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ABSTRACT This paper proposes a new Multi-Objective Plasma Generation Optimization (MOPGO)
algorithm, and its non-dominated sorting mechanism is investigated for numerous challenging real-world
structural optimization design problems. The Plasma Generation Optimization (PGO) algorithm is a recently
reported physics-based algorithm inspired by the generation process of plasma in which electron movement
and its energy level are based on excitation modes, de-excitation, and ionization processes. As the search
progresses, a better balance between exploration and exploitation has amore significant impact on the results;
thus, the crowding distance feature is incorporated in the proposed MOPGO algorithm. Also, the proposed
posteriori method exercises a non-dominated sorting strategy to preserve population diversity, which is a
crucial problem in multi-objective meta-heuristic algorithms. In truss design problems, minimization of the
truss’s mass and maximization of nodal displacement are considered objective functions. In contrast, ele-
mental stress and discrete cross-sectional areas are assumed to be behavior and side constraints, respectively.
The usefulness of MOPGO to solve complex problems is validated by eight truss-bar design problems. The
efficacy ofMOPGO is evaluated based on ten performancemetrics. The results demonstrate that the proposed
MOPGO algorithm achieves the optimal solution with less computational complexity and has a better
convergence, coverage, diversity, and spread. The Pareto fronts ofMOPGO are compared and contrastedwith
multi-objective passing vehicle search algorithm, multi-objective slime mould algorithm, multi-objective
symbiotic organisms search algorithm, and multi-objective ant lion optimization algorithm. This study will
be further supported with external guidance at https://premkumarmanoharan.wixsite.com/mysite.

INDEX TERMS Constraints optimization problems, crowding distance, meta-heuristics, non-dominated
sorting, numerical optimization, Pareto front, structure optimization.

I. INTRODUCTION
Design problems in physics and technology are mostly linked
to more than one objective requiring a trade-off between
these competing objectives to achieve optimal solutions [1].
These are multi-objective (MO) design problems in which
programmers try to balance cost and performance. Structure
optimization is one of the most vital challenges associated
with engineering designs due to many diverse objectives
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under multiple constraints. The structure total weight reduc-
tion combined with maximum deflection objective is per-
haps the most studied optimization case in truss bar design
problems [2,3]. Researchers established numerous method-
ologies to tackle such engineering problems; nevertheless,
these studies often failed to find optimal solutions from
the established Pareto-front [4]. An optimal design can be
achieved by creating a fine balance among various diverse
goals by properly addressing two undertakings. First, a stan-
dard optimization technique should be developed to achieve a
high-efficiency solution by finding a middle ground between
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various design objectives, while the second task is to choose
the best choice out of all those given to you. As a result,
the best option should come from the Pareto optimal points,
and a decision-maker should choose it [5]. The MO opti-
mization problems are highly complicated due to many and
diverse objectives [6]. Besides single-objective problems,
these design problems have more than one optimal solution,
referred to as a Pareto-optimal set. Thus, MO design issues
require a powerful optimization methodology to resolve these
challenging problems. One of the very active areas of research
in optimization nowadays is the field of meta-heuristics
(MHs) because of their high flexibility and effectiveness in
solving complex problems like discrete, discontinuous, noisy,
dynamic, and non-differentiable. In the last four decades,
many new MHs have been proposed and applied in many
optimization tasks. Genetic Algorithm (GA) [7], Differential
Evolution (DE) [8], the Particle Swarm Optimization (PSO)
algorithm [9], and Ant Colonies (ACO)[10] are a few of the
influential MHs that grasp more attention of scholars from
diverse field. Moreover, apart from a single objective appli-
cation, many MHs were also developed and implemented
for MO design optimization problems. Few notable state-of-
the-art techniques are: NSGA-II [11], SPEA2 [12], PESA-II
[13], PAES [14], MO Heat Transfer Search (MOHTS) [15],
MO cuckoo search [16], MOPSO [17], decomposition-based
MO evolutionary algorithm [18], and MOGA [19]. While the
outcomes generated by MHs are not necessarily the optimal
results, they can be accomplished in a reasonable period.

Moreover, the potential to reach the Pareto front in a single
run is the most striking feature of these MHs [20]–[23].
However, literature depicts the failure of these MHs while
solving large-scale, complex, dynamic, and multi-constraints
practical optimization problems. This is due to their slow
convergence rate, local optima trap, a bunch of controlling
parameters, the high time of computation, and incompetency
in resolving non-trivial objective functions. These limitations
were always tried to settle with further improvements and
hybridizations of diverse techniques by many researchers.
Few examples are improved MOHTS [24], adaptive MO
Symbiotic Organisms Search (MOSOS) [25], Hybrid HTS
and Passing Vehicle Search (PVS) [1], Grey Wolf Optimizer
based on non-dominated sorting technique [26], enhanced
chaotic JAYA algorithm [27], hybrid PSO-Multi Verse
Optimizer [28], and many more. A fine balance between
global diversification and local intensification is essential for
MHs [4], [5]. In principle, the terminology diversification
corresponds to search space exploration, while the expression
intensification leads to the utilization of cumulative search
knowledge. As mentioned, the harmony between diversifica-
tion and intensification is crucial because the former helps
in promptly identifying the high-quality solutions regions in
the search arena. In contrast, the latter leads in minimal time
in search areas that are either already being explored or that
do not offer high-quality solutions [15], [22]. Today’s quite
burning question is the quest for evenmore powerful methods
to efficiently solve the challenging and complex practical

engineering design problems without compromising the local
and global search rate. The emergence of new nature-inspired
MHs is thus rising drastically, and many new algorithms
were introduced and claimed to be efficient. Few prominent
techniques are grey wolf [29], slime mould [30], marine
predators [31], Jaya [32], harris hawks [33], equilibrium [34],
sine cosine [35], ant lion [36], moth-flame [37], and chaotic
gradient-based optimizer [38].

However, as per the prominent ‘‘No-Free-Lunch’’ the-
ory [39], one MH cannot solve every problem effectively
and efficiently. An MH may yield a good result in a specific
design issue, but the same strategy might generate a feeble
result in another challenge. There is no MH that provides
optimal response for each problem, to put it another way.
Hence, a search for a powerful and robust algorithm always
prevails.

A recently proposed Plasma Generation Optimization
(PGO) [40] has shown unique characteristics, including
(i) no need for parameter adjustments since the optimizer
is completely parameter-free; (ii) excellent capabilities for
exploration with plasma ionization generation; (iii) exploita-
tion capabilities gained by de-excitation phase; (iv) inferior
solutions can be eliminated during the excitation phase. With
these four benefits, it is clear to see how the PGO algorithm
excels. Compared with other MHs, very few possess all
four properties above, leading to more accurate results and
reliable processes. These abilities and prospects encourage
the authors to create a new non-dominated sorting-based
(NDS) optimizer termed MOPGO, which is tested on vari-
ous real-world structure optimization problems in this study.
Many researchers have been drawn to the NDS-based
paradigm because of its simplicity and suitability for MO
design problems in the physical world [11], [26], [41], [42].
As a result, the current research combines the benefits of NDS
methodology with PGO to produce a robust global optimiza-
tion technique that balances local intensification and global
diversification of search. Hence, the main contributions of
this paper are as follows.
• A new NDS and Crowding Distance (CD) based
MOPGO algorithm is proposed for solving MO
problems.

• The framework of MOPGO lies on the foundation of
PGO. Therefore, the MOPGO exploits the plasma gen-
eration phase to achieve equilibrium between search
intensification and diversification.

• Demonstrates selecting one optimal solution from the
Pareto fronts for a real-world application in practice
through the fuzzy-based decision.

• Discusses three crucial aspects of the algorithm,
i.e., optimization capability of the search algo-
rithm, Pareto dominance, and solution diversity
simultaneously.

• The MOPGO is evaluated using eight challenging
real-world MO structural optimization design problems.

• Performance evaluation has been made qualitatively
and quantitatively with MO Passing Vehicle Search
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(MOPVS), MO Slime Mould Algorithm (MOSMA),
MO Symbiotic Organisms Search (MOSOS), and MO
Ant Lion Optimization (MOALO) algorithms.

The rest of the paper is structured as follows: Section 2 pro-
vides details of the basic PGO algorithm. Section 3 discusses
the formulation procedure of NDS basedMOPGO algorithm.
Section 4 presents the mathematical concepts of the selected
MO optimization problems. The performance analysis and
detailed description for all truss bar problems are presented
in Section 5. Section 6 concludes the paper based on metrics
and obtained Pareto fronts.

II. PLASMA GENERATION
OPTIMIZATION (PGO) ALGORITHM
Literature reveals that MHs prove to be an effective and
efficient strategy in dealingwithmany challenging real-world
optimization problems. They can find suitable solutions
through a random search methodology inspired by nature.
MHs are widely utilized due to their potential to achieve an
optimal solution in most instances in the least computational
time. PGO is the newly introduced physics-based algorithm
that imitates the industrial plasma generation procedure and
demonstrates its competitiveness with other state-of-the-art
techniques in solving several constrained benchmarks and
real-world problems [40]. The main steps of the PGO algo-
rithm can be stated as follows:

A. STEP 1: INITIALIZATION
The light beam strikes the molecules at the beginning of
the procedure, creating a population of n random candidate
solutions from electrons of various energy levels in the search
space:

e0i,j = ej,min + rand×
(
ej,max − ej,min

)
i = 1, 2, . . . , n and j = 1, 2, . . . , d (1)

where e0i,j is the initial value of the jth variable of the ith candi-
date solution; ej,min and ej,max are respectively the minimum
and maximum permissible values for the jth variable; rand is
a random number uniformly distributed in the interval [0, 1];
n is the number of electrons and d is the number of design
variables.

B. STEP 2: IDENTIFYING EACH ELECTRON’s
PHYSICAL PROCESS
To determine an electron’s new location, a random
number between 0 and 1 is produced first. The ran-
domly generated number specifies which physical process
(excitation/de-excitation or ionization) should occur for the
electron, so that:

if rand1 < EDR, X

otherwise, Y (2)

in which rand1 is a random number generated between 0 and
1; EDR is an excitation/de-excitation rate, X is an excitation
and/or de-excitation processes are occurred, and Y is an
ionization process that has occurred.

C. STEP 3: EXCITATION AND/OR DE-EXCITATION
PROCESSES ARE USED TO GENERATE A
NEW ELECTRON POSITION
1) EXCITATION PROCESS
Positive charge (protons) and negative charge (antiprotons)
are the two charged particles that make up an atom (electron).
There are electrons in atomic orbitals with various energy
levels around the nucleus, based on the action of electron
waves. Some of the electrons that are closer to the nucleus are
positioned at lower energy levels. Electron beams interfere
with the atom during excitation, increasing the energy level of
atomic electrons. The movement of atomic electrons caused
by collisions has a natural probability and is restricted to the
atomic orbitals. In another way, electrons with lower energy
levels migrate to higher energy levels during the excitation
process. This movement can be defined in two ways:

stepsizeExcitationi,j = rand a×1x i,j + rand b

×1x i,j× (1− t)

t =
it

Maxit
(3)

where stepsizeExcitationi,j is the step size of the ith atomic elec-
tron; randa and randb are random numbers uniformly dis-
tributed in [0.6+ 0.1× t,1.4 − 0.1 × t] and [−δyi,j, δyi,j]
intervals, respectively; 1x i,j and δyi,j are calculated as
follows:

1x i,j =

{
xi,j − xrs,j PCost i < PCostrs
xrs,j − xi,j PCost i ≥ PCostrs

(4)

where xi,j and xrs,j are the position of two compared electrons;
Here, each electron compares with a randomly selected one
(xrs,j) except itself for possible improvement of energy level.
δyi,j is obtained by simulating d-orbital with pear-shaped
equation due to their similarity:

δyi,j =

√√√√√
∣∣∣∣randa× ( |xi,j−xrs,j|ej,max−ej,min

)3
−

(
|xi,j−xrs,j|
ej,max−ej,min

)4∣∣∣∣
2× iteration

(5)

Eq. (5) shows that as iteration increases, the search domain
around better electrons shrinks. The excitation method
demonstrates the algorithm’s ability to intensify by reducing
the size of d-orbitals.

2) DE-EXCITATION PROCESS
Because of the interaction of electron beams with gas atoms,
a percentage of excited electrons lose energy by releasing
light, causing their locations to shift from high-energy to
low-energy. This method can be mathematically expressed as
follows:

if rand1 < EDR and rand2 < DR, X

otherwise, Y

X = NDRS = ceil (DRS × d)

Y = De− excitation process does not occur (6)
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in which rand1 and rand2 are random numbers generated
between 0 and 1; The De-excitation Rate (DR) parameter
specifies whether or not the de-excitation process occurs.
DRS denotes the de-excitation rate for each excited-state elec-
tron. Ceil is the operator that rounds the obtained value toward
positive infinity; this parameter is a regulating parameter that
determines how many dimensions each electron can perform
for de-excitation. To perform the de-excitation procedure,
the following equation is used to obtain the set of dimensions
of each electron chosen at random:

K = randsample (d,NDRS) (7)

where K returns NDRS values sampled uniformly, without
replacement, from the integer 1 to d (number of design vari-
ables), in the following, changing atomic electrons position
are occurred based on steps which are obeyed from normal
distribution as:

stepsizeDe−excitationi,k

= stepsizeExcitationi,k + rand×
(
ek,max − ek,min

)
(8)

where rand is a normal distributed random number withmean
0 and variance 1.

D. STEP 4: BASED ON THE IONIZATION MECHANISM,
GENERATE A NEW ELECTRON POSITION
Atoms collide with high-energy electron beams. Any of these
atomic electrons are torn from their atoms and thrown into the
plasma. Immersed electrons collide with other atoms due to
their high kinetic energy. As a result, the atoms in question are
excited and become ions. The movement of electrons, which
follows the laws of levy flight, is used tomodel this operation.
To put it another way, the trajectories of electrons immersed in
plasma follow the levy distribution and can bemathematically
simulated as follows:

stepsizeIonizationi,j = rand×Si,j ×1x i,j × (1− t) (9)

where rand is a normally distributed rand number with mean
0 and variance 1;t and 1x i,j are obtained as per Eqs. (3)-(4),
respectively, and Si,j can be calculated as follows:

Si,j =
rand1

|rand2|
1
β

×σ (10)

where β is a constant equal to 1.5 in this study; rand1 and
rand2 are normally distributed random numbers, and σ is
calculated as follows:

σ =

 0 (1+ β)× sin
(
πβ
2

)
0
(
1+β
2

)
× β × 2

(
β−1
2

)


1
β

0 (x) = (x − 1) ! (11)

Because of the extremely long jump made in levy flight,
the ionization process demonstrates the algorithm’s diversifi-
cation capability.

Algorithm 1 Procedure of the PGO Algorithm
Set algorithm parameters (n, Maxit, EDR, DR, DRS).
Evaluate the initial candidate solutions.
while(termination condition not met) do
for i: 1 to n
Select randomly one other electron among n
electrons (e.g. rs), except (i).
if rand1 < EDR (Excitation process occurs)
Generate new solution i based on the excitation
process using Eqs. (4) and (12).
if rand2 < DR (De-excitation process occurs)
Calculate NDRS and K using Eqs. (7) and (8)
Changing some dimensions of the newly
generated solution i using Eqs. (9) and (12).
end if

else (Ionization process occurs)
Generate new solution i based on the ionization
process using Eqs. (10) and (12).
end if
Checking lower and upper bounds of design variables
for ith electron.
Evaluating the objective function for ith electron.
Updating the position of the ith electron using Step 5

end for
end while

end

E. STEP 5: UPDATING THE ELECTRON’s POSITION
In the previous step, Eqs. (3), (8), and (9) were used to deter-
mine the new position of the electron (Eq. 12). The newly
produced electron is then compared to the one generated in
the previous iteration. It is substituted if the newly created
one is better. The best electron in each iteration, on the other
hand, is compared to the best electron obtained thus far, and
if the best electron is better than the best electron obtained
thus far, it is substituted.

eiteration+1i,j = eiterationi,j +


stepsizeExcitationi,j

stepsizeDe−excitationi,k

stepsizeIonizationi,j
if rand1 < EDR

if rand1 < EDR and rand2 < DR

if rand1 ≥ EDR

(12)

F. STEP 6: CHECKING TERMINATION CONDITION
The optimization process is terminated if the number of iter-
ations exceeds the maximum number of iterations set as the
stopping criterion, and the best solution found thus far will be
announced. Otherwise, the process loops back to Step 2 for
the next iteration. The pseudocode for the PGO algorithm is
given in Algorithm 1.
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III. MULTI-OBJECTIVE PLASMA GENERATION
OPTIMIZATION (MOPGO) ALGORITH
In this paper, the NDS and CD-based PGO algorithm
is proposed for the MO optimization problem. The NDS
method handles the Pareto dominance issue and tries to
keep the non-dominated solution into the next generation,
and the CD technique maintains the diversity of solu-
tions [43]. Apart from the Pareto dominance and diver-
sity research issue, this research also addressed another
MO algorithm-related subject that how to select one Pareto
solution from the Pareto frontier for a real-world appli-
cation in practice through the fuzzy-based decision and
computational complexity measurement. This paper con-
tributes a new MOPGO algorithm that confronts three
crucial aspects, i.e., optimization capability of the search
algorithm, Pareto dominance, and solution diversity concur-
rently. By this suggested framework, the search algorithm
ensures a proper balance between global diversification and
local intensification. The NDS comprises the subsequent
phases.

• First, determining the non-dominated solution.
• Second, the application of the NDS approach.
• Calculating non-dominated ranking (NDR) of all non-
dominated solutions.

The NDR process happens between two fronts. The solu-
tions in the first front give a ‘0’ index since it is not dominated
by any solutions, at the same time, the solutions in the second
front are dominated by at least one solution in the first front.
Such NDR of the solutions is equal to the number of solutions
that dominate them. The concept of two populations is further
explained as follows. Firstly, for each solution obtained from
the basic search method (i.e., PGO) or initially generated
random population Po, all the objectives from the objective
vector F are evaluated. In addition, a domination count np
defined as the number of solutions dominating the solution p
and Sp which is a set of solutions dominated by solution p are
calculated. Secondly, all the solutions p is assigned a domina-
tion count zero and are put in the first non-dominated level,
also known as Pareto Front (PF), and their non-domination
rank (NDRp) is set to 1. Thirdly, for each solution p with
np = 0, each member q of the set Sp is visited and its domi-
nation count nq is reduced by one. While reducing nq count if
it falls to zero, the corresponding solution q is put in second
non-domination level and NDRq is set to 2. The procedure
is repeated for each member of the second non-domination
level to obtain the third non-domination level, and sub-
sequently, the procedure should be repeated until the
whole population is sorted into different non-domination
levels.

The CD mechanism is utilized to maintain diversity
between the developed solutions. In the crowding distance
approach for maintaining diversity among the obtained solu-
tions, firstly, the population is sorted according to the value

Algorithm 2 Pseudocode of Multi-Objective Plasma Gener-
ation Optimization (MOPGO) Algorithm

Step 1: Initially Generate population (Po) randomly in
solution space (S)

Step 2: Evaluate objective space (F) for the generated
population (Po)

Step 3: Sort the based on the elitist non-dominated sort
method and find the non-dominated rank (NDR)
and fronts

Step 4: Compute crowding distance (CD) for each front

Step 5: Update solutions (Pj) using Algorithm 1

Step 6: Merge Po and Pj to create Pi = Po U Pj

Step 7: For Pi perform Step 2

Step 8: Based on NDR and CD sort Pi

Step 9: Replace Po with Pi for Np first members of Pi

of each objective function in ascending order called ‘‘sorting
by fitness.’’ The concept of ‘‘sorting by fitness’’ is explained
in detail with one simple example in Appendix. An infi-
nite crowding distance is then assigned to the boundary
solutions, i = 1 and i = l, of each objective. Here l is
the total number of solutions in a particular non-dominated
set. The boundary solutions are the minimum (i =1) and
maximum (i = l) function values. Except for the bound-
ary solutions, all the other solutions of the sorted pop-
ulation (i = 2 to l-1) for each objective j (j = 1, 2,
. . . , m) are assigned, and the CD mechanism is defined as
follows.

CDij =
fobji+1j − fobj

i−1
j

fobjmaxj − fobjminj

(13)

where fobjmaxj and fobjminj are the maximum and minimum
values of jth objective function. In Eq. 13, the right-hand side
term is the difference in values of objective function j for
two neighboring solutions (i + 1 and i − 1) of solution i.
The diagrammatic illustration of an NDS-based approach is
illustrated in Fig. 1. Algorithm 2 shows the pseudocode of
theMOPGOalgorithm. The algorithm starts with defining the
required parameters, including population size (Np), termina-
tion criteria, and amaximumnumber of generation/maximum
number of iteration (Maxit ) to run the MOPGO algorithm.
Then, a randomly generated parent’s population Po in fea-
sible search space region S is created, and each objective
function in the objective space vector F for Po is assessed.
Thirdly, the elitist-based CD and NDS are applied to Po.
Fourthly, a new population of Pj is generated and combined
with Po to get population Pi. This Pi is sorted based on
elitist non-domination and the obtained data of CD and NDR.
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FIGURE 1. The procedure of non-dominated sorting approach.

FIGURE 2. Flowchart of the MOPGO algorithm.

The best Np solutions are reviewed to create a new par-
ent population. Lastly, this procedure is repeated until the
termination criteria. The flowchart of MOPGO is shown
in Fig. 2.

A. BEST COMPROMISE SOLUTION (BCS) BASED ON
FUZZY DECISION
To find the best solution that provides the best degree of
satisfaction to each objective is pursued out of feasible
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Pareto-optimal solutions and governed by fuzzy member-
ship [44] functions µi defined as follows:

µ
j
i =


1, if f ji 6 f jmin

f jmax − f
j
i

f jmax − f
j
min

, if f jmin 6 f ji 6 f jmax

0, if f ji > f jmax

(14)

µi(Normalized)

=

∑Nobj
j=1 µij∑M

i=1
∑Nobj

j=1 µij

(15)

where M is the number of non-dominated solutions, Nobj is
the number of the objective function, and f jmax and f jmin are
themaximum andminimumvalues of the respective objective
function. The best-compromised value is the one with a high
value of µi.

B. CONSTRAINT HANDLING APPROACH
The MOPGO algorithm, a static penalty approach,
is employed as follows.

fj (X) = fj (X)+
p∑
i=1

Pimax {gi (X) , 0}

+

NC∑
i=p

Pimax {|hi (X)| − δ, 0} (16)

where fj (X) ,j = 1, 2 . . . n is the objective function to be
optimized (here minimized), X = {x1, x2, . . . xm} are design
variables, gi (X) 6 0, i = 1, 2 . . . p are inequality constraints,
hi (X) = 0, i = p + 1 . . .NC are equality constraints, and δ
is tolerance inequality constraints.

C. COMPUTATION COMPLEXITY (CC) OF
MOPGO ALGORITHM
The CC of the MOPGO algorithm is represented in terms
of time complexity and space complexity. As per earlier
discussion, the suggested MOPGO algorithm utilizes the
NSGA-II operators [11]. Since the NDS and CDmechanisms
are adopted from NSGA-II, the computational space com-
plexity of MOPGO similar to MOPVS, MOSMA, MOALO,
and MOSOS optimizers are O(MNp)2, where Np is the
number of search agents/population size, and M is the
total number of objective functions. The computational time
complexity of MOPGO is given for each iteration. The com-
plexity is equal to O(dim∗Np + Cost(fobj)∗Np) for the first
iteration. The computational time complexity is equal to
O(dim∗ Np+ Cost(fobj)∗Np+ (NDS + CD)∗dim) after the
first iteration. The overall computational time complexity is
given for theMaxit to time = O(M )|M = O(dim∗Maxit∗Np+
Cost(fobj)∗Maxit∗Np+ (NDS + CD)∗(Maxit )∗dim + (NDS +
CD)∗(Maxit )∗Cost(fobj)). The cost of the objective function
is denoted as Cost(fobj), the objective function is denoted by
fobj, the current iteration is symbolized as t, and the maximum

FIGURE 3. The 10-bar truss.

number of iterations is symbolized asMaxit , and the number
of variables in the objective function is represented as dim.

IV. MATHEMATICAL FORMULATION OF
MULTI-OBJECTIVE OPTIMIZATION PROBLEMS
In this paper, structure weight is the first objective that needs
to be minimized, whereas maximum nodal deflection is the
second objective. The mathematical formulation for the MO
truss optimization problem is as follows:

Find,A = {A1,A2, ..,Am}

f1 (A) =
m∑
i=1

AiρiLi

f2 (A) = max
(∣∣δj∣∣)

 (17)

Subjects to:
Behavior constraints:
Stress constraints, g (A) = |σi| − σmaxi ≤ 0
Side constraints:
Cross− sectional area constraints, Amini ≤ Ai ≤ A

max
i

where, i = 1, 2, ..,m; j = 1, 2, .., n. Here, Ai is a design
variable vector; ρi and Li are the mass density and length of
the elements, respectively; Ei and σi Correspond to the ‘i’
element Modulus of elasticity and stress, respectively. More-
over, the allowable upper and lower bounds are represented
by superscripts ‘max’ and ‘min,’ respectively.

V. EMPIRICAL EVALUATION
To examine the convergence, coverage, intensification, and
diversification of the proposed MOPGO, numerous 2-D and
3-D structural tests were examined and contrasted with other
state-of-the-art MO optimization strategies existing in the
literature, viz. MOPVS [4], MOSMA [45], MOSOS [25],
and MOALO [23]. The subsequent section elaborates on the
eight truss problems, i.e., 2-D 10-bar, 3-D 25-bar, 3-D 60-bar
ring, 3-D 72-bar, 3-D dome 120-bar, 3-D 200-bar, and tower
942-bar truss problems that were considered. Table 1 presents
all design considerations and mechanical properties used to
simulate eight truss MO optimization examples in one frame.
Moreover, Figs. 3, 6, 9, 12, 15, 18, 21, 24 illustrates load
directions, constraints, and truss dimensions.
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TABLE 1. Design considerations of the truss problems [1].

FIGURE 4. Best Pareto fronts of the 10-bar truss by all algorithms.

A. EVALUATION METHOD
In this study, every algorithm is executed 30 times individ-
ually for all considered eight truss design problems with
the population size of 40, the maximum number of iteration
of 500, and the maximum number of function evaluations
of 2000 [46].
• The Hypervolume (HV) and Inverted Generational
Distance (IGD) metric are employed to concurrently
examine the uniformity-convergence-spread of the

non-dominated set of solutions procured from the com-
putation experiments.

• To examine the search efficiency and reliability of con-
sidered algorithms in terms of faster convergence rate
Generational Distance (GD), Spread (SD), Coverage
(CVG), and Coverage over Pareto Front (CPF) metrics
are used [46]–[48].

• To measure the computational complexity, Run-
time (RT) metric and for combined diversity-spread,
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FIGURE 5. Boxplots of the 10-bar truss by all algorithm.

FIGURE 6. The 25-bar spatial truss.

spacing (SP), Diversity Maintenance (DM), and Pure
Diversity (PD) metrics are calculated [46]–[48].

• The mean and standard deviation (STD) values of the
metrics are regarded as the statistical performance mea-
sure [4], [15].

• Friedman’s rank test (FNRT) is a statistical review of all
the optimizers examined [20], [24].

GD =

√∑no
i=1 d

2
i

n
(18)

IGD =

√∑nt
i=1

(
d ′i
)2

n
(19)

SP ,

√√√√ 1
n− 1

n∑
i=1

(
d − di

)2
(20)

SD =

√√√√ o∑
i=1

max (d (ai, bi)) (21)

PD =

∑
H(i,j,...)6=0 m (h (i, j, . . .))∑
H(i,j,...)6=0m (H (i, j, . . .))

(22)

HV = 3

(⋃
s∈PF

{
s′ | s ≺ s′ ≺ snadir

})
(23)

DM =
df + dl +

∑N−1
i=1

∣∣di − d̄∣∣
df + dl + (N − 1) d̄

(24)

CVG =

∑n
i=1 ψi

N
, ψi

=

1, if Pi ∈ PF and αi−1 ≤ tan
f1 (x)
f2 (x)

≤ αn

0, Otherwise
(25)

CPF =

∑n
i=1 PF i
N

(26)

RT =

∑n
i=1 T
n

(27)
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FIGURE 7. Best Pareto fronts of the 25-bar truss by all algorithms.

FIGURE 8. Boxplots of the 25-bar truss by all algorithms.

where no is the number of True Pareto solution (PS), nt is
the number of true Pareto optimal solutions, o is the number

of objectives, d is the average of all di, di, and d ′i specifies
the Euclidean distance, n is the number of obtained PS,
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FIGURE 9. The 37-bar truss.

FIGURE 10. Best Pareto fronts of the 37-bar truss by all algorithms.

FIGURE 11. Boxplots of the 37-bar truss by all algorithms.

di = minj
(
|f i1 (Ex)− f

j
1(Ex)| + |f

i
2 (Ex)− f

j
2(Ex)

)
for all i,j =

1,2,. . . ,n., ai and bi is the maximum and minimum value in
the ith objective.

B. RESULTS AND DISCUSSIONS
The data obtained by all selected algorithms, such as
MOPGO, MOPVS, MOSMA MOSOS, and MOALO for all
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FIGURE 12. The 60-bar ring truss.

considered benchmarks, are illustrated in Tables 2–12 as per
the sequence of all performance metrics.

1) 10-BAR PLANAR TRUSS
The HV metric results are illustrated in Table 2, from which
it is evident that MOPGO achieved the best functional
mean (fmean) and standard deviation (fstd) values, relative
to other considered algorithms. Moreover, the FNRT metric
assigned the rank of 500, 300, 375, 200, 225, and 100 to
the MOPGO, MOPVS, MOSMA, MOSOS, and MOALO,
respectively. Hence at a 95% significance level, MOPGO
outperforms by demonstrating its high solutions density in
the proximity of the Pareto Front. For GD indicator, fmean
results for MOPGO from Table 3 show a percentage decrease
of 45.66%, 43.26%, 18.67%, and 42.23% with respect to
MOPVS, MOSMA, MOSOS, and MOALO, respectively.
Similarly, MOPGO obtain the least fstd value of 1.293634 rel-
ative to others. Moreover, MOPGO found the least FNRT
value, i.e., 100, followed by MOALO, MOSMA. There-
fore, MOPGO has a better quality of convergence as per
FNRT at 95% significance level. According to Table 4, the
best CVG metric fmean was obtained by MOALO and stood
first as per FNRT while the proposed MOPGO technique

achieves the best fstd value and demonstrate its enhanced
coverage characteristic. In terms of CPF metric as reported
in Table 5, the MOPVS, MOSMA, and MOPGO demon-
strate their improved quality relatively and settled at 475,
400, and 325FNRT values, respectively. Table 6 depicts the
DM metric results according to which MOPGO fmean value
has a percentage increase of 29.63%, 22.61%, 59.23%, and
7.27% from MOALO, MOSOS, MOSMA, and MOPVS at
least fstd results. MOPGO, as per the FNRT obtained a max-
imum value of 500 relatively and at 95% significance level
ranked first. These indicator outcomes exhibit the improved
solution diversity of MOPGO concerning other contrasted
methodology.

Similarly, for PD performance measure as illustrated
in Table 7, the MOPGO algorithm demonstrates its superior
pure diversity behavior through its best fmean and fstd that
was eventually proved by its highest 425 FNRT value in
comparison to other selected optimization techniques. For
SP measure, according to Table 8, MOPGO evidence a sig-
nificant percentage decrease in its fmean value of 82.744%,
59.29%, 54.63%, and 32.10% relative to MOPVS, MOSMA,
MOALO, and MOSOS, respectively. MOPGO also attain
the best fstd value of 176.6763, which is substantially less
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FIGURE 13. Best Pareto fronts of the 60-bar truss by all algorithms.

FIGURE 14. Boxplots of the 60-bar truss by all algorithms.

relatively. Furthermore, the FNRT metric indicates the best
rank of 125 by MOPGO and thus, at 95% significance level,
displays its enhanced spacing quality. From SD metric find-
ings as shown in Table 9, MOPGO finds the superior fmean
and fstd value of 0.283055 and 0.046962 pertaining to other
algorithms and achieve the best FNRT value of 100 followed

by MOSMA. At a 95% significance level, MOPGO displays
its well-distributed non-dominated solutions. In the IGD test,
as indicated in Table 10, the MOPVS and MOSMA man-
ifest superior fmean, fstd and FNRT results while MOPGO
ranked third, showing its competing convergence-spread par-
ity attribute. In terms of RT measure, the MOPVS realize the
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FIGURE 15. The 72-bar 3D truss.

best fmean value followed byMOPGOwhile the least fstd value
is an exhibit by MOSMA, as shown in Table 11. Moreover,
the FNRT results portray the least computational run exe-
cuted byMOPGO andMOPVS relatively to reach the optimal
solution. Table 12 unveils the Best-Compromised Solution
(BCS) that satisfied each objective (fweight , fcompliance) relying
on fuzzy decision technique. It is evident from all tables
that for a 10-bar truss problem, the BCS, i.e. (3653.518,
138077.3) achieved by MOPGO, is superior among all
selected algorithms.

Figure 4 depicts the best Pareto fronts for individual algo-
rithms and their corresponding BCS results. The combined
Pareto fronts illustration describes the diverse, continuous,
and smooth qualitative behavior of MOPGO relatively. The
dominance of the proposedMOPGO algorithm quantitatively
over others is also illustrated in Figure 5 comprehensively
in the form of all investigated performance metric outcomes
boxplots.

2) 25-BAR SPATIAL TRUSS
HV metric results are depicted in Table 2, and it displays
that the best fmean value of 0.695684 and least fstd value
of 9.34E-05 is achieved by MOPGO. The FNRT values of
MOPGO, MOPVS, MOSMA, MOSOS, and MOALO are
500, 200, 375, 325, and 100, respectively. Thus, MOPGO
ranked first among all algorithms at 95% significance level
and, hence, better solutions density near Pareto Front.
In terms of GD metric fmean value, MOPGO obtained
the least value of 4.902076 with a substantial percentage
decrease of 95.16%, 58.95%, 33.58%, and 33.29% from
MOALO, MOPVS, MOSOS, and MOSMA, respectively,
as per Table 3. Moreover, MOPGO attain the best FNRT
value of 100 with minimum fstd that describes its improved

convergence behavior. Table 4 shows the better CVG val-
ues for MOALO relatively while the least value of fstd is
procured by MOPGO. In the CPF measure, the MOSMA
and MOPVS attest to their satisfactory result and acquire
FNRT values of 450 and 425, respectively, followed by
MOPGO, as listed in Table 5. The MOPGO obtains fmean
value for DM metric as depicted in Table 6 has a per-
centage increase of 25.58%, 24.82%, 44.83%, and 16.46%
from MOALO, MOSOS, MOSMA, and MOPVS, respec-
tively. The FNRT results for MOPGO, MOPVS, MOSMA,
MOSOS, and MOALO are 500, 400, 100, 275, and 225,
respectively. Thus, at a 95% significance level, the proposed
MOPGO algorithm outperforms others and exhibits better
diversity in solutions. Similarly, fromTable 7 for PDmeasure,
the MOPGO has a percentage increase of 41.94%, 38.87%,
38.55%, and 17.57% in fmean value from MOPVS, MOALO,
MOSMA andMOSOS. Also, MOPGO obtains the maximum
FNRT value of 500, followed by MOSOS with 325. These
outcomes describe the improved pure diversity nature of
investigated MOPGO over other methodologies.

Table 8 reveals the SP metric where MOPGO fmean
value reported a substantial percentage decrease of 78.32%,
56.44%, 59.68%, and 85.70% from MOALO, MOSOS,
MOSMA, and MOPVS. Similarly, MOPGO realize a major
percentage decrease of 97.33%, 94.83%, and 70.03%, cor-
responding to MOALO, MOPVS, and MOSOS in terms of
fstd values. Moreover, MOPGO manifests the best FNRT
value that describes its optimal spacing feature relatively. For
SD indicator as per Table 9, MOPGO fmean value reported
a percentage decrease of 76.78%, 75.89%, 64.32%, and
77.37% against MOALO, MOSOS, MOSMA, and MOPVS.
MOPGO realize a best FNRT value of 100 at minimum
fstd value of 0.018069 that manifests it well-distributed
non-dominated solutions relative to others. For IGD perfor-
mance measure the MOPVS realize the best fmean and fstd
value along with the least FNRT value, which is followed
by MOSMA as presented in Table 10. Regarding RT met-
ric, the proposed MOPGO realize a minimum fmean value
of 27.26802 relatively. Also, its fstd results show a substantial
percentage decrease of 96.425, 90.22%, 75.16%, and 35.16%
fromMOSMA,MOSOS, MOALO, and MOPVS algorithms.
MOPGO,MOPVS,MOSMA,MOSOS, andMOALO realize
the FNRT value of 100, 200, 350, 350, and 500, respec-
tively. At a 95% significance level, MOPGO ranked first and
manifested its least computational time to reach the opti-
mal solution. Table 12 presents the BCS results for 25-bar
3D truss that proves that the best result is obtained by
MOPGO, i.e. (2346.643, 35377.12), against all other consid-
ered algorithms.

The best Pareto fronts achieved by individual algorithms
are indicated in Figure 7 simultaneously with their BCS
results. The combined Pareto fronts are contrasted for quali-
tative analysis in the last plot, reflecting the continuous and
well-distributed nature of MOPGO solutions. Furthermore,
all ten performance metrics results by all considered are
plotted in boxplot as illustrated in Figure 8 that demonstrates
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FIGURE 16. Best Pareto fronts of the 72-bar truss by all algorithms.

FIGURE 17. Boxplots of the 72-bar truss by all algorithms.
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TABLE 2. Results of (HVMetric) on truss bar problems.

the dominance of the suggested MOPGO algorithm quantita-
tively over others.

3) 37-BAR PLANAR TRUSS EXAMPLE
The HV metric results are illustrated in Table 2, from which
it is evident that the MOPVS achieved better fmean and
fstd value relative to other considered algorithms. Moreover,
the FNRT metric assigned the rank of 275, 450, 375, 300,
and 100 to the MOPGO, MOPVS, MOSMA, MOSOS, and
MOALO algorithms. At a 95% significance level, MOPGO
demonstrating its improved solution density. For GD indica-
tor fmean results for MOPGO from Table 3 show a percentage
decrease of 97.74%, 52.45%, 20.69%, and 6.16%% regarding
MOALO, MOPVS, MOSMA, and MOSOS, respectively.
However, the MOSOS obtain the least fstd value followed by
MOPGO that value shows a significant percentage decrease
of 98.18% fromMOALO. The proposed MOPGO also found
a least FNRT value of 150, followed by MOSOS, MOSMA.
Therefore, MOPGO has a better quality of convergence as

per FNRT at 95% significance level. As per the CVG met-
rics listed in Table 4, the best fmean value was obtained
by MOSOS and stood first as per FNRT while the pro-
posed MOPGO technique achieves the second-best rank and
demonstrates its enhanced coverage characteristic. In terms
of CPF metric as reported in Table 5, MOPGO demon-
strates its improved quality relatively and settled at the
highest FNRT value of 475. Moreover, MOPGO realize
a percentage increase of 143.98%, 63.54%, 14.34%, and
9.37% in fmean value relative toMOALO,MOSOS,MOSMA,
and MOPVS, respectively. Table 6 depicts the DM metric
results according to which MOPGO fmean value has a per-
centage increase of 64.86%, 20.58%, 51.82%, and 10.65%
from MOALO, MOSOS, MOSMA, and MOPVS and the
least fstd values. MOPGO, as per the FNRT obtained a
maximum 500 value relatively and at 95% significance
level ranked first. These prospects exhibit the improved
solution diversity of MOPGO concerning other contrasted
methodology.
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FIGURE 18. The 120-bar 3D truss.

For PD performance measure as illustrated in Table 7,
the MOPGO, MOPVS, and MOSOS algorithm demonstrates
their superior pure diversity behavior through its best fmean
and fstd values that were eventually proved by their highest
400 FNRT value. For SP measure, according to Table 8,
MOPGO evidence a significant percentage decrease in its
fmean value of 78.06%, 47.10%, and 46.84% relative to

MOPVS,MOSOS, andMOSMA, respectively. MOPGO also
attain the minimum fstd value after MOALO and MOSMA.
Furthermore, the FNRT metric indicates the best rank
of 150 byMOPGO and, thus, at a 95% significance level, dis-
plays its enhanced spacing quality. From SD metric findings
as shown in Table 9, MOPGO finds the superior fmean value
of 0.523486 and minimum fstd 0.049119 pertaining to other
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FIGURE 19. Best Pareto fronts of the 120-bar truss by all algorithms.

FIGURE 20. Boxplots of the 120-bar truss by all algorithms.

algorithms and achieve the best FNRT value of 100 followed
by MOSMA. At a 95% significance level, MOPGO displays

its well-distributed non-dominated solutions. In the IGD test,
as indicated in Table 10, MOPGO manifests a percentage
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FIGURE 21. The 200-bar 3D truss.

decrease of 91.27%, 50.23%, 39.22%, and 17.91% regard-
ingMOALO,MOSMA,MOPVS, andMOSOS, respectively.
Also fmean value of MOPGO reported a significant percent-
age decrease of 93.25%, 86.28%, 75.03%, and 73.83% from
MOALO, MOPVS, MOSMA, and MOSOS, respectively.
MOPGO manifested a superior FNRT result of 175 and
ranked first at a 95% significance level showing its com-
peting convergence-spread parity attribute. In terms of RT
measure, MOPGO realize the best fmean value while the least
fstd value is an exhibit by MOSOS followed by MOPGO,
as shown in Table 11. Moreover, the FNRT results portray
the least computational run executed by MOPGO relatively
to reach the optimal solution. Table 12 unveils the superior
BCS (1180.289, 18411.19) achieved by MOPGO among all
executed algorithms.

Figure 10 depicts the best Pareto fronts for individual algo-
rithms and their corresponding BCS results. The combined

Pareto fronts illustration describes the diverse, continuous,
and smooth qualitative behavior of MOPGO relatively. The
dominance of the proposedMOPGO technique quantitatively
over others is also illustrated in Figure 11 comprehensively
in the form of all investigated performance metric outcomes
boxplots.

4) 60-BAR SPATIAL TRUSS
Table 2 displays HV measure results accordingly the best
fmean and fstd value is obtained by MOSMA. The FNRT val-
ues for MOPGO,MOPVS,MOSMA,MOSOS, andMOALO
algorithms are 325, 150, 500, 375, and 150, respectively.
Thus, MOPGO at 95% significance level exhibit an accept-
able solution density near Pareto Front. In terms of GD
metric, MOPGO obtained fmean value of 21.79952, which
is 99.97% and 66.17% less from MOALO, and MOPVS
respectively, as per Table 3. Moreover, MOPGO attain the
second-best FNRT values of 200 after MOSOS with min-
imum fstd result that describes its improved convergence
behavior relatively. Table 4 shows the best CVG fmean and
FNRT values of 0.732292 and 100, respectively, for MOPGO
that governs its improved coverage quality relatively. In the
CPF measure, the MOPVS and MOSMA attest to their
satisfactory result and acquire FNRT values of 450 and
400, respectively, accompanied by MOPGO, as illustrated
in Table 5. MOPGO fmean value for DM metric as depicted
in Table 6 has a percentage increase of 59.70% and 37.13%
fromMOALO, andMOSMA respectively. The FNRT results
for MOPGO, MOPVS, MOSMA, MOSOS, and MOALO are
400, 425, 175, 375, and 125, respectively. Thus, at a 95%
significance level, the proposed MOPGO algorithm exhibit
better diversity in solutions.

Table 7 describes the PD measure results according to
which the MOSMA finds the best fmean value while MOSOS
realize the better fstd result out of all considered optimization
techniques.

As per FNRT results, the maximum 400 value is achieved
by MOSOS, succeeded by MOPGO and MOSMA, both of
which attain the same 375 value. At a 95% significance
level, the outcomes illustrate the improved pure diversity
nature of investigated MOPGO over other methodologies.
Table 8 reveals the SP metric results where MOPGO fmean
value reported a percentage decrease of 9.87%, 7.46%,
43.16%, and 73.42% from MOALO, MOSOS, MOSMA,
and MOPVS. Similarly, MOPGO realize a major per-
centage decrease of 75.99% and 30.60% corresponding
to MOPVS, MOSMA in terms of fstd results. Moreover,
MOPGO, MOSOS, MOALO manifests the best FNRT result
that describes its optimal spacing feature relatively. For
SD indicator as per Table 9, MOPGO fmean value reported
a percentage decrease of 38.83%, 36.68%, 30.84%, and
37.21% against MOALO, MOSOS, MOSMA, and MOPVS.
MOPGO realize a best FNRT value of 100 at minimum
fstd value that manifests it well-distributed non-dominated
solutions relative to others. From IGD performance mea-
sure as depicted in Table 10, the MOSMA realize the
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FIGURE 22. Best Pareto fronts of the 200-bar truss by all algorithms.

FIGURE 23. Boxplots of the 200-bar truss by all algorithms.

best fmean value of 1757.774 while the least fstd value is
obtained by MOSOS. The least FNRT value is manifested

by MOSMA, which is followed by MOSOS. Regarding
RT metric, the proposed MOPGO realize a minimum fmean
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FIGURE 24. The 942-bar tower truss.
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FIGURE 25. Best Pareto fronts of the 942-bar truss by all algorithms.

FIGURE 26. Boxplots of the 942-bar truss by all algorithms.

value of 65.45753 relatively. MOPGO, MOPVS, MOSMA,
MOSOS, and MOALO realize the FNRT value of 125, 225,

250, 400, and 500, respectively. At a 95% significance level,
MOPGO ranked first and manifested its least computational
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TABLE 3. Results of (GD-Metric) on truss bar problems.

time to reach the optimal solution. Table 12 presents the BCS
results for a 60-bar 3D truss that proves that the best result
is obtained by MOPGO, i.e. (1955.053, 81300.43) against all
other considered algorithms. The best Pareto fronts achieved
by individual algorithms are indicated in Figure 13 simultane-
ously with their BCS results. The combined Pareto fronts are
contrasted for qualitative analysis in the last plot, reflecting
the continuous and well-distributed nature of MOPGO solu-
tions. Furthermore, all ten performance metrics results by all
considered are plotted in boxplot as illustrated in Figure 14
that demonstrates the dominance of the suggested MOPGO
algorithm quantitatively over others.

5) 72-BAR SPATIAL TRUSS
The HV metric results are illustrated in Table 2, from which
it is evident that the MOSMA achieved the best fmean and
fstd value relative to other considered algorithms. Moreover,
the FNRT metric assigned the rank of 325, 325, 450, 300,
and 100 to the MOPGO, MOPVS, MOSMA, MOSOS, and

MOALO algorithms. Hence, atFNRT 95% significance level,
MOSMA and MOPGO expressed their high solution den-
sity in the proximity of the Pareto Front. For GD indicator,
MOALO exhibit its dominance by obtaining the best fmean
and fstd value along with the bestFNRT value of 125 as
depicted in Table 3. As per the CVG metric listed in Table 4,
MOPGO obtained the best fmean value shows a percentage
decrease of 10.14%, 16.71%, 18.20%, and 19.34% from
MOALO, MOSOS, MOSMA, and MOPVS. The FNRT
results obtained by MOPGO, MOPVS, MOSMA, MOSOS,
and MOALO are 125, 425, 400, 350, and 200, respectively.
At a 95% significance level, MOPGO ranked first and illus-
trated its enhanced coverage characteristic among all. The
fmean results of CPF metric for MOPGO algorithm exhibits a
percentage increase of 157.76%, 48.89%, 9.97%, and 2.89%
from MOALO, MOSOS, MOSMA, and MOPVS, respec-
tively, as illustrated in Table 5. Moreover, the FNRT values of
MOPGO, MOPVS, MOSMA, MOSOS, and MOALO algo-
rithms are equal to 425, 425, 350, 200, and 100, respectively.
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TABLE 4. Results of (CVG-Metric) on truss bar problems.

These outcomes manifest MOPGO enhanced coverage over
Pareto Front characteristics concerning other investigated
algorithms. Table 6 depicts the DM metric results according
to which MOPGO fmean value has a percentage increase
of 90.45%, 19.85%, 67.06%, and 4.65% from MOALO,
MOSOS, MOSMA, and MOPVS at minimum fstd value.
As per the FNRT , MOPGO obtained a maximum value
of 500 relatively, and at 95% significance level ranked first.
These outcomes exhibit the improved solution diversity of
MOPGO concerning other contrasted methodology.

Similarly, for PD performance measure as illustrated
in Table 7, the MOPGO algorithm reported a substantial
percentage increase of 97.14%, 29.65%, and 24,45% in fmean
value with respect to MOALO, MOSMA, and MOPVS.
MOPGO algorithm demonstrates its superior pure diversity
behavior through its best fmean and fstd that was eventually
proved by its highest 450 FNRT value in comparison to other
selected optimization techniques. For SP measure according
to Table 8, MOPGO and MOALO evidence an acceptable

value of fmean and fstd among all contrasted methodolo-
gies. Furthermore, the FNRT metric indicates the best rank
of 225 by MOPGO and thus, at 95% significance level,
displays its enhanced spacing quality. From SD metric find-
ings as shown in Table 9, MOPGO finds the superior fmean
value that shows a percentage decrease of 38.71%, 33.71%,
25.42%, and 33.24% fromMOALO,MOSOS,MOSMA, and
MOPVS. Also, MOPGO finds the better fstd value pertaining
to other algorithms and achieve the best FNRT value of 100
followed by MOSMA at 95% significance level, MOPGO
displays its well-distributed non-dominated solutions. In the
IGD test, as indicated in Table 10, the MOPVS and MOPGO
manifest superior fmean, fstd and FNRT values were showing
its competing convergence-spread parity attribute compar-
atively. In terms of RT measure, the MOPVS realize the
best fmean and fstd value followed by MOPGO as shown
in Table 11. Moreover, the FNRT results portray the least
computational time executed by MOPGO and MOPVS rel-
atively to reach the optimal solution. Table 12 unveils the
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TABLE 5. Results of (CPF -Metric) on truss bar problems.

best-compromised solution (BCS) that satisfied each objec-
tive (fweight , fcompliance) relying on fuzzy decision technique.
It is evident from the table that for a 72-bar truss, the superior
BCS, i.e. (6687.743, 65199.19), is achieved by MOPGO
among all executed algorithms.

Figure 16 depicts the best Pareto fronts for individual algo-
rithms and their corresponding BCS results. The combined
Pareto fronts illustration describes the diverse, continuous,
and smooth qualitative behavior of MOPGO relatively. The
dominance of the proposedMOPGO technique quantitatively
over others is also illustrated in Figure 17 comprehensively
in the form of all investigated performance metric outcomes
box-plots.

6) 120-BAR SPATIAL TRUSS
HV measure results are depicted in Table 2, and it displays
that MOPGO obtain the best fmean value of 0.553887 while
the least fstd MOSMA realizes a value of 0.000939 in com-
parison to other algorithms. The FNRT values for MOPGO,

MOPVS, MOSMA, MOSOS, and MOALO techniques are
450, 250, 425, 275, and 100, respectively. Thus, MOPGO
ranked first, followed by MOSMA among all algorithms at
95% significance level, and hence have better solutions den-
sity near the Pareto front. In terms of GD metric fmean value,
MOPVO obtained the least value of 91.44735, followed by
MOPGO as per Table 3. Moreover, MOPVO attain the best
FNRT values of 150 with minimum fstd result that describes
its improved convergence behavior. Table 4 shows the better
CVG values for MOALO relatively while the least value
of fstd is procured by MOSMA, and thus MOALO demon-
strates its improved coverage attribute relative to other con-
sidered algorithms. In CPF measure, as illustrated in Table 5,
the MOPVS obtain the best fmean result of 0.737488 and
MOPGO obtains the best fstd result of 0.006523, relatively.

The FNRT values for MOPGO, MOPVS, MOSMA,
MOSOS, and MOALO algorithms are 300, 475, 425, 125,
and 175, respectively. Thus, at a 95% significance level,
MOPGO shows its improved coverage over Pareto front

85006 VOLUME 9, 2021



S. Kumar et al.: MOPGO: New Physics-Based MO Plasma Generation Optimizer

TABLE 6. Results of (DM-Metric) on truss bar problems.

quality. MOPGO fmean value for DM metric as listed in
Table 6 has a percentage increase of 29.86%, 35.26%,
44.25%, and 12.70% from MOALO, MOSOS, MOSMA,
and MOPVS, respectively. The FNRT values for MOPGO,
MOPVS, MOSMA, MOSOS, and MOALO are 500, 400,
100, 200, and 100, respectively.

Thus, at a 95% significance level, the proposed MOPGO
algorithm outperforms others and exhibits better diversity
in solutions. Similarly, from Table 7 for PD measure,
the MOPGO has a percentage increase of 79.61%, 30.58%,
29.67%, and 47.60% in fmean value from MOALO, MOSOS,
MOSMA, and MOPVS, respectively. Also, MOPGO obtains
the maximum FNRT value of 450. These outcomes illustrate
the improved pure diversity nature of investigated MOPGO
over other methodologies. Table 8 reveals the SP metric
results where MOPGO fmean value reported a substantial per-
centage decrease of 65.03%, 46.30%, 68.93%, and 87.17%
from MOALO, MOSOS, MOSMA, and MOPVS. Similarly,
MOPGO realize a major percentage decrease of 92.33%,

57.34%, 91.43%, and 72.12% corresponding to MOALO,
MOSOS, MOSMA, and MOPVS in terms of fstd results.
Moreover, MOPGO manifests the best FNRT result that
describes its optimal spacing feature. For SD indicator as
per Table 9, fmean value reported by the MOPGO is a
large percentage decrease of 79.52%, 79.36%, 70.12%, and
79.15% against MOALO, MOSOS, MOSMA, and MOPVS.
MOPGO realize a best FNRT value of 100 at minimum
fstd value of 0.023643 that manifests its well-distributed
non-dominated solutions relative to others. For IGD per-
formance measure, the MOSMA realize the best fmean and
fstd value along with the least FNRT value, followed by
MOPVS and MOPGO, as presented in Table 10. Regarding
RT metric, the proposed MOPGO realize a minimum fmean
value of 131.6244 relatively. MOPGO, MOPVS, MOSMA,
MOSOS, and MOALO realize the FNRT value of 150, 175,
325, 350, 350, and 500. At a 95% significance level, MOPGO
ranked first and manifested its least computational time to
reach the optimal solution. Table 12 presents the BCS results
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TABLE 7. Results of (PD-Metric) on truss bar problems.

for 120-bar 3D truss that proves that MOPGO, i.e., least
obtain the best result fweight value of 20453.26 with maximum
fcompliance of 1447942 against all other considered algorithms.
The best Pareto fronts achieved by individual algorithms

are indicated in Figure 19 simultaneously with their BCS
results. The combined Pareto fronts are contrasted for quali-
tative analysis in the last plot that reflects the continuous and
well-distributed nature of MOPGO solutions. Furthermore,
all ten performance metrics results are plotted in boxplot as
illustrated in Figure 20, demonstrating the dominance of the
suggested MOPGO algorithm quantitatively over others.

7) 200-BAR SPATIAL TRUSS
The HV metric results are illustrated in Table 2, from which
it is evident that MOPVS and MOPGO achieved the supe-
rior fmean and fstd value relative to other considered algo-
rithms. Moreover, the FNRT metric assigned the rank of
400, 425, 200, 375, and 100 to the MOPGO, MOPVS,
MOSMA, MOSOS, and MOALO algorithms, respectively.

Hence atFNRT 95% significance level, MOPGO expressed
its high solutions density in the proximity of the Pareto front.
For GD indicator, MOSMA exhibit its dominance by obtain-
ing the best fmean and fstd value along with the best FNRT
value of 125 as depicted in Table 3. According to Table 4,
the best CVGmetric fmean the result was obtained byMOPGO
shows a percentage decrease of 34% from all other optimiza-
tion techniques. The FNRT results obtained by MOPGO,
MOPVS, MOSMA, MOSOS, and MOALO are 100, 350,
350, 350, and 350 each. At a 95% significance level, MOPGO
ranked first and illustrated its enhanced coverage charac-
teristic among all. The fmean results of CPF metric for the
MOPGO algorithm exhibit a substantial percentage increase
of 385.20%, 101.32%, 118.29%, and 18.12% fromMOALO,
MOSOS, MOSMA, and MOPVS, respectively, as illustrated
in Table 5. Moreover, the FNRT results attain by MOPGO,
MOPVS, MOSMA, MOSOS, and MOALO techniques are
500, 400, 225, 275, and 100 each. These prospects manifest
MOPGO enhanced coverage over Pareto front characteristics
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TABLE 8. Results of (SP-Metric) on truss bar problems.

in relation to other investigated algorithms. Table 6 depicts
the DM metric results according to which MOPGO fmean
value has a percentage increase of 155.51%, 36.81%, 67.21%,
and 3.37% fromMOALO, MOSOS, MOSMA, and MOPVS,
respectively, at minimum fstd value. MOPGO, as per the
FNRT obtained a maximum 450 value relatively and at 95%
significance level ranked first. These outcomes exhibit the
improved solution diversity of MOPGO concerning other
contrasted methodology.

Similarly, for PD performance measure as illustrated
in Table 7, the MOPGO algorithm reported a substantial
percentage increase of 178.31%, 25.80%, and 127% in
fmean value in respect to MOALO, MOSOS, and MOSMA.
Here, the MOPGO algorithm demonstrates its superior pure
diversity behavior through its best fmean and fstd that was
eventually proved by its high FNRT value of 400 in compar-
ison to other selected optimization techniques. For SP mea-
sure, according to Table 8, MOPGO evidence an acceptable
value of fmean i.e., 289.6515 that is significantly less than

MOPVS, MOSOS, and MOSMA methodologies. Moreover,
fstd value reported by MOPGO is a percentage decrease
of 79.30%, 58%, 52.77%, and 49.77% from MOSOS,
MOPVS, MOALO, and MOSMA. Furthermore, the FNRT
metric indicates the best rank of 150 by MOPGO and, thus,
at 95% significance level, displays its enhanced spacing qual-
ity against other algorithms. From SD metric findings as
shown in Table 9, MOPVS and MOSMA finds the superior
fmean and fstd value over others. The FNRT results attain
by MOPGO, MOPVS, MOSMA, MOSOS, and MOALO
algorithms are 300, 150, 150, 425, and 475 each. At a
95% significance level, MOPGO displays its well-distributed
non-dominated solutions. In the IGD test, as indicated
in Table 10, the MOPGO algorithm exhibits a substan-
tial percentage decrease of 84.10%, 19.08%, 80.19%, and
17.86% from MOALO, MOSOS, MOSMA, and MOPVS,
respectively. The FNRT results attain by MOPGO, MOPVS,
MOSMA, MOSOS, and MOALO techniques are 175, 225,
425, 200, and 475 each. These results are showing its
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TABLE 9. Results of (SD-Metric) on truss bar problems.

competing convergence-spread parity attribute compara-
tively. In terms of RTmeasure, MOPGO realize the best fmean
and fstd value followed by MOPVS as shown in Table 11.
Moreover, the least FNRT value of 175 portrays the least
computational time executed by MOPGO relatively to reach
the optimal solution. Table 12 unveils the BCS that satisfied
each objective, i.e., minimum fweight and maximum fcompliance
and it is evident that the suggested MOPGO accomplishes a
superior value of (6687.743, 65199.19) for a 200-bar 3D truss
among all executed algorithms.

Figure 22 depicts the best Pareto fronts for individual algo-
rithms and their corresponding BCS results. The combined
Pareto fronts illustration describes the well-diverse, continu-
ous, and smooth qualitative behavior of MOPGO relatively.
The dominance of the proposed MOPGO technique quanti-
tatively over others is also illustrated in Figure 23 compre-
hensively in the form of all investigated performance metric
outcomes box-plots.

8) 942-BAR SPATIAL TOWER TRUSS
According to Table 2 that displays HV measure results,
the best fmean and fstd value is obtained by MOPGO fol-
lowed by MOPVS. The FNRT values for MOPGO, MOPVS,
MOSMA, MOSOS, and MOALO algorithms are 425, 375,
125, 325, and 250, respectively. Thus, MOPGO ranked first
and at 95% significance level exhibit a superior solution
density near Pareto front. In terms of GD metric fmean value,
MOSMA, and MOSOS obtained the best value among all as
per Table 3. MOPGO attains the FNRT value of 425 that
describes its improved convergence behavior at a 95% sig-
nificance level relatively. Table 4 shows the best CVG fmean
value, according to which MOPGOmanifest a 61%, 58.06%,
61%, and 61% from MOALO, MOSOS, MOSMA, and
MOPVS, respectively. The MOPGO, MOPVS, MOSMA,
MOSOS, and MOALO algorithms realize a FNRT values of
100, 375, 375, 275, and 375 each. MOPGO ranked at the first
position at 95% significance level and governed its improved
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TABLE 10. Results of (IGD-Metric) on truss bar problems.

coverage quality. In CPF metric, as illustrated in Table 5,
MOPGO reported a 589.11%, 284.61%, 263.69%, and
50.37% increase in fmean value relative to MOALO, MOSOS,
MOSMA, and MOPVS, respectively. The FNRT values for
MOPGO, MOPVS, MOSMA, MOSOS, and MOALO algo-
rithms are 475, 400, 250, 225, and 150, respectively. At a
95% significance level, the investigated MOPGO algorithm
outperforms others in terms of coverage over Pareto front
quality. MOPGO fmean value for DM metric as depicted
in Table 6 has a percentage increase of 200.14%, 57.20%,
81.28%, and 10.57% from MOALO, MOSOS, MOSMA,
and MOPVS, respectively. The FNRT results for MOPGO,
MOPVS, MOSMA, MOSOS, and MOALO are 475, 400,
225, 300, and100, respectively. Thus, at a 95% significance
level, the proposed MOPGO techniques exhibit better diver-
sity in solutions.

Table 7 describes the PD measure results according to
which the MOPGO finds the best fmean value that shows
a substantial percentage increase of 275.88% and 139.54%

from MOALO and MOSMA, respectively. MOSMA and
MOPGO also obtain the minimum value of fstd whereas the
best FNRT results are realized by MOPVS and MOPGO.
Hence at a 95% significance level, MOPGO illustrates the
improved pure diversity nature over other methodologies.
Table 8 reveals the SP metric results where MOPGO fmean
value reported a percentage decrease of 25.26%, 67.34%,
72.14%, and 70.42% fromMOALO,MOSOS,MOSMA, and
MOPVS. Moreover, MOPGO, MOPVS, MOSMA, MOSOS,
and MOALO obtain the FNRT value of 100, 425, 375, 400,
and 200, respectively, describing the optimal spacing feature
MOPGO over other considered methodologies. For SD indi-
cator as per Table 9,MOPVS realize the best fmean valuewhile
the best fstd result is procured by MOPGO. The MOPVO
realizes a bestFNRT value of 100, followed byMOPGO.At a
95% significance level, the suggested MOPGO algorithm
manifests its well-distributed non-dominated solutions rela-
tive to others. From IGD performance measure, as depicted
in Table 10, MOPGO realize the best fmean value with
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TABLE 11. Results of (RUNTIME − RT -Metric) on truss bar problems.

a percentage decrease of 66.73%, 29.53%, 56.49%, and
10.68% from MOALO, MOSOS, MOSMA, and MOPVS.
The least FNRT value of 175 is manifest by MOPGO, which
is followed by MOPVS.

Therefore, at a 95% significance level, MOPGO proves its
improved uniformity-convergence-spread attribute relatively.
Regarding RT metric, the proposed MOPGO realize a min-
imum fmean value of 1006.416 relatively at minimum fstd
result. MOPGO, MOPVS, MOSMA, MOSOS, and MOALO
realize the FNRT value of 125, 275, 325, 325, and 450. At a
95% significance level, MOPGO ranked first and manifested
its least computational time to reach the optimal solution.
Table 12 presents the BCS results for the 942-bar tower
truss that proves that the best result is obtained by MOPGO,
i.e. (6867423, 2296479) against all other considered algo-
rithms. The best Pareto fronts achieved by individual algo-
rithms are indicated in Figure 25 simultaneously with their
BCS results. The combined Pareto fronts are contrasted for

qualitative analysis in the last plot, reflecting the continuous
and well-distributed nature of MOPGO solutions. Further-
more, all ten performance metrics results by all considered
are plotted in boxplot as illustrated in Figure 26 that demon-
strates the dominance of the suggested MOPGO algorithm
quantitatively over others.

To make an outlook of the proposed MOPGO efficiency,
each performance metric FNRT average value is computed
and analyzed. For SD, GD, CVG, CPF, DM, PD, SP, IGD, and
RT measure, MOPGO realizes a best 400, 206.25, 226.5625,
393.75, 478.125, 425, 146.875, 143.75, 287.5, and 137.5
value with respect to other algorithms. Moreover, MOPGO
finds the best-compromised solution for all the eight consid-
ered planar and spatial benchmarks. Thus, all these prospects
demonstrate the superiority of the proposed MOPGO algo-
rithm in solving multi-objective large and complex structural
optimization problems and can create harmony between the
local intensification and global diversification of search.
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TABLE 12. The best compromise solution (BCS) results of all algorithms.

VI. CONCLUSION
The framework and development of a new MOPGO
algorithm for multi-objective truss-bar design problems
are discussed in this paper. The MOPGO algorithm com-
bines the three primary phases of PGO, namely excitation,
de-excitation, and ionization, with plasma generation to sup-
port the search for the global best solution. For performance
measure, eight challenging multi-objective structure layout
optimization problems (i.e., 10-bar, 25-bar, 37-bar, 60-bar,
72-bar, 120-bar, 200-bar, and 942-bar) are tested related to
various constraints with distinct design variables to adjust
for the practicality of examination. The results obtained by
the proposed MOPGO are compared with four well-known
algorithms under the same input parameters. For all eight
design problems, ten performance metrics (HV, GD, CVG,
CPF, DM, PD, SP, SD, IGD, and RT) are used to assess the
enhancement and diversifying of a non-dominated solution1
set. The analysis and discussions show that theMOPGO algo-
rithm has a significant advantage over MOPVS, MOSMA,
MOSOS, and MOALO in terms of coverage, convergence,
and solution diversity. Furthermore, the proposed algorithm
is rated first for all design problems based on the average

FNRT values. The analysis shows that MOPGO is capable of
successfully solving large real-world optimization problems.
Therefore, it is concluded that the MOPGO algorithm can
solve problems involving a higher-dimensional optimization
process.

In future, the researchers in various fields can utilize the
proposed MOPGO algorithm to solve multi-modal and non-
linear functional demanding technical challenges with several
competing goals and assess the results. Furthermore, multiple
comparative analyses with other well-known optimizers may
be carried out to find the best optimizer for a specific design
problem.
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APPENDIX
The ‘‘sorting by fitness’’ concept in MOPGO has been
explained with one simple multi-objective benchmark func-
tion. The main aim of this appendix is to help the researchers
in other fields to use in their field of research. The
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TABLE 13. Initial population solution.

TABLE 14. Sorting by first objective fitness.

multi-objective benchmark function is as follows.

Minimize, f1 (x)=x1

Minimize, f2 (x)=
1+ x2
x1

Subjected to: 0.1 ≤x1 ≤ 1
0 ≤ x2 ≤ 5


Table 13 lists the initial solutions generated by the

population.
The following are steps in generating the solutions based

on non-dominated sorting.
Step 1: First combine the populations Pt and Qt and

form Rt = {1,2, 3, 4, 5, 6, a, b, c, d, e, f}. Next, perform
a non-dominated sorting on Rt and obtain the following
non-dominated fronts: F1{5, a, e}, F2{1,3, b, d}, F3{2, 6, c,
f}, F4{4}.

Step 2: Set Pt + 1= 0 and i= 1. Next, observe that !Pt +
1! + !Fl! = 0 + 3 = 3. Since this is less than the population
size N (= 6), include this front in Pt + 1 and set Pt + 1 =
{5, a, e}. With these three solutions, we now need three more
solutions to fill up the new parent population. Now, with the
inclusion of the second front, the size of !Pt + 2! + !F2! is
(3 + 4) or 7. Since this is greater than 6, we stop including
any more fronts into the population.

Step 3: Next, consider solutions of the second front only
and observe that 3 of the 4 solutions must be chosen to fill
up 3 remaining slots in the new population. This requires that
first sort this sub-population (solutions 1, 3, a, and d) using
the CD operator.

For the first objective fitness, the sorting of these solutions
is shown in Table 14 and is as follows: I1 = {3, d, 1, b}.
Now, we turn to the second objective fitness and update

the above distances. First, the sorting on this objective yields

TABLE 15. Sorting by second objective fitness.

I2 = {b, 1, d, 3}. Thus, Table 15 lists the solution sorting
of second objective fitness.

Step 4: A sorting according to the descending order of
these CDvalues yields the sorted set {3, b, 1, d}. Then, choose
the first three solutions. The new population is Pt + 1 = {5,
a, e, 3, b, 1}.

Step 5: The offspring population Qt + 1 must be created
next by using this parent population Pt + 1 = {5, a, e, 3, b,
1}. This is a complete one generation of MOPGO.
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