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ABSTRACT Non-Intrusive Load Monitoring (NILM) is particularly important for demand response. This
paper proposes an innovative method based on a deep learning model to recognize the working state of
electrical appliances using low frequency load data. The approach includes a data processing step, a deep
learning model and a new accuracy calculation method. The data processing step consists of a multi-feature
and high-dimensional method (MFHDM) and a pre-training process. The deep learning model consists of a
convolutional neural network (CNN), a long-term short-term memory network (LSTM) and a random-forest
(RF) algorithm. The proposed method addresses the label correlation problem and the class-imbalance
problem. To test the proposed method, the Reference Energy Disaggregation Dataset (REDD) and the Pecan
Street dataset (PSD) are used. A comparative analysis with several models shows that the proposed method
can effectively improve electrical appliance recognition accuracy and realize NILM.

INDEX TERMS NILM, CNN, LSTM, RF, multi-label classification, class-imbalance.

I. INTRODUCTION
Today, the application of Non-Intrusive Load Monitor-
ing (NILM) is particularly significant because of its advances
in communications technologies and artificial intelligence.
With the help of NILM, demand response (DR) schemes can
be implemented more efficiently, especially for household
consumers. Moreover, consumers can have a more com-
prehensive understanding of their electricity behaviors and
detailed bills, which can help them to develop an energy-
aware behavior. With these insights, a reduction in operating
costs from grid operators and electricity costs for ending
consumers can be achieved.

The methods developed to achieve NILM can be divided
into two categories based on the required data. The first
category is based on a transient analysis of high-frequency
sampling signals. More specifically, these methods iden-
tify electrical behaviors through improved measurement
methods [1] or feature extracting methods [2]–[4]. Reviews
on this category are available in [5]–[7].
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The other category of NILM methods uses single and
low-frequency measurement data (such as active power and
voltage). According to the purpose of the analysis, these
studies can be further divided into load disaggregation and
electrical appliances ON/OFF state analysis, which corre-
spond to a regression problem and a classification problem.
The former aims to isolate from the total load the power
values of different appliances from the total load, such as the
study by Ram [8], which proposes a modified cross-entropy
method for classification of events in NILM systems. Ref. [9]
compares the effects of three deep neural networks for load
disaggregation, which can provide more information but has
an unsatisfactory effect of transfer learning. The latter can
be viewed as the multi-label classification (MLC) recogni-
tion problem. In this approach, the ON state for electrical
appliance is marked as 1 and the OFF state, as 0. Many
methods have been proposed to solve the MLC recognition
problem.

Studies based on deep learning models for classification
tasks have shown good performance for NILM. Nevertheless,
two important characteristics of NILM should be taken into
account, label correlation and class imbalance. In terms of
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label correlation, there are correlations between the uses of
different appliances, for example, washers and dryers are
often used in sequence. In addition, electricity consumption
behaviors are highly correlated with time, for example, light-
ing loads always appear in the evening and photovoltaics
(PV) can only output in the daytime. All of the above are
common sense to us, but themodels know nothing about these
relationships. It is meaningful to train the model to learn these
relationships and characteristics. For class imbalance, some
electrical appliances either have a low percentage in use, such
as washers, or a high percentage in use, such as refrigerators.
For these electrical appliances, the model can fail due to the
gradient vanishing problem, which occurs because constant
state recognition results can reach a high precision score.

Considering the above characteristics of NILM, this paper
proposes a new method based on a deep learning network,
which includes a data processing step, a deep learning net-
work model and a new accuracy calculation method. The
proposed method considers the characteristics of the house-
hold load and the logic of electricity consumption behaviors.
Simulation results show the method can effectively recog-
nize electrical consumption behaviors with minimal data
requirements.

II. RELATED WORK
Deep learning has made considerable advancements in MLC
for computer vision. The application of deep learning for
NILM generally achieves similar success. The applica-
tion of deep learning techniques to the NILM problem
was first introduced by Kelly [9]. He compares the abil-
ity of the CNN, LSTM and Stacked Denoising Autoen-
coders models in NILM. More studies utilizing neural
networks and deep learning to solve this problem have
followed [11]–[13]. Ref. [14] proposes a pinball quantile
loss function to guide the deep neural network for NILM.
Particle swarm optimization is introduced for parameters
optimization of training algorithms in artificial neural net-
works by [15]. Studies [16]–[18] propose more advanced
deep learning models to achieve NILM, these form the state-
of-the-art in this area of research. Comparing with studies
on load disaggregation, [19] provides electrical appliances
ON/OFF state analysis by deep learning, and it has a good
transfer learning effect.

LSTM networks are widely applied in time series analyses
because of their ability to handle long time dependencies.
Therefore, LSTM networks have a comparative advantage in
detecting load data changes when applied to NILM problems.
Relevant studies have been carried out [20]–[22]. Particu-
larly, Jihyun proposes an LSTM model and additionally a
novel signature to improve classification performance [20].
Mauch uses a generic two-layer bidirectional LSTM archi-
tecture [21]. Kaselimi proposes a Bayesian optimized bidi-
rectional LSTM regression model for NILM [22].

The CNN is good at extracting features of two-dimensional
(2D) data and is widely used in many applications, espe-
cially in the fields of image and video recognition. However,

because load data are one-dimensional (1-D) time series data,
it is difficult to directly apply CNNs in load disaggregation.
However, many studies propose applying CNNs to achieve
NILM. Lan proposes a method to convert electric current data
into a grayscale image with a resolution of 64 × 64, and
then designs a CNN model to identify the load [23]. Yang
proposes an imaging rule to convert current waveforms to
greyscale image and constructs a CNN architecture premised
upon VGG-16 to tackle the issue of NILM [24]. Medeiros
transforms the values of active and reactive power into a
matrix form for CNN training, and reaches a high accuracy
in NILM [25]. Fabrizio proposes a new CNN-based system
for NILM applications that achieves encouraging results on
the public-use dataset BLUED [11].

Apart from deep learning-based methods for NILM,
there have been many studies focused on realizing NILM
by machine learning methods. Support Vector Machines
(SVM) [26], Decision Trees (DT) [27], combinatorial opti-
mization (CO) [28] and Random Forest (RF) [29] have been
used to solve event-based NILM. The Hidden Markov Model
(HMM) and its modification have been designed to solve
state-based NILM. [30]–[32].

Compared to the above approaches, this paper presents a
novel method based on a CNN-LSTM-RF model approach
for NILM. Three innovative aspects have been introduced
to address challenges in NILM. First, this paper proposes
a multi-feature and high-dimensional method (MFHDM) to
directly extract features from low-frequency measurement
data. With this method, the proposed model can learn and
utilize expert knowledge efficiently. Second, the label cor-
relation and class-imbalance problems are considered in this
study. A compound re-weighting method is proposed to solve
the problem of class-imbalance problem. The label correla-
tion problem is solved by pre-training, and transforming the
MLC problems into sequence generation problems. Finally,
a deep learning model with a CNN-LSTM-RF structure is
designed to solve the NILM problem.

III. METHODOLOGY
The NILM method proposed in this paper is composed of
three components: a data preprocessing step, a deep learn-
ing model and an accuracy calculation. For the data pre-
processing step, the MFHDM is used to extract features
and a pre-training process is adopted to elicit correlations
in electrical consumption behaviors. For the deep learning
model, a deep learning network based on a CNN, an LSTM
network and an RF is constructed. We select a CNN because
it is good at extracting data features and an LSTM network
because it can address the long-term dependence of time
series data. The RF is introduced to decode and output results.
For the accuracy calculation, a new method is developed that
trains and evaluates the model. Furthermore, a label relevance
analysis is used to address the low recognition performance
when low-frequency or unobvious features are present in the
electricity behavior. The structure of our proposed model is
shown in Fig. 1.
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FIGURE 1. The structure of proposed model.

A. MULTI-FEATURE AND HIGH-DIMENSIONAL METHOD
FOR LOAD DATA
Low-frequency power data are a one-dimensional time series
sequence.Manymethods have been proposed to extract infor-
mation from this type of time series data. These methods,
which we call expert knowledge, can improve the accuracy
of a model if it can be learned.

An MFHDM is proposed to transform the 1-D load data
into 2-D matrix data. Specifically, the multi-feature method
uses a mathematical transformation s to extract features,
specifically, the mean, variance, and distribution parameters
of the load sequence are calculated under different time
period lengths. The high-dimensional method isolates the
load data according to different time periods. Because the
parameters are selected according to the operating character-
istics of household appliances, the MFHDM combines a deep
learning model with expert knowledge. A schematic diagram
of load curve processing using MFHDM is shown in Fig. 2.

FIGURE 2. Schematic diagram of multi-feature and high-dimensional
approach for load data.

Let X(i) be the measured aggregate load over all appli-
ances, where i represents the i th number in the data set. The
time interval between two adjacent load data points is the
sampling interval.

The formula of the MFHDM is shown in (1), where T
is the period length and subscript j corresponds to data in
T. Subscripts mean, var, diff, and sum represent the mean,
variance, difference, and sum of the data, respectively. In our

model, T = [1, 5, 30, 60, 1440], that is 1 minute, 5 minutes,
half an hour, an hour and a day in sequence corresponding to
different electrical operation characteristics.

XDBSCAN ,Tj =


Xmean
Xvar
Xdiff
Xsum


Tj

=




Xi
0
0
Xi

 , i < Tj



i∑
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Xi − Xi−Tj
i∑

i−T

Xi


, i ≥ Tj
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B. PRE-TRAINING
Pre-training is adopted to address the label correlation prob-
lem. Because the superposition of loads will override the
load characteristics of many of the appliances, considering
label correlation can reduce the covering of individual load
characteristics. Pre-training can determine the sequence of
appliances. Assume that there are L electrical appliances.
From the perspective of sequence generation, the MLC task
can be modeled as finding an optimal label sequence y that
maximizes the conditional probability p(y|x), which is calcu-
lated as follows:

p(y| x) =
L∏
i=1

p( yi| y1, y2, · · · yi−1, x) (2)
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where x is the output of the upper network. Labels that have
obvious load characteristics are placed in the front. Thus,
label correlation is considered sequentially in this paper.
In other words, electrical appliances with obvious load char-
acteristics will be recognized first. A diagram of this process
is shown in Fig. 3. Then, the recognition is taken as the input
to recognize the state of other electrical appliances, to reduce
the override of load characteristics by appliances with obvi-
ous load characteristics. Pre-training recognizes the working
state of appliances individually, the detection sequence in
the model is determined based on independent recognition
accuracy.

FIGURE 3. A diagram of the procedure for transforming the MLC problem
into a sequence generation problem.

Pre-training is also adopted to consider correlations in
electrical consumption behaviors and to improve the accuracy
of NILM. In particular, the density-based spatial clustering of
applications with noise (DBSCAN) is applied to classify the
daily load curve in pre-training process. DBSCAN does not
need to set the number of clusters beforehand and has superior
performance in anomaly detection. A classification schematic
diagram of each point of DBSCAN is shown in Fig. 4.

FIGURE 4. A schematic diagram of DBSCAN points.

DBSCAN looks for clusters by calculating the
ε-neighborhood of each point in the data set. If the
ε-neighborhood of a point P contains M points, a new cluster
with P as the core point will be created, otherwise P is
marked as a noise point. Then, DBSCAN repeatedly looks

for points that are directly density-accessible to these core
points, a process that may involve merging density-accessible
clusters. The process ends when no new points can be added
to any cluster. The parameters ε and M of the algorithm are
given according to prior knowledge.

C. ACCURACY CALCULATION METHOD
A new accuracy method is developed to evaluate the recog-
nition accuracy of residential NILM and to address the
class-imbalance problem. The accuracy calculation method
comprises two steps. The first step uses F1 score (5) to calcu-
late the accuracy of appliance recognition instead of the tra-
ditional accuracy (6). The harmonic average algorithm [35]
is used to calculate precision and recall, which are shown in
(3) and (4), respectively.

precision =
TP

FP+ TP
(3)

recall =
TP

FN + TP
(4)

where TP is the correct positive prediction count, FP is the
incorrect positive prediction count, and FN is the incorrect
negative prediction count. The F1 score is used to evaluate
the accuracy of the model, which is shown in (5)

F1_score =
2[

(1
/
precision)+ (1

/
recall)

] (5)

t_accuracy =
TP+ TN

TP+ TN + FP+ FN
(6)

where TN is the correct negative prediction count.
The second step is to re-weight values between labels,

where label weights are set according to the recognition
sequence of the electrical appliances. More specifically,
the higher the accuracy in pre-training, the lower the weight
value. The calculation method for model accuracy is shown
in (7). 

accuracy =
n∑
i=1

βi · f 1_score(i)

s.t.
∑

βi = 1

(7)

where f1_score(i) represents F1 score of appliance i and βi is
the accuracy coefficient of electrical appliance i, which is cal-
culated according to the recognition accuracy in pre-training.

D. CNN-LSTM-RF MODEL
The deep learning model consists of a CNN, an LSTM net-
work and an RF. CNNs have shown excellent performance
in tasks such as image identification and natural language
processing. A significant advantage of CNNs is that they
can mine information from high-dimensional data such as
that generated by MFHDM. At the same time, compared
with Recurrent Neural Networks (RNNs), CNNs can greatly
reduce the computational burden. The LSTM is an improved
network that is structure based on the RNN. This struc-
ture maintains the advantages of an RNN while addressing
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the gradient disappearance problem that often occurs during
RNN model training. More importantly, the LSTM network
can remember the previous state for short or long period
of time. A typical LSTM network structure includes input
gates, forget gates, and output gates. This unique structure
eliminates the need for layer-by-layer conversion of informa-
tion during the propagation process. Part of the information
can be directly transmitted to the subsequent network layer
through the ‘‘gate’’ structure. This structure ensures effective
information transmission, ensures that there is no gradient
disappearance no matter the network depth, and has better
convergence.

The output from the CNN-LSTM network needs to be
decoded to determine the recognition running state of various
household appliances. The RF, a combinatorial classifier,
is used to decode the outputs of the LSTM and to determine
the classification results. The RF determines the most appro-
priate threshold value as the output of the LSTM network
is a probability value between 0 and 1. More importantly,
the RF model determines the threshold value for different
times. The detailed structure and parameters of the model are
given below.

1) The daily load data are collected at 1 minute intervals
and contains 1440 data points. After data processing with the
MFHDM, the 11440 time series data are transformed to a
51440 matrix.

2) Through the pre-training process, the daily load curves
are clustered, and each daily load curves is labeled with a dif-
ferent label and provided as an input for the CNN. Therefore,
each input to the CNN is a 61440 matrix.

3) The input data are first processed through the con-
volution layers of the CNN. In this work, we applied two
convolutional layers, each with a different number of filters
(128 in the first convolution layer, 32 in the second).

4) A dropout layer can be inserted between each layer to
improve the robustness of the model.

5) The output from the CNN is passed to the LSTM net-
work. In this study, the LSTM has 128 hidden layers. The
mathematical expression for the LSTM is

Yt = HtWhq + bq
Ht = Ot � tanh(Ct )

Ct = Ft � Ct−1 + It � C t (8)

It = σ (XtWxi + Ht−1Whi + bi)

Ft = σ
(
XtWxf + Ht−1Whf + bf

)
Ot = σ (XtWxo + Ht−1Who + bo) (9)

where It , Ft , Ot are the outputs of input gate, forget gate and
output gate of LSTM respectively, W is the weight coeffi-
cient, b is the bias parameter, σ is activation function, H is
the hidden state of the previous time step. The LSTM acti-
vation function is sigmoid, which makes the output bounded
between 0 and 1. The expression for the sigmoid function is

s(x) = 1/(1+ exp(−x)) (10)

6) The output of the LSTM is fed into the RF. The maximum
depth of the RF is set to 3, and the estimator number is set
to 60. The RF output is either 0 or 1, indicating that the
appliance is in the non-running or running state, respectively.
The mathematical expression for the RF is

Gain(D, a) = Ent(D)−
V∑
v=1

|Dv|
|D|

Ent(Dv) (11)

Ent(D) = −
|y|∑
k=1

pk log2 pk (12)

where Ent(D) is the entropy of input D, pk is the probability
distribution of variable.

IV. SIMULATION AND RESULTS
A. DATASET DESCRIPTION
There are several publicly available datasets that can be
used for NILM research. This study is based on the Ref-
erence Energy Disaggregation Data Set (REDD) [36] and
the Pecan Street dataset (PSD) [37]. The REDD is one of
the most popular datasets in NILM research. The data were
collected from six households for several weeks and con-
tains low-frequency power data and high-frequency voltage
and current data. In this manuscript, we consider the data
measured from air conditioners, refrigerators, dishwashers,
washers/dryers, microwaves and stoves. The Pecan Street
dataset measures circuit-level electricity use and generation
from nearly 1,000 volunteer homes every minute of every
day. It has been collecting data continuously for several
years. In this manuscript, data measured from refrigerators,
air conditioners, electric vehicles, washers, dish washers and
photovoltaics are used for the simulation. The interval of the
data used in this study is 1 minute, including the training data
and test data.

In the following, the Pecan Street dataset is used to illus-
trate the complete process of our method from training to test-
ing. At the same time, we verify the validity of our proposed
method using the REDD.

B. SIMULATION PROCESS
Corresponding to the three components of our proposed
method, the simulation process can be divided into three
stages.

Stage I: Overview of data and pre-training.
We analyze the distribution of load for several different

24 hours periods. We then apply DBSCAN to classify the
daily load curves. In this simulation, the cluster number,
Ncluster, was determined by DBSCAN to be 5. The typical
daily load curves based on classification results are shown
in Fig. 5. The ordinate represents the normalized load data
value. Different clusters correspond to different combinations
of electrical appliances which reflects label correlation. The
blue curve (Cluster 1) indicates that the air conditioner was in
operation and the photovoltaic operate at high power output
in this day. The yellow curve (Cluster 4) indicates that the air
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FIGURE 5. Typical daily load curves.

FIGURE 6. The operation state statistics of each electrical appliance.

conditioner was not in operation and photovoltaic operated
at low power output. The classification results will be used as
model input. The operating state proportion for each electrical
appliance is shown Fig. 6. As the specific number of ‘‘0’’
labels and ‘‘1’’ labels is lopsided, the traditional accuracy
calculation method (6) is not suitable in this model. The num-
ber above the bar chart represents independent recognition
accuracy.

Another pre-training task is to arrange the sequence of
recognition order for the appliances. According to the inde-
pendent recognition accuracy of the CNN-LSTM-RF model,
the sequence is air-conditioner, photovoltaic, electric vehicle,
washing machine and dishwasher in descending order, from
highest to lowest.

Stage II: Apply the compound re-weighting method.
The compound re-weighting is calculated using (2)-(5).

Parameter βi is calculated using (13), where acci is the

FIGURE 7. Typical daily load curves of a household consumer. The upper
subgraph represents Day 1, and the lower subgraph represents Day 2.

recognition accuracy in pre-training.

βi =
1
acci

, ∀i (13)

Stage III: Build model and verify.
According to the METHODOLOGY section and with the

results of pre-training, the CNN-LSTM-RF model is built in
Python. The dataset is divided into a training set, a test set and
a verification set. The model is first trained by the training
set. Then, the model parameters are adjusted using the test
set. Finally, the performance of the model is verified by the
verification set.

C. RESULTS AND DISCUSSION
Two typical days with different load characteristic were cho-
sen to facilitate a detailed comparison of different models.
Day 1 is shown in the upper frame of Fig. 7; Day 2, in the
lower. Because the house has installed distributed photo-
voltaic power generation, the total power is negative during
some periods.

Fig. 8 (upper) illustrates the power curve of each appliance
for Day 1. The running state curve of each electrical appliance
on a typical day is given in Fig. 8 (lower). Because the
refrigerator is normally in the ON state, we do not show the
state in the results.

Several classic NILM methods are used for this com-
parative study. The alternative methods considered are the
KNN [38], the CNN-LSTM [11], [20]–[25], the combinato-
rial optimization (CO) [28], the FHMM [31] and the priori
biased NILM method (PBN) [39]. In the KNN model, the k
value is set to 5, the weights method is uniform, and the
algorithm is auto. In the CNN-LSTM model, CNN has two
convolutional layers with 128 filters in the first convolution
layer and 32 filters in the second. The LSTM has 128 hidden
layers. The activation function for the LSTM is sigmoid. The
parameters of CO, the FHMM and the PBN are taken from
the references accordingly.
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FIGURE 8. Load curve of different household electrical appliances on a
typical day.

Taking air conditioner and electric vehicle as examples,
the recognition results of the different models are presented
in Fig.s 9 and 10. Fig. 9 illustrates the results for the air
conditioner. The first column shows the recognition results
of Day 1, the second column shows the results of Day 2.
The first row is the real state of the appliance, the second
through the seventh rows are the recognition results of the
different models, corresponding to the KNN, CNN-LSTM,
CO, FHMM, PBN and proposed model, respectively.

As Fig. 9 shows, the air conditioner has been used during
these two days, the start-stop frequency of the compressor
during Day 1 is higher than that on Day 2. Contrasting
the recognition results of different models, we see that the
recognition accuracy of the proposedmodel is highest overall.
In general, the recognition accuracy for the air conditioner is
satisfactory for all of these models.

Fig. 10 shows the recognition results for the electric vehi-
cle. The electric vehicle is charged during Day 1, but it
is not charged during Day 2. The recognition accuracy of
the KNN is the lowest. Obviously, the recognition ability
for the charging state is higher than that for the uncharged
state, which means the precision of EVs is larger than the
recall. In general, for these two days, the proposed model has
the highest recognition accuracy, and the recall score of the
proposed model is significantly higher than that of the other
models.

Several experiments were conducted on different datasets
to compare the recognition ability and generalization ability
of each model. Table 1 shows the accuracy scores of the
different models calculated using (6) for the REDD and PSD.
Table 2 lists the F1 score of the different models on REDD
dataset and Table 3 lists the F1 score of different models for
the PSD. For the REDD, the systemwas developed to identify
six specific types of electrical appliances: air conditioners,
washers/dryers, dishwashers, refrigerators, microwaves and
stoves. For the PSD, the system was developed to identify
six specific types of electrical appliances: air conditioners,

FIGURE 9. Recognition results for the air conditioner under different
models.

washingmachines, dishwashers, refrigerators, electrical vehi-
cles and photovoltaics.

Training data and test data are divided 1:1. In the REDD,
the training set is data from April 18 to April 30, and the test
set is data fromMay 1 to May 12. In the PSD, the former 200
days data were used as the training set, the next 200 days data
as the test set.

Table 1 shows that the proposed model was successful in
the identification process of the electrical appliances with an
accuracy of 95% in the REDD and 94% in the PSD. It can
be observed from the table that the proposed method based
on the CNN-LSTM-RF model proved to be efficient in the
different scenarios, having the highest accuracy scores in all
the experiments.

To carry out a detailed comparative study of the differ-
ent models, the F1 score of each appliance was calculated
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FIGURE 10. Recognition results for EV charging under different models.

TABLE 1. Accuracy of Models on Testing with Different Datasets.

under each model, these are shown in Table 2 and Table 3.
In Table 2, all of the considered models utilized the REDD.
Overall, no matter the electrical appliance, the proposed
model obtains the highest F1 score, followed by the PBN.
The F1 score for air conditioners is the highest, followed by
stoves and washers/dryers.

In Table 3, all the considered models utilized the PSD
dataset. The proposed model obtains the highest F1 scores for

TABLE 2. F1 Scores of Different Appliances (REDD dataset).

TABLE 3. F1 Scores of Different Appliances (PSD dataset).

all appliances, followed by PBN. Observing the F1 scores for
different electrical appliances, air conditioners is the highest,
followed by PVs and EVs.

V. CONCLUSION AND FUTURE WORK
In this paper, a new method based on a CNN-LSTM-RF
deep learningmodel is proposed to achieve non-intrusive load
monitoring. First, a data preprocessing method, DBSCAN, is
developed to extract features from the load data. Second, a
pre-training process is executed to consider correlations in
electrical consumption behaviors and to improve the NILM
accuracy. In addition, a compound re-weighting method is
proposed to improve the training model and to avoid gra-
dient disappearance. Finally, a combined deep learning net-
work based on CNN-LSTM-RF is constructed to output the
final recognition results. The main idea behind the proposed
method is to combine expert knowledge and deep learning
models. DBSCAN references data processing expert knowl-
edge within NILM. Using DBSCAN, the one-dimensional
load data are converted into a two-dimensional matrix, which
can be input into the CNN directly.

Two public datasets were used to test the proposed method.
Experiments show that the proposed method achieved a sat-
isfactory effect. Both the accuracy scores and F1 scores of
the proposed method were the highest among the compared
models.

The advantages of the proposed method are that the system
can be implemented by utilizing low-cost meters for the
acquisition of the aggregated load data because the method
needs only low frequency data. In fact, the proposed method
can achieve NILM based on one minute interval data, which
makes it a promising prospect for application.

Verification of the generalization ability of the model is a
direction of our future research. In addition, the deep learning
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model requires a large amount of labeled data, which is
difficult to obtain. An unsupervised model is under consid-
eration to realize the recognition of unlabeled data through
pre-training.
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