
detection based on a small number of samples or even positive
samples only. In addition, with the continuous accumulation
of data on foreign object samples, it is necessary to further
classify foreign objects on the ballastless track bed and
establish a system for effective assessment of safety risks
from foreign objects of railways.
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