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ABSTRACT This paper proposes a new Multi-Objective Plasma Generation Optimization (MOPGO)
algorithm, and its non-dominated sorting mechanism is investigated for numerous challenging real-world
structural optimization design problems. The Plasma Generation Optimization (PGO) algorithm is a recently
reported physics-based algorithm inspired by the generation process of plasma in which electron movement
and its energy level are based on excitation modes, de-excitation, and ionization processes. As the search
progresses, a better balance between exploration and exploitation has a more significant impact on the results;
thus, the crowding distance feature is incorporated in the proposed MOPGO algorithm. Also, the proposed
posteriori method exercises a non-dominated sorting strategy to preserve population diversity, which is a
crucial problem in multi-objective meta-heuristic algorithms. In truss design problems, minimization of the
truss’s mass and maximization of nodal displacement are considered objective functions. In contrast, ele-
mental stress and discrete cross-sectional areas are assumed to be behavior and side constraints, respectively.
The usefulness of MOPGO to solve complex problems is validated by eight truss-bar design problems. The
efficacy of MOPGO is evaluated based on ten performance metrics. The results demonstrate that the proposed
MOPGO algorithm achieves the optimal solution with less computational complexity and has a better
convergence, coverage, diversity, and spread. The Pareto fronts of MOPGO are compared and contrasted with
multi-objective passing vehicle search algorithm, multi-objective slime mould algorithm, multi-objective
symbiotic organisms search algorithm, and multi-objective ant lion optimization algorithm. This study will
be further supported with external guidance at https://premkumarmanoharan.wixsite.com/mysite.

INDEX TERMS Constraints optimization problems, crowding distance, meta-heuristics, non-dominated

sorting, numerical optimization, Pareto front, structure optimization.

I. INTRODUCTION

Design problems in physics and technology are mostly linked
to more than one objective requiring a trade-off between
these competing objectives to achieve optimal solutions [1].
These are multi-objective (MO) design problems in which
programmers try to balance cost and performance. Structure
optimization is one of the most vital challenges associated
with engineering designs due to many diverse objectives
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under multiple constraints. The structure total weight reduc-
tion combined with maximum deflection objective is per-
haps the most studied optimization case in truss bar design
problems [2,3]. Researchers established numerous method-
ologies to tackle such engineering problems; nevertheless,
these studies often failed to find optimal solutions from
the established Pareto-front [4]. An optimal design can be
achieved by creating a fine balance among various diverse
goals by properly addressing two undertakings. First, a stan-
dard optimization technique should be developed to achieve a
high-efficiency solution by finding a middle ground between
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various design objectives, while the second task is to choose
the best choice out of all those given to you. As a result,
the best option should come from the Pareto optimal points,
and a decision-maker should choose it [5]. The MO opti-
mization problems are highly complicated due to many and
diverse objectives [6]. Besides single-objective problems,
these design problems have more than one optimal solution,
referred to as a Pareto-optimal set. Thus, MO design issues
require a powerful optimization methodology to resolve these
challenging problems. One of the very active areas of research
in optimization nowadays is the field of meta-heuristics
(MHs) because of their high flexibility and effectiveness in
solving complex problems like discrete, discontinuous, noisy,
dynamic, and non-differentiable. In the last four decades,
many new MHs have been proposed and applied in many
optimization tasks. Genetic Algorithm (GA) [7], Differential
Evolution (DE) [8], the Particle Swarm Optimization (PSO)
algorithm [9], and Ant Colonies (ACO)[10] are a few of the
influential MHs that grasp more attention of scholars from
diverse field. Moreover, apart from a single objective appli-
cation, many MHs were also developed and implemented
for MO design optimization problems. Few notable state-of-
the-art techniques are: NSGA-II [11], SPEA2 [12], PESA-IL
[13], PAES [14], MO Heat Transfer Search (MOHTS) [15],
MO cuckoo search [16], MOPSO [17], decomposition-based
MO evolutionary algorithm [18], and MOGA [19]. While the
outcomes generated by MHs are not necessarily the optimal
results, they can be accomplished in a reasonable period.
Moreover, the potential to reach the Pareto front in a single
run is the most striking feature of these MHs [20]-[23].
However, literature depicts the failure of these MHs while
solving large-scale, complex, dynamic, and multi-constraints
practical optimization problems. This is due to their slow
convergence rate, local optima trap, a bunch of controlling
parameters, the high time of computation, and incompetency
in resolving non-trivial objective functions. These limitations
were always tried to settle with further improvements and
hybridizations of diverse techniques by many researchers.
Few examples are improved MOHTS [24], adaptive MO
Symbiotic Organisms Search (MOSOS) [25], Hybrid HTS
and Passing Vehicle Search (PVS) [1], Grey Wolf Optimizer
based on non-dominated sorting technique [26], enhanced
chaotic JAYA algorithm [27], hybrid PSO-Multi Verse
Optimizer [28], and many more. A fine balance between
global diversification and local intensification is essential for
MHs [4], [5]. In principle, the terminology diversification
corresponds to search space exploration, while the expression
intensification leads to the utilization of cumulative search
knowledge. As mentioned, the harmony between diversifica-
tion and intensification is crucial because the former helps
in promptly identifying the high-quality solutions regions in
the search arena. In contrast, the latter leads in minimal time
in search areas that are either already being explored or that
do not offer high-quality solutions [15], [22]. Today’s quite
burning question is the quest for even more powerful methods
to efficiently solve the challenging and complex practical
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engineering design problems without compromising the local
and global search rate. The emergence of new nature-inspired
MHs is thus rising drastically, and many new algorithms
were introduced and claimed to be efficient. Few prominent
techniques are grey wolf [29], slime mould [30], marine
predators [31], Jaya [32], harris hawks [33], equilibrium [34],
sine cosine [35], ant lion [36], moth-flame [37], and chaotic
gradient-based optimizer [38].

However, as per the prominent ‘“No-Free-Lunch” the-
ory [39], one MH cannot solve every problem effectively
and efficiently. An MH may yield a good result in a specific
design issue, but the same strategy might generate a feeble
result in another challenge. There is no MH that provides
optimal response for each problem, to put it another way.
Hence, a search for a powerful and robust algorithm always
prevails.

A recently proposed Plasma Generation Optimization
(PGO) [40] has shown unique characteristics, including
(1) no need for parameter adjustments since the optimizer
is completely parameter-free; (ii) excellent capabilities for
exploration with plasma ionization generation; (iii) exploita-
tion capabilities gained by de-excitation phase; (iv) inferior
solutions can be eliminated during the excitation phase. With
these four benefits, it is clear to see how the PGO algorithm
excels. Compared with other MHs, very few possess all
four properties above, leading to more accurate results and
reliable processes. These abilities and prospects encourage
the authors to create a new non-dominated sorting-based
(NDS) optimizer termed MOPGO, which is tested on vari-
ous real-world structure optimization problems in this study.
Many researchers have been drawn to the NDS-based
paradigm because of its simplicity and suitability for MO
design problems in the physical world [11], [26], [41], [42].
As aresult, the current research combines the benefits of NDS
methodology with PGO to produce a robust global optimiza-
tion technique that balances local intensification and global
diversification of search. Hence, the main contributions of
this paper are as follows.

e A new NDS and Crowding Distance (CD) based
MOPGO algorithm is proposed for solving MO
problems.

o The framework of MOPGO lies on the foundation of
PGO. Therefore, the MOPGO exploits the plasma gen-
eration phase to achieve equilibrium between search
intensification and diversification.

« Demonstrates selecting one optimal solution from the
Pareto fronts for a real-world application in practice
through the fuzzy-based decision.

o Discusses three crucial aspects of the algorithm,
i.e., optimization capability of the search algo-
rithm, Pareto dominance, and solution diversity
simultaneously.

o« The MOPGO is evaluated using eight challenging
real-world MO structural optimization design problems.

o Performance evaluation has been made qualitatively
and quantitatively with MO Passing Vehicle Search
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(MOPVS), MO Slime Mould Algorithm (MOSMA),
MO Symbiotic Organisms Search (MOSQOS), and MO
Ant Lion Optimization (MOALO) algorithms.

The rest of the paper is structured as follows: Section 2 pro-
vides details of the basic PGO algorithm. Section 3 discusses
the formulation procedure of NDS based MOPGO algorithm.
Section 4 presents the mathematical concepts of the selected
MO optimization problems. The performance analysis and
detailed description for all truss bar problems are presented
in Section 5. Section 6 concludes the paper based on metrics
and obtained Pareto fronts.

Il. PLASMA GENERATION

OPTIMIZATION (PGO) ALGORITHM

Literature reveals that MHs prove to be an effective and
efficient strategy in dealing with many challenging real-world
optimization problems. They can find suitable solutions
through a random search methodology inspired by nature.
MHs are widely utilized due to their potential to achieve an
optimal solution in most instances in the least computational
time. PGO is the newly introduced physics-based algorithm
that imitates the industrial plasma generation procedure and
demonstrates its competitiveness with other state-of-the-art
techniques in solving several constrained benchmarks and
real-world problems [40]. The main steps of the PGO algo-
rithm can be stated as follows:

A. STEP 1: INITIALIZATION

The light beam strikes the molecules at the beginning of
the procedure, creating a population of n random candidate
solutions from electrons of various energy levels in the search
space:

0
€ = €jmin + rand x (ej,max — ej,min)

i=1,2,...,nandj=1,2,....d (1)

where eg ] is the initial value of the jth variable of the ith candi-
date solution; e; ;uin and e; 4y are respectively the minimum
and maximum permissible values for the jth variable; rand is
a random number uniformly distributed in the interval [0, 1];
n is the number of electrons and d is the number of design
variables.

B. STEP 2: IDENTIFYING EACH ELECTRON's

PHYSICAL PROCESS

To determine an electron’s new location, a random
number between O and 1 is produced first. The ran-
domly generated number specifies which physical process
(excitation/de-excitation or ionization) should occur for the
electron, so that:

if randy < EDR, X

otherwise, Y 2)
in which rand is a random number generated between 0 and
1; EDR is an excitation/de-excitation rate, X is an excitation

and/or de-excitation processes are occurred, and Y is an
ionization process that has occurred.
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C. STEP 3: EXCITATION AND/OR DE-EXCITATION
PROCESSES ARE USED TO GENERATE A

NEW ELECTRON POSITION

1) EXCITATION PROCESS

Positive charge (protons) and negative charge (antiprotons)
are the two charged particles that make up an atom (electron).
There are electrons in atomic orbitals with various energy
levels around the nucleus, based on the action of electron
waves. Some of the electrons that are closer to the nucleus are
positioned at lower energy levels. Electron beams interfere
with the atom during excitation, increasing the energy level of
atomic electrons. The movement of atomic electrons caused
by collisions has a natural probability and is restricted to the
atomic orbitals. In another way, electrons with lower energy
levels migrate to higher energy levels during the excitation
process. This movement can be defined in two ways:

stepsizef}‘dmt"on = rand a x Ax;j+ rand b
xAxi’jx 1-1
it
= Maxit ©)
Excitation

where stepsize; ¥ is the step size of the i™ atomic elec-
tron; randa and randb are random numbers uniformly dis-
tributed in [0.6 + 0.1 x t,1.4 — 0.1 x ¢] and [—(Sy,-’j, Syi’j]
intervals, respectively; Ax;; and 3y, j are calculated as
follows:

Ay, s = |Kid = ¥rsj PCosti < PCostys @
ij Xpsj — Xij PCost; > PCostys

where x; ; and x,; ; are the position of two compared electrons;
Here, each electron compares with a randomly selected one
(xrs,7) except itself for possible improvement of energy level.
dy;j is obtained by simulating d-orbital with pear-shaped
equation due to their similarity:

4
randa x ( Jxiyj = | )3 _( | —=2s,j| ) ‘

€j.max —€j,min €j,max —€j,min

8yij = (5)

2 X iteration

Eq. (5) shows that as iteration increases, the search domain
around better electrons shrinks. The excitation method
demonstrates the algorithm’s ability to intensify by reducing
the size of d-orbitals.

2) DE-EXCITATION PROCESS

Because of the interaction of electron beams with gas atoms,
a percentage of excited electrons lose energy by releasing
light, causing their locations to shift from high-energy to
low-energy. This method can be mathematically expressed as
follows:

if rand| < EDR and rand, < DR, X
otherwise, Y
X = NDRS = ceil (DRS x d)

Y = De — excitation process does not occur (6)
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in which rand; and rand, are random numbers generated
between 0 and 1; The De-excitation Rate (DR) parameter
specifies whether or not the de-excitation process occurs.
DRS denotes the de-excitation rate for each excited-state elec-
tron. Ceil is the operator that rounds the obtained value toward
positive infinity; this parameter is a regulating parameter that
determines how many dimensions each electron can perform
for de-excitation. To perform the de-excitation procedure,
the following equation is used to obtain the set of dimensions
of each electron chosen at random:

K = randsample (d, NDRS) @)

where K returns NDRS values sampled uniformly, without
replacement, from the integer 1 to d (number of design vari-
ables), in the following, changing atomic electrons position
are occurred based on steps which are obeyed from normal
distribution as:

stepszzeDe excitation

= stepszzeff'”‘m"” + rand x (ek, max — ek,m,‘,,) (8)

where rand is a normal distributed random number with mean
0 and variance 1.

D. STEP 4: BASED ON THE IONIZATION MECHANISM,
GENERATE A NEW ELECTRON POSITION

Atoms collide with high-energy electron beams. Any of these
atomic electrons are torn from their atoms and thrown into the
plasma. Immersed electrons collide with other atoms due to
their high kinetic energy. As aresult, the atoms in question are
excited and become ions. The movement of electrons, which
follows the laws of levy flight, is used to model this operation.
To put it another way, the trajectories of electrons immersed in
plasma follow the levy distribution and can be mathematically
simulated as follows:

lonlzatwn

stepszze =rand xS;j x Ax;j x (1 —1) )

where rand is a normally distributed rand number with mean
0 and variance 1;f and Ax; ; are obtained as per Egs. (3)-(4),
respectively, and S; ; can be calculated as follows:
d
Sij= L vo (10)
|rand,| P

where § is a constant equal to 1.5 in this study; rand; and
rand, are normally distributed random numbers, and o is
calculated as follows:

1"(1+;3)><sm<7'S

r (#) X B x (ﬁT)
Frx)y=@&-10)! (11

N—"

Q
1

Because of the extremely long jump made in levy flight,
the ionization process demonstrates the algorithm’s diversifi-
cation capability.
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Algorithm 1 Procedure of the PGO Algorithm
Set algorithm parameters (n, Maxit, EDR, DR, DRS).
Evaluate the initial candidate solutions.
while(termination condition not met) do
fori:1ton
Select randomly one other electron among n
electrons (e.g. rs), except (i).
if rand; < EDR (Excitation process occurs)
Generate new solution i based on the excitation
process using Eqgs. (4) and (12).
if rand; < DR (De-excitation process occurs)
Calculate NDRS and K using Eqgs. (7) and (8)
Changing some dimensions of the newly
generated solution i using Egs. (9) and (12).
end if
else (Ionization process occurs)
Generate new solution i based on the ionization
process using Egs. (10) and (12).
end if
Checking lower and upper bounds of design variables
for i electron.
Evaluating the objective function for i electron.
Updating the position of the i electron using Step 5
end for
end while
end

E. STEP 5: UPDATING THE ELECTRON's POSITION

In the previous step, Egs. (3), (8), and (9) were used to deter-
mine the new position of the electron (Eq. 12). The newly
produced electron is then compared to the one generated in
the previous iteration. It is substituted if the newly created
one is better. The best electron in each iteration, on the other
hand, is compared to the best electron obtained thus far, and
if the best electron is better than the best electron obtained
thus far, it is substituted.

StepSlzeE;catatmn
iteration+1 __jteration De—excitation
i = e + { stepsize;y

StepSlzelomzalmn

if rand| < EDR
if rand, < EDR and rand, < DR (12)
if rand; > EDR

F. STEP 6: CHECKING TERMINATION CONDITION

The optimization process is terminated if the number of iter-
ations exceeds the maximum number of iterations set as the
stopping criterion, and the best solution found thus far will be
announced. Otherwise, the process loops back to Step 2 for
the next iteration. The pseudocode for the PGO algorithm is
given in Algorithm 1.
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lll. MULTI-OBJECTIVE PLASMA GENERATION
OPTIMIZATION (MOPGO) ALGORITH

In this paper, the NDS and CD-based PGO algorithm
is proposed for the MO optimization problem. The NDS
method handles the Pareto dominance issue and tries to
keep the non-dominated solution into the next generation,
and the CD technique maintains the diversity of solu-
tions [43]. Apart from the Pareto dominance and diver-
sity research issue, this research also addressed another
MO algorithm-related subject that how to select one Pareto
solution from the Pareto frontier for a real-world appli-
cation in practice through the fuzzy-based decision and
computational complexity measurement. This paper con-
tributes a new MOPGO algorithm that confronts three
crucial aspects, i.e., optimization capability of the search
algorithm, Pareto dominance, and solution diversity concur-
rently. By this suggested framework, the search algorithm
ensures a proper balance between global diversification and
local intensification. The NDS comprises the subsequent
phases.

« First, determining the non-dominated solution.

« Second, the application of the NDS approach.

o Calculating non-dominated ranking (NDR) of all non-
dominated solutions.

The NDR process happens between two fronts. The solu-
tions in the first front give a ‘0’ index since it is not dominated
by any solutions, at the same time, the solutions in the second
front are dominated by at least one solution in the first front.
Such NDR of the solutions is equal to the number of solutions
that dominate them. The concept of two populations is further
explained as follows. Firstly, for each solution obtained from
the basic search method (i.e., PGO) or initially generated
random population P,, all the objectives from the objective
vector F are evaluated. In addition, a domination count n,
defined as the number of solutions dominating the solution p
and S, which is a set of solutions dominated by solution p are
calculated. Secondly, all the solutions p is assigned a domina-
tion count zero and are put in the first non-dominated level,
also known as Pareto Front (PF), and their non-domination
rank (NDRy) is set to 1. Thirdly, for each solution p with
n, = 0, each member ¢ of the set S, is visited and its domi-
nation count 7, is reduced by one. While reducing n, count if
it falls to zero, the corresponding solution ¢ is put in second
non-domination level and NDR;; is set to 2. The procedure
is repeated for each member of the second non-domination
level to obtain the third non-domination level, and sub-
sequently, the procedure should be repeated until the
whole population is sorted into different non-domination
levels.

The CD mechanism is utilized to maintain diversity
between the developed solutions. In the crowding distance
approach for maintaining diversity among the obtained solu-
tions, firstly, the population is sorted according to the value
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Algorithm 2 Pseudocode of Multi-Objective Plasma Gener-
ation Optimization (MOPGO) Algorithm
Step 1: Initially Generate population (P,) randomly in
solution space (S)

Step 2: Evaluate objective space (F) for the generated
population (P,)

Step 3: Sort the based on the elitist non-dominated sort
method and find the non-dominated rank (NDR)
and fronts

Step 4: Compute crowding distance (CD) for each front
Step 5: Update solutions (P;) using Algorithm 1

Step 6: Merge P, and P; to create P; = P, U P;

Step 7: For P; perform Step 2

Step 8: Based on NDR and CD sort P;

Step 9: Replace P, with P; for N, first members of P;

of each objective function in ascending order called “‘sorting
by fitness.”” The concept of ‘““sorting by fitness™ is explained
in detail with one simple example in Appendix. An infi-
nite crowding distance is then assigned to the boundary
solutions, i = I and i = [, of each objective. Here [ is
the total number of solutions in a particular non-dominated
set. The boundary solutions are the minimum (i =/) and
maximum (i = [) function values. Except for the bound-
ary solutions, all the other solutions of the sorted pop-
ulation (i = 2 to I-1) for each objective j (j = 1, 2,
.., m) are assigned, and the CD mechanism is defined as
follows.

, _ Jobji™ — foby; ! 03
J fobj;nax _ fob]}nin

where fob/"™ and fob];”m are the maximum and minimum
values of j'! objective function. In Eq. 13, the right-hand side
term is the difference in values of objective function j for
two neighboring solutions (i + 1 and i — 1) of solution i.
The diagrammatic illustration of an NDS-based approach is
illustrated in Fig. 1. Algorithm 2 shows the pseudocode of
the MOPGO algorithm. The algorithm starts with defining the
required parameters, including population size (), termina-
tion criteria, and a maximum number of generation/maximum
number of iteration (Max;;) to run the MOPGO algorithm.
Then, a randomly generated parent’s population P, in fea-
sible search space region S is created, and each objective
function in the objective space vector F for P, is assessed.
Thirdly, the elitist-based CD and NDS are applied to P,.
Fourthly, a new population of P; is generated and combined
with P, to get population P;. This P; is sorted based on
elitist non-domination and the obtained data of CD and NDR.

VOLUME 9, 2021



S. Kumar et al.: MOPGO: New Physics-Based MO Plasma Generation Optimizer IEEEACC@SS

Sorting based on Crowding
fitness distance
A
Combu}ed Rank 1 Rank 1
population

Initialize the population of
candidate solutions

v

Y

Combine previous and
present population

- '

Fitness evaluation
of previous best  [=s—
solutions

Rank 3

Rank 3 i Rank 3 i

l — _ .= . S T e —

Solution selection

Fitness of present

solutions v
Rank 4 |+ Output
Output population
solution
Rank 5 |4 .
Rejected
Update the
solutions
FIGURE 1. The procedure of non-dominated sorting approach.
Start Calculate crowding distance for: Calculate the crowing distance
P cach Pareto archicel e value for each Pareto archive
member and remove as many as
l necessary according to archive
size with the lowest crowin,
Initialize the PGO parameters distanee =
(Population size, dimensions, lower Select a position vector based

bound, upper bound, maximum
iterations)

v

Generate random initial population &

on crowing distance value

Perform non-dominated sorting
i according to crowing distance
mechanism & select the global
best position of Population with
rank 1, rank 2 and so on

Now calculate the position
vector and update the position

: : ing PGO algorithi : ph
store them into matrices e it according P=C(>1) divide by
v RANK, No
Calculate the fitness values of
A 4 all the updated positions of PGO - - .
Calculate the fitness of all optimizer 15 1teratt.1of£1 fjr;ter 1a
»| the Population and sort all ¢ SAUSIISG:
of them Yes
Determine the new non- i
dominated solutions in the Report the optimal Pareto
Determine the non-dominated population & save them in solution
solutions in the initial Pareto archive & eliminate any
population & save them in dominated solutions in the
Pareto archive Pareto archive End

FIGURE 2. Flowchart of the MOPGO algorithm.

The best N, solutions are reviewed to create a new par- A. BEST COMPROMISE SOLUTION (BCS) BASED ON
ent population. Lastly, this procedure is repeated until the FUZZY DECISION
termination criteria. The flowchart of MOPGO is shown To find the best solution that provides the best degree of

in Fig. 2.
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satisfaction to each objective is pursued out of feasible
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Pareto-optimal solutions and governed by fuzzy member-
ship [44] functions p; defined as follows:

) R
W= g i <A <fnax (14
Jimax — fiin . .
0, if £/ > fihax
wi(Normalized)
Nobj
Zj:l Hij
= S Ny >
Dim1 2oy Mij

where M is the number of non-dominated solutions, Nyp; is
the number of the objective function, and fi.x and f/. are
the maximum and minimum values of the respective objective
function. The best-compromised value is the one with a high

value of ;.

B. CONSTRAINT HANDLING APPROACH

The MOPGO algorithm, a static penalty approach,
is employed as follows.

p
L) =)+ Pimax{g; (X), 0}

i=1

NC
+ ) Pimax {lh; (X)| — 5,0} (16)
i=p

where f; (X),j = 1,2...n is the objective function to be
optimized (here minimized), X = {x, x2, ...x,,} are design
variables, g; (X) < 0,i =1, 2... pare inequality constraints,
hi(X) =0,i = p+ 1...NC are equality constraints, and &
is tolerance inequality constraints.

C. COMPUTATION COMPLEXITY (CC) OF

MOPGO ALGORITHM

The CC of the MOPGO algorithm is represented in terms
of time complexity and space complexity. As per earlier
discussion, the suggested MOPGO algorithm utilizes the
NSGA-II operators [11]. Since the NDS and CD mechanisms
are adopted from NSGA-II, the computational space com-
plexity of MOPGO similar to MOPVS, MOSMA, MOALO,
and MOSOS optimizers are O(MNP)Z, where N, is the
number of search agents/population size, and M is the
total number of objective functions. The computational time
complexity of MOPGO is given for each iteration. The com-
plexity is equal to O(dim*N,, + Cost(fop;)*N,) for the first
iteration. The computational time complexity is equal to
O(dim* Ny Cost(fop))*Np+ (NDS + CD)*dim) after the
first iteration. The overall computational time complexity is
given for the Max;; to time = O(M)|M = O(dim*Max;;*N,+
Cost(fop)*Maxi;*Np+ (NDS 4+ CD)*(Max;; )*dim + (NDS +
CD)*(Max;; )*Cost(fop;)). The cost of the objective function
is denoted as Cost(f,p;), the objective function is denoted by
Jfobj» the current iteration is symbolized as t, and the maximum
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FIGURE 3. The 10-bar truss.

number of iterations is symbolized as Max;;, and the number
of variables in the objective function is represented as dim.

IV. MATHEMATICAL FORMULATION OF
MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

In this paper, structure weight is the first objective that needs
to be minimized, whereas maximum nodal deflection is the
second objective. The mathematical formulation for the MO
truss optimization problem is as follows:

Find,A = {A1, A, .., Am}
m
f@A) =) AipLi
1

f2(4) = max ([3)

a7)

Subjects to:

Behavior constraints:

Stress constraints, g (A) = |o;| — /" <0

Side constraints:

Cross — sectional area constraints, A?”‘" <A AT

where, i = 1,2,..,m;j = 1,2, .., n. Here, A; is a design
variable vector; p; and L; are the mass density and length of
the elements, respectively; E; and o; Correspond to the ‘7’
element Modulus of elasticity and stress, respectively. More-
over, the allowable upper and lower bounds are represented
by superscripts ‘max’ and ‘min, respectively.

V. EMPIRICAL EVALUATION

To examine the convergence, coverage, intensification, and
diversification of the proposed MOPGO, numerous 2-D and
3-D structural tests were examined and contrasted with other
state-of-the-art MO optimization strategies existing in the
literature, viz. MOPVS [4], MOSMA [45], MOSOS [25],
and MOALO [23]. The subsequent section elaborates on the
eight truss problems, i.e., 2-D 10-bar, 3-D 25-bar, 3-D 60-bar
ring, 3-D 72-bar, 3-D dome 120-bar, 3-D 200-bar, and tower
942-bar truss problems that were considered. Table 1 presents
all design considerations and mechanical properties used to
simulate eight truss MO optimization examples in one frame.
Moreover, Figs. 3, 6, 9, 12, 15, 18, 21, 24 illustrates load
directions, constraints, and truss dimensions.
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TABLE 1. Design considerations of the truss problems [1].

Truss bar 10 bar 25 bar 37 bar 60 bar 72 bar 120 bar 200 bar 942 bar
problems
Design variables Zi,i =10 Zi,i =8 Zi,i =15 Zi,i =25 Zi,i =16 Zi,i=7 Zi,i =29 Zi,i =59
Constraints (Pa) Omax = 400e6
Density (kg/in®) p = 7850
Young -
Modulus (Pa) E=200e9
PC2ise11(;e At each node:
xI— i . . .
Py=1es, P.7=9¢5 Case 2: SZ;?;E‘I} 'l(;fgl6i3
Loading o P :[21 =Py (iase % PIX:IEI}’ZZ% Section 2; P.=12¢3
. Py =Py~ = Py15=P5=8e P=2e6 eSS
conditions 1004 Poee105 - 5 Case 2: - - Section 3; P.=18e3
72— B ) . 1 .
) P.=5ed, Pyis=Pyis=3¢5 | PL=Ps=Ps~  Lateral loading:
P.—6ed Case 3: Po—2e6 Right-hand side; P.=3e3
* P :_266 s i Left-hand side; P,.=2¢3
[fu,l 05 Lateral Loading: P,=2e3
y22—
5 = 10° MOPGO 5 ~<10° MOPVS s 10° MOSMA
- . MOPGO MOPVS :“ . MOSMA
7T *  BCS *  BCS \ *  BCS
61 % 1.5 1 3
i . Jesb
Y5t % ] s Y
£ % £’ £ \
s s s 3
3 3 -_\ \u - e 7 s,
2 ‘\ 0.5 \y
, L .
) e e et e ) 0.5 T
0 0.5 7 1.5 2 0 0.5 7 1.5 2 0 5000 10000 15000
fweighl x10% fweight x10% weight
16 <107 MOSOS M <107 MOALO s «710° Combined Obtained PF
MOSOS MOALO . - MOPGO
14 *  BCS 10 *  BCS 7 . MOPVS
9 s M MOSMA
12 - MOSOS
3 3 s g5 MOALO
S0 S s |
s > ¢ N Y
6 *, ¥ kY
5 2 \\
4 4 1 S
2 3 0
0 0.5 7 1.5 2 0.6 0.8 7 1.2 1.4 1.6 0 0.5 7 1.5 2
fweighl x10? fweight x10? weight x10?

FIGURE 4. Best Pareto fronts of the 10-bar truss by all algorithms.

A. EVALUATION METHOD

In this study, every algorithm is executed 30 times individ-
ually for all considered eight truss design problems with
the population size of 40, the maximum number of iteration
of 500, and the maximum number of function evaluations

of 2000 [46].

o The Hypervolume (HV) and Inverted Generational
Distance (IGD) metric are employed to concurrently .
examine the uniformity-convergence-spread of the
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non-dominated set of solutions procured from the com-

putation experiments.
« To examine the search efficiency and reliability of con-
sidered algorithms in terms of faster convergence rate
Generational Distance (GD), Spread (SD), Coverage

(CVG), and Coverage over Pareto Front (CPF) metrics

are used [46]-[48].
To measure the computational complexity,
time (RT) metric and for combined diversity-spread,

Run-
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FIGURE 5. Boxplots of the 10-bar truss by all algorithm.

Y (a)?

IGD=Y="""" (19)
n
N 1 . 2
SP £ n_ll;(ﬁ—d,-) (20)
SD = Zmax (d (aj, b)) Q1)
N i=I

X HGj.yrom (RG], )
D Hij,.yzom H (@), . )

HV = A ( U {s/|s <5 < s"“d"’}) (23)

PD (22)

sePF
FIGURE 6. The 25-bar spatial truss. dr +d; + N_i] di—d
dr+di+ N —-1)d
spacing (SP), Diversity Maintenance (DM), and Pure DR
Diversity (PD) metrics are calculated [46]-[48]. CVG = lT, Vi
e The mean and standard deviation (STD) values of the fi (x)
metrics are regarded as the statistical performance mea- 1, if P; € PF and ;| < tan o <ay
sure [4], [15]. = 0. Otherwi 2 (25)
o Friedman’s rank test (FNRT) is a statistical review of all ’ erwise
the optimizers examined [20], [24]. 27:1 PF,
CPF = ==—— (26)
N
V iz d} T
Gp=Y""1 (18) R — izt T Q27)
n n
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FIGURE 7. Best Pareto fronts of the 25-bar truss by all algorithms.
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FIGURE 8. Boxplots of the 25-bar truss by all algorithms.

where no is the number of True Pareto solution (PS), nf is
the number of true Pareto optimal solutions, o is the number
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of objectives, d is the average of all d;, d;, and d] specifies
the Euclidean distance, n is the number of obtained PS,
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FIGURE 11. Boxplots of the 37-bar truss by all algorithms.

d = min; (If} ) — A + 17 () = AH)) for all ij =
1,2,...,n., a; and b; is the maximum and minimum value in
the i™ objective.
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B. RESULTS AND DISCUSSIONS

The data obtained by all selected algorithms, such as
MOPGO, MOPVS, MOSMA MOSOS, and MOALO for all
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FIGURE 12. The 60-bar ring truss.

considered benchmarks, are illustrated in Tables 2—12 as per
the sequence of all performance metrics.

1) 10-BAR PLANAR TRUSS

The HV metric results are illustrated in Table 2, from which
it is evident that MOPGO achieved the best functional
mean (fmean) and standard deviation (fyq) values, relative
to other considered algorithms. Moreover, the FNRT metric
assigned the rank of 500, 300, 375, 200, 225, and 100 to
the MOPGO, MOPVS, MOSMA, MOSOS, and MOALO,
respectively. Hence at a 95% significance level, MOPGO
outperforms by demonstrating its high solutions density in
the proximity of the Pareto Front. For GD indicator, fyean
results for MOPGO from Table 3 show a percentage decrease
of 45.66%, 43.26%, 18.67%, and 42.23% with respect to
MOPVS, MOSMA, MOSOS, and MOALO, respectively.
Similarly, MOPGO obtain the least fq value of 1.293634 rel-
ative to others. Moreover, MOPGO found the least FNRT
value, i.e., 100, followed by MOALO, MOSMA. There-
fore, MOPGO has a better quality of convergence as per
FNRT at 95% significance level. According to Table 4, the
best CVG metric fipean Was obtained by MOALO and stood
first as per FNRT while the proposed MOPGO technique

VOLUME 9, 2021

achieves the best fyq value and demonstrate its enhanced
coverage characteristic. In terms of CPF metric as reported
in Table 5, the MOPVS, MOSMA, and MOPGO demon-
strate their improved quality relatively and settled at 475,
400, and 325FNRT values, respectively. Table 6 depicts the
DM metric results according to which MOPGO fipean value
has a percentage increase of 29.63%, 22.61%, 59.23%, and
7.27% from MOALO, MOSOS, MOSMA, and MOPVS at
least fgq results. MOPGO, as per the FNRT obtained a max-
imum value of 500 relatively and at 95% significance level
ranked first. These indicator outcomes exhibit the improved
solution diversity of MOPGO concerning other contrasted
methodology.

Similarly, for PD performance measure as illustrated
in Table 7, the MOPGO algorithm demonstrates its superior
pure diversity behavior through its best fiean and fsq that
was eventually proved by its highest 425 FNRT value in
comparison to other selected optimization techniques. For
SP measure, according to Table 8, MOPGO evidence a sig-
nificant percentage decrease in its fmean value of 82.744%,
59.29%, 54.63%, and 32.10% relative to MOPVS, MOSMA,
MOALO, and MOSOS, respectively. MOPGO also attain
the best fyg value of 176.6763, which is substantially less

84993



IEEE Access

S. Kumar et al.: MOPGO: New Physics-Based MO Plasma Generation Optimizer

s ~<10° MOPGO p ~<10? MOPVS <107 MOSMA
- MOPGO ,
3 . *  BCS .
5 6r %
2.5 \
® © N
s 5 N s 4 =5 N\
s 70 £ S "\
= i = =
55 £ g N,
S o S 3 S 4 ~
~ \ ~ % ~ ~
1 ’\% S
\_\ 2 3 S
0.5 — e,
, , ...
0 2000 4000 6000 8000 2000 4000 6000 8000 10000 2000 3000 4000 5000 6000 7000
fweight fweight fweighl
~<10% MOSOS 45 ~<10% MOALO i s x10° Combined Obtained PF
) MOSOSs MOALO - MOPGO
4.5 . BCS 4 BCS 3r . MoOPVS |
- MOsMA
4 s 25t MOSOS | 1
8 . s 30 8 MOALO
535 ~ s 5 21 %
= ) = 3 = 3
= 2 S * & 1
§ 3 h H S5
S5 J S 5
S~ e S~ 25 S~ .“
2.5 's\ 1 \
‘\s-
2 RN 2 0.5 \\
o T s mmm s o
1.5 1.5 0
2000 4000 6000 8000 10000 4000 5000 6000 7000 8000 0 2000 4000 6000 8000 10000
‘fweight fweight fweight
FIGURE 13. Best Pareto fronts of the 60-bar truss by all algorithms.
RT HV GD VG 107 PD
0.54 I
50 =] - 80 1 I}I 2.5
0.52 Q g 0.95
75 B 0.5 60 0.9 217 @
0.48 0.85
0bT T m $ 1.5 E
0.46 40 0.8 _
65 D m 0.44 | El é 0.75 g 7
0.42} | 20 ﬁ 0.7 I
w < nIw n <0 <9 n <9
8>§09 8>§Og 8>§09 8>§09 8>§09
aonn<g o nn<g abopnpon< aoonon< a0 nn<
[eRNeNeNe] el e XoXe] el ReNoNe) el ReNeoNe] [eEeReXeXe]
S=S=== S==== S==== S==== S====
1GD SP SD CPF DM
] T 7 _ 0.6 T 0.8
=)
8000 1200 B =
1000 0.9 E 0.5 0714 5 E
6000
800 0.8 04 i a 0.6
1
4000 E 600 0.7 y
ﬁ a 400! H - 0.6 0.3 B g é
2000 200
i 158E 0.5 0.2 04
n <N nI<w »n <D n <D n <D
85509 8289 82289 8289 8289
o n N < ann<g aoopn< oo onn<< aoopnpon<
el NeEoNe] o000 00 leReNeNeoNe] leReNeReNe] el ReNeNe]
=S==== ===== =S==== =S==== =S====
FIGURE 14. Boxplots of the 60-bar truss by all algorithms.

relatively. Furthermore, the FNRT metric indicates the best
rank of 125 by MOPGO and thus, at 95% significance level,
displays its enhanced spacing quality. From SD metric find-
ings as shown in Table 9, MOPGO finds the superior fyean
and fq value of 0.283055 and 0.046962 pertaining to other
algorithms and achieve the best FNRT value of 100 followed

84994

by MOSMA. At a 95% significance level, MOPGO displays
its well-distributed non-dominated solutions. In the IGD test,
as indicated in Table 10, the MOPVS and MOSMA man-
ifest superior fimean, fsta and FNRT results while MOPGO
ranked third, showing its competing convergence-spread par-
ity attribute. In terms of RT measure, the MOPVS realize the
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FIGURE 15. The 72-bar 3D truss.

best fmean value followed by MOPGO while the least fg value
is an exhibit by MOSMA, as shown in Table 11. Moreover,
the FNRT results portray the least computational run exe-
cuted by MOPGO and MOPVS relatively to reach the optimal
solution. Table 12 unveils the Best-Compromised Solution
(BCS) that satisfied each objective (fieighr > feompliance) Telying
on fuzzy decision technique. It is evident from all tables
that for a 10-bar truss problem, the BCS, i.e. (3653.518,
138077.3) achieved by MOPGO, is superior among all
selected algorithms.

Figure 4 depicts the best Pareto fronts for individual algo-
rithms and their corresponding BCS results. The combined
Pareto fronts illustration describes the diverse, continuous,
and smooth qualitative behavior of MOPGO relatively. The
dominance of the proposed MOPGO algorithm quantitatively
over others is also illustrated in Figure 5 comprehensively
in the form of all investigated performance metric outcomes
boxplots.

2) 25-BAR SPATIAL TRUSS

HV metric results are depicted in Table 2, and it displays
that the best finean value of 0.695684 and least fyq value
of 9.34E-05 is achieved by MOPGO. The FNRT values of
MOPGO, MOPVS, MOSMA, MOSOS, and MOALO are
500, 200, 375, 325, and 100, respectively. Thus, MOPGO
ranked first among all algorithms at 95% significance level
and, hence, better solutions density near Pareto Front.
In terms of GD metric fpean value, MOPGO obtained
the least value of 4.902076 with a substantial percentage
decrease of 95.16%, 58.95%, 33.58%, and 33.29% from
MOALO, MOPVS, MOSOS, and MOSMA, respectively,
as per Table 3. Moreover, MOPGO attain the best FNRT
value of 100 with minimum fqg that describes its improved
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convergence behavior. Table 4 shows the better CVG val-
ues for MOALO relatively while the least value of fyq is
procured by MOPGO. In the CPF measure, the MOSMA
and MOPVS attest to their satisfactory result and acquire
FNRT values of 450 and 425, respectively, followed by
MOPGOQO, as listed in Table 5. The MOPGO obtains fmean
value for DM metric as depicted in Table 6 has a per-
centage increase of 25.58%, 24.82%, 44.83%, and 16.46%
from MOALO, MOSOS, MOSMA, and MOPVS, respec-
tively. The FNRT results for MOPGO, MOPVS, MOSMA,
MOSOS, and MOALO are 500, 400, 100, 275, and 225,
respectively. Thus, at a 95% significance level, the proposed
MOPGO algorithm outperforms others and exhibits better
diversity in solutions. Similarly, from Table 7 for PD measure,
the MOPGO has a percentage increase of 41.94%, 38.87%,
38.55%, and 17.57% in fpean value from MOPVS, MOALO,
MOSMA and MOSOS. Also, MOPGO obtains the maximum
FNRT value of 500, followed by MOSOS with 325. These
outcomes describe the improved pure diversity nature of
investigated MOPGO over other methodologies.

Table 8 reveals the SP metric where MOPGO fean
value reported a substantial percentage decrease of 78.32%,
56.44%, 59.68%, and 85.70% from MOALO, MOSOS,
MOSMA, and MOPVS. Similarly, MOPGO realize a major
percentage decrease of 97.33%, 94.83%, and 70.03%, cor-
responding to MOALO, MOPVS, and MOSOS in terms of
fsta values. Moreover, MOPGO manifests the best FNRT
value that describes its optimal spacing feature relatively. For
SD indicator as per Table 9, MOPGO fpean value reported
a percentage decrease of 76.78%, 75.89%, 64.32%, and
77.37% against MOALO, MOSOS, MOSMA, and MOPVS.
MOPGO realize a best FNRT value of 100 at minimum
fsta value of 0.018069 that manifests it well-distributed
non-dominated solutions relative to others. For IGD perfor-
mance measure the MOPVS realize the best fiean and fsq
value along with the least FNRT value, which is followed
by MOSMA as presented in Table 10. Regarding RT met-
ric, the proposed MOPGO realize a minimum finean value
of 27.26802 relatively. Also, its fsq results show a substantial
percentage decrease of 96.425, 90.22%, 75.16%, and 35.16%
from MOSMA, MOSOS, MOALO, and MOPVS algorithms.
MOPGO, MOPVS, MOSMA, MOSOS, and MOALO realize
the FNRT value of 100, 200, 350, 350, and 500, respec-
tively. At a 95% significance level, MOPGO ranked first and
manifested its least computational time to reach the opti-
mal solution. Table 12 presents the BCS results for 25-bar
3D truss that proves that the best result is obtained by
MOPGQO, i.e. (2346.643, 35377.12), against all other consid-
ered algorithms.

The best Pareto fronts achieved by individual algorithms
are indicated in Figure 7 simultaneously with their BCS
results. The combined Pareto fronts are contrasted for quali-
tative analysis in the last plot, reflecting the continuous and
well-distributed nature of MOPGO solutions. Furthermore,
all ten performance metrics results by all considered are
plotted in boxplot as illustrated in Figure 8 that demonstrates
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FIGURE 17. Boxplots of the 72-bar truss by all algorithms.
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TABLE 2. Results of (HVMetric) on truss bar problems.

Algorithms MOPGO | MOPVS | MOSMA | MOSOS | MOALO | MOPGO MOPVS | MOSMA | MOSOS | MOALO
10 bar 72 bar
fnin 0.64049 | 0.635789 | 0.63682 | 0.629392 | 0.576638 0.661612 0.671809 | 0.686964 | 0.67668 | 0.624048
finax 0.641752 | 0.637803 | 0.637995 | 0.636986 | 0.59193 0.690869 0.690029 0.69206 | 0.686912 | 0.648887
frnean 0.64093 | 0.636492 | 0.637423 | 0.632957 | 0.584954 0.679439 0.680238 | 0.688971 | 0.680314 | 0.633681
finedian 0.640738 | 0.636187 | 0.637439 | 0.632724 | 0.585624 0.682637 0.679558 0.68843 | 0.678831 | 0.630894
fud 0.000574 | 0.000928 | 0.000489 | 0.003115 | 0.00635 0.013653 0.008253 | 0.002214 | 0.004633 | 0.011716
FNRT 500 300 375 225 100 325 325 450 300 100
25 bar 120 bar
fnin 0.695559 | 0.69042 | 0.694026 | 0.691657 | 0.662183 0.551059 0.548183 | 0.551983 | 0.540452 0.4804
finax 0.695756 | 0.691892 | 0.695325 | 0.694861 | 0.677605 0.55488 0.551334 | 0.554152 | 0.550227 | 0.509248
frnean 0.695684 | 0.691385 | 0.694866 | 0.693481 | 0.670763 0.553887 0.549824 | 0.552911 | 0.547638 | 0.496942
finedian 0.695711 | 0.691614 | 0.695057 | 0.693704 | 0.671632 0.554805 0.54989 0.552756 | 0.549936 | 0.499059
fud 9.34E-05 | 0.000671 | 0.000582 | 0.001338 | 0.006561 0.001886 0.00129 0.000939 | 0.004793 | 0.014206
FNRT 500 200 375 325 100 450 250 425 275 100
37 bar 200 bar
fnin 0.688941 | 0.700103 | 0.693727 | 0.695451 | 0.623971 0.749252 0.770153 | 0.728717 | 0.763731 | 0.682358
fnax 0.703895 | 0.70363 | 0.702253 | 0.701019 | 0.644789 0.780982 0.783622 | 0.755828 | 0.785712 | 0.746076
frnean 0.695012 | 0.701947 | 0.698944 | 0.698055 | 0.633491 0.767677 0.776494 | 0.747096 | 0.77449 | 0.715636
finedian 0.693605 | 0.702027 | 0.699898 | 0.697875 | 0.632601 0.770237 0.776101 0.75192 | 0.774259 | 0.717055
fua 0.006854 | 0.001444 | 0.003663 | 0.002564 | 0.00987 0.013333 0.006613 | 0.012642 | 0.010383 | 0.02692
FNRT 275 450 375 300 100 400 425 200 375 100
60 bar 942 bar
fnin 0.49697 | 0.413492 | 0.525034 | 0.507789 | 0.458044 0.692961 0.685825 | 0.679802 | 0.685604 | 0.680533
frnax 0.531959 | 0.507046 | 0.541363 | 0.526918 | 0.490493 0.729968 0.729637 0.68808 0.73427 | 0.702921
fncan 0.510049 | 0.474161 | 0.534752 | 0.516394 | 0.474378 0.711454 0.714961 | 0.684451 | 0.70832 | 0.694543
finedian 0.505634 | 0.488053 | 0.536306 | 0.515435 | 0.474488 0.711443 0.722192 | 0.684961 | 0.706703 | 0.697358
fud 0.015396 | 0.042709 | 0.007124 | 0.008971 | 0.013462 0.015364 0.019739 | 0.003446 | 0.021693 | 0.009714
FNRT 325 150 500 375 150 425 375 125 325 250
Average FNRT 400 309.375 353.125 312.5 125 400 309.375 353.125 3125 125

the dominance of the suggested MOPGO algorithm quantita-
tively over others.

3) 37-BAR PLANAR TRUSS EXAMPLE

The HV metric results are illustrated in Table 2, from which
it is evident that the MOPVS achieved better fiean and
fsta value relative to other considered algorithms. Moreover,
the FNRT metric assigned the rank of 275, 450, 375, 300,
and 100 to the MOPGO, MOPVS, MOSMA, MOSOS, and
MOALO algorithms. At a 95% significance level, MOPGO
demonstrating its improved solution density. For GD indica-
tor fmean results for MOPGO from Table 3 show a percentage
decrease of 97.74%, 52.45%, 20.69%, and 6.16% % regarding
MOALO, MOPVS, MOSMA, and MOSOS, respectively.
However, the MOSOS obtain the least fyq value followed by
MOPGQO that value shows a significant percentage decrease
of 98.18% from MOALO. The proposed MOPGO also found
a least FNRT value of 150, followed by MOSOS, MOSMA.
Therefore, MOPGO has a better quality of convergence as

VOLUME 9, 2021

per FNRT at 95% significance level. As per the CVG met-
rics listed in Table 4, the best fimean value was obtained
by MOSOS and stood first as per FNRT while the pro-
posed MOPGO technique achieves the second-best rank and
demonstrates its enhanced coverage characteristic. In terms
of CPF metric as reported in Table 5, MOPGO demon-
strates its improved quality relatively and settled at the
highest FNRT value of 475. Moreover, MOPGO realize
a percentage increase of 143.98%, 63.54%, 14.34%, and
9.37% in fean value relative to MOALO, MOSOS, MOSMA,
and MOPVS, respectively. Table 6 depicts the DM metric
results according to which MOPGO fineqn value has a per-
centage increase of 64.86%, 20.58%, 51.82%, and 10.65%
from MOALO, MOSOS, MOSMA, and MOPVS and the
least fyq values. MOPGO, as per the FNRT obtained a
maximum 500 value relatively and at 95% significance
level ranked first. These prospects exhibit the improved
solution diversity of MOPGO concerning other contrasted
methodology.
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FIGURE 18. The 120-bar 3D truss.

For PD performance measure as illustrated in Table 7,
the MOPGO, MOPVS, and MOSOS algorithm demonstrates
their superior pure diversity behavior through its best fiean
and fyq values that were eventually proved by their highest
400 FNRT value. For SP measure, according to Table 8,
MOPGO evidence a significant percentage decrease in its
Sfmean Vvalue of 78.06%, 47.10%, and 46.84% relative to

84998

MOPVS, MOSOS, and MOSMA, respectively. MOPGO also
attain the minimum fyq value after MOALO and MOSMA.
Furthermore, the FNRT metric indicates the best rank
of 150 by MOPGO and, thus, at a 95% significance level, dis-
plays its enhanced spacing quality. From SD metric findings
as shown in Table 9, MOPGO finds the superior finean value
of 0.523486 and minimum fyg 0.049119 pertaining to other
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FIGURE 20. Boxplots of the 120-bar truss by all algorithms.

algorithms and achieve the best FNRT value of 100 followed
by MOSMA. At a 95% significance level, MOPGO displays

VOLUME 9, 2021

its well-distributed non-dominated solutions. In the IGD test,
as indicated in Table 10, MOPGO manifests a percentage
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FIGURE 21. The 200-bar 3D truss.

decrease of 91.27%, 50.23%, 39.22%, and 17.91% regard-
ing MOALO, MOSMA, MOPVS, and MOSOS, respectively.
AlSO fiean value of MOPGO reported a significant percent-
age decrease of 93.25%, 86.28%, 75.03%, and 73.83% from
MOALO, MOPVS, MOSMA, and MOSOS, respectively.
MOPGO manifested a superior FNRT result of 175 and
ranked first at a 95% significance level showing its com-
peting convergence-spread parity attribute. In terms of RT
measure, MOPGO realize the best fiean value while the least
fsta value is an exhibit by MOSOS followed by MOPGO,
as shown in Table 11. Moreover, the FNRT results portray
the least computational run executed by MOPGO relatively
to reach the optimal solution. Table 12 unveils the superior
BCS (1180.289, 18411.19) achieved by MOPGO among all
executed algorithms.

Figure 10 depicts the best Pareto fronts for individual algo-
rithms and their corresponding BCS results. The combined
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Pareto fronts illustration describes the diverse, continuous,
and smooth qualitative behavior of MOPGO relatively. The
dominance of the proposed MOPGO technique quantitatively
over others is also illustrated in Figure 11 comprehensively
in the form of all investigated performance metric outcomes
boxplots.

4) 60-BAR SPATIAL TRUSS

Table 2 displays HV measure results accordingly the best
Jmean and fyq value is obtained by MOSMA. The FNRT val-
ues for MOPGO, MOPVS, MOSMA, MOSOS, and MOALO
algorithms are 325, 150, 500, 375, and 150, respectively.
Thus, MOPGO at 95% significance level exhibit an accept-
able solution density near Pareto Front. In terms of GD
metric, MOPGO obtained fiean value of 21.79952, which
is 99.97% and 66.17% less from MOALO, and MOPVS
respectively, as per Table 3. Moreover, MOPGO attain the
second-best FNRT values of 200 after MOSOS with min-
imum fgq result that describes its improved convergence
behavior relatively. Table 4 shows the best CVG fiean and
FNRT values of 0.732292 and 100, respectively, for MOPGO
that governs its improved coverage quality relatively. In the
CPF measure, the MOPVS and MOSMA attest to their
satisfactory result and acquire FNRT values of 450 and
400, respectively, accompanied by MOPGO, as illustrated
in Table 5. MOPGO finean value for DM metric as depicted
in Table 6 has a percentage increase of 59.70% and 37.13%
from MOALO, and MOSMA respectively. The FNRT results
for MOPGO, MOPVS, MOSMA, MOSOS, and MOALO are
400, 425, 175, 375, and 125, respectively. Thus, at a 95%
significance level, the proposed MOPGO algorithm exhibit
better diversity in solutions.

Table 7 describes the PD measure results according to
which the MOSMA finds the best fnean vValue while MOSOS
realize the better fiiq result out of all considered optimization
techniques.

As per FNRT results, the maximum 400 value is achieved
by MOSOS, succeeded by MOPGO and MOSMA, both of
which attain the same 375 value. At a 95% significance
level, the outcomes illustrate the improved pure diversity
nature of investigated MOPGO over other methodologies.
Table 8 reveals the SP metric results where MOPGO fiean
value reported a percentage decrease of 9.87%, 7.46%,
43.16%, and 73.42% from MOALO, MOSOS, MOSMA,
and MOPVS. Similarly, MOPGO realize a major per-
centage decrease of 75.99% and 30.60% corresponding
to MOPVS, MOSMA in terms of fyq results. Moreover,
MOPGO, MOSOS, MOALO manifests the best FNRT result
that describes its optimal spacing feature relatively. For
SD indicator as per Table 9, MOPGO fpean value reported
a percentage decrease of 38.83%, 36.68%, 30.84%, and
37.21% against MOALO, MOSOS, MOSMA, and MOPVS.
MOPGO realize a best FNRT value of 100 at minimum
fsta value that manifests it well-distributed non-dominated
solutions relative to others. From IGD performance mea-
sure as depicted in Table 10, the MOSMA realize the
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FIGURE 23. Boxplots of the 200-bar truss by all algorithms.

best fmean value of 1757.774 while the least fyq value is
obtained by MOSOS. The least FNRT value is manifested
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by MOSMA, which is followed by MOSOS. Regarding
RT metric, the proposed MOPGO realize a minimum fmean
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FIGURE 26. Boxplots of the 942-bar truss by all algorithms.

value of 65.45753 relatively. MOPGO, MOPVS, MOSMA,
MOSOS, and MOALO realize the FNRT value of 125, 225,
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250, 400, and 500, respectively. At a 95% significance level,
MOPGO ranked first and manifested its least computational
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TABLE 3. Results of (GD-Metric) on truss bar problems.

Algorithms MOPGO | MOPVS | MOSMA | MOSOS | MOALO | MOPGO | MOPVS | MOSMA | MOSOS | MOALO
10 bar 72 bar
frmin 12.29115 | 20.24102 | 14.34143 | 20.83741 | 18.68845 | 40.14802 | 26.70989 | 22.66492 | 36.47709 | 18.68845
finax 15.02235 | 25.00747 | 19.44657 | 29.60009 | 28.3801 103.0239 | 67.5477 | 35.20639 | 65.7407 28.3801
finean 13.29241 | 23.01133 | 16.34385 | 23.42731 | 24.46313 | 70.01614 | 43.1448 | 27.68917 | 51.75758 | 24.46313
fonedian 12.92806 | 23.39843 | 15.7937 | 21.63587 | 25.39199 | 68.44634 | 39.1608 | 26.44267 | 52.40626 | 25.39199
fud 1.293634 | 2.095063 | 2.417821 | 4.141751 | 4.28684 | 32.04997 19.6668 | 5.524895 | 12.78459 | 4.28684
FNRT 100 350 200 350 125 400 300 250 425 125
25 bar 120 bar
Jinin 3.721396 | 10.65518 | 6.646613 | 6.784546 | 88.99381 | 134.3691 | 85.22438 | 124.7395 | 83.89036 | 88.99381
finax 5.903043 | 13.19963 | 8.140516 | 7.895379 | 117.9918 | 174.4681 | 108.7311 | 199.8003 | 215.5778 | 117.9918
finean 4.902076 | 11.9419 | 7.348914 | 7.380763 | 101.3713 | 150.8986 | 91.44735 | 166.0922 | 171.2445 | 101.3713
frnedian 4991932 | 11.9564 | 7.304264 | 7.421564 | 99.2498 147.3787 | 85.91695 | 169.9146 | 192.755 99.2498
fud 0.967095 | 1.077262 | 0.616918 | 0.459146 | 13.0704 18.26553 | 11.52876 | 35.39223 | 61.44483 13.0704
FNRT 100 425 250 250 200 375 150 375 400 200
37 bar 200 bar
fonin 4236549 | 9.31844 | 5.409434 | 5.172688 | 150.5926 | 253.0394 | 186.5421 | 91.84767 | 206.397 | 150.5926
fnax 7.889606 | 13.31837 | 8.874736 | 6.890034 | 343.1443 | 434.2124 | 642.099 160.936 | 269.7945 | 343.1443
finean 5479135 | 11.52478 | 6.908521 | 5.83916 | 242.7585 | 320.1545 | 344.7113 | 125.5405 | 239.2806 | 242.7585
fonedian 4.895192 | 11.73116 | 6.674958 | 5.64696 | 238.6486 | 296.6831 | 275.1021 | 124.6891 | 240.4655 | 238.6486
fud 1.690573 | 1.898367 | 1.486709 | 0.748842 | 93.38359 | 82.81278 | 203.9372 | 32.66148 | 26.10161 | 93.38359
FNRT 150 400 275 175 300 425 375 125 275 300
60 bar 942 bar
frnin 13.53725 | 54.18284 21.142 13.47743 | 70880.97 | 78697.99 | 51587.67 | 5588.081 | 8653.43 | 70880.97
fnax 26.91212 | 83.17845 | 30.1375 17.75696 | 132887.2 | 109347.6 | 93407.78 | 11631.69 | 10874.74 | 132887.2
finean 21.79952 | 64.4468 | 25.44594 | 15.80612 | 100741.2 | 92359.86 | 71189.21 | 7388.747 | 9691.529 | 100741.2
fonedian 23.37436 | 60.21295 | 25.25213 | 15.99505 | 99598.32 | 90696.91 69880.7 | 6167.609 | 9618.973 | 99598.32
fud 575814 | 13.20134 | 3.876235 | 1.816843 | 26355.12 | 13588.55 17961.2 | 2860.339 | 1204.221 | 26355.12
FNRT 200 500 275 125 475 425 300 125 175 475
Average FNRT 206.25 412.5 265.625 221.875 393.75 206.25 412.5 265.625 221.875 393.75

time to reach the optimal solution. Table 12 presents the BCS
results for a 60-bar 3D truss that proves that the best result
is obtained by MOPGO, i.e. (1955.053, 81300.43) against all
other considered algorithms. The best Pareto fronts achieved
by individual algorithms are indicated in Figure 13 simultane-
ously with their BCS results. The combined Pareto fronts are
contrasted for qualitative analysis in the last plot, reflecting
the continuous and well-distributed nature of MOPGO solu-
tions. Furthermore, all ten performance metrics results by all
considered are plotted in boxplot as illustrated in Figure 14
that demonstrates the dominance of the suggested MOPGO
algorithm quantitatively over others.

5) 72-BAR SPATIAL TRUSS

The HV metric results are illustrated in Table 2, from which
it is evident that the MOSMA achieved the best fiean and
fsta value relative to other considered algorithms. Moreover,
the FNRT metric assigned the rank of 325, 325, 450, 300,
and 100 to the MOPGO, MOPVS, MOSMA, MOSOS, and
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MOALO algorithms. Hence, atFNRT 95% significance level,
MOSMA and MOPGO expressed their high solution den-
sity in the proximity of the Pareto Front. For GD indicator,
MOALO exhibit its dominance by obtaining the best fyean
and fyq value along with the bestFNRT value of 125 as
depicted in Table 3. As per the CVG metric listed in Table 4,
MOPGO obtained the best finean value shows a percentage
decrease of 10.14%, 16.71%, 18.20%, and 19.34% from
MOALO, MOSOS, MOSMA, and MOPVS. The FNRT
results obtained by MOPGO, MOPVS, MOSMA, MOSOS,
and MOALO are 125, 425, 400, 350, and 200, respectively.
At a 95% significance level, MOPGO ranked first and illus-
trated its enhanced coverage characteristic among all. The
Jmean results of CPF metric for MOPGO algorithm exhibits a
percentage increase of 157.76%, 48.89%, 9.97%, and 2.89%
from MOALO, MOSOS, MOSMA, and MOPVS, respec-
tively, as illustrated in Table 5. Moreover, the FNRT values of
MOPGO, MOPVS, MOSMA, MOSOS, and MOALO algo-
rithms are equal to 425, 425, 350, 200, and 100, respectively.
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TABLE 4. Results of (CVG-Metric) on truss bar problems.

Algorithms MOPGO | MOPVS | MOSMA | MOSOS | MOALO MOPGO MOPVS MOSMA | MOSOS | MOALO
10 bar 72 bar
frnin 0.82 0.83871 0.68 0.61 0.38 0.73 0.971831 0.96 0.9 0.83
frax 0.87 0.912281 0.87 0.83 0.6 0.86 1 0.99 0.99 0.93
Fonean 0.8375 | 0.884848 | 0.765 0.75 0.52 0.7975 0.98872 0.975 0.9575 0.8875
Fonedion 0.83 0.894201 | 0.755 0.78 0.55 0.8 0.991525 0.975 0.97 0.895
fua 0.023629 | 0.034155 | 0.078528 | 0.101653 | 0.096609 0.055603 0.013806 0.01291 0.04272 0.041932
FNRT 375 475 300 250 100 125 425 400 350 200
25 bar 120 bar
frnin 0.83 0.848485 0.63 0.62 0.5 0.73 0.740741 0.67 0.64 0.53
frax 0.87 0.968254 0.7 0.69 0.59 0.81 0.903846 0.73 0.79 0.63
Fnean 0.8575 | 0919553 | 0.675 0.65 0.5475 0.755 0.841147 0.7075 0.7375 0.5775
Foncdion 0.865 | 0930737 | 0.685 0.645 0.55 0.74 0.86 0.715 0.76 0.575
fud 0.01893 | 0.054381 | 0.033166 | 0.03559 0.036856 0.037859 0.077295 0.0263 0.06702 | 0.049917
FNRT 425 475 287.5 212.5 100 337.5 475 237.5 350 100
37 bar 200 bar
fmin 0.87 0.932203 0.85 0.85 0.87 0.53 1 1 1 1
finax 0.96 1 0.98 0.93 0.96 0.75 1 1 1 1
Focan 09175 | 0.962685 | 0.9375 0.88 0.9225 0.66 1 1 1 1
Foncdian 0.92 0.959267 0.96 0.87 0.93 0.68 1 1 1 1
fud 0.036856 0.03404 0.05909 0.038297 0.04113 0.095917 0 0 0 0
FNRT 250 450 350 162.5 287.5 100 350 350 350 350
60 bar 942 bar
Fonin 0.68 1 1 0.96 0.96 0.25 1 1 0.81 1
Jonax 0.79 1 1 1 1 0.62 1 1 1 1
Focan 0.732292 1 1 0.985 0.99 0.39 1 1 0.93 1
Foncdian 0.729583 1 1 0.99 1 0.345 1 1 0.955 1
fud 0.045017 0 0 0.019149 0.02 0.162275 0 0 0.090554 0
FNRT 100 387.5 387.5 300 325 100 375 375 275 375
Average FNRT | 226.5625 | 426.5625 | 335.9375 281.25 229.6875 226.5625 426.5625 335.9375 281.25 229.6875

These outcomes manifest MOPGO enhanced coverage over
Pareto Front characteristics concerning other investigated
algorithms. Table 6 depicts the DM metric results according
to which MOPGO fean value has a percentage increase
of 90.45%, 19.85%, 67.06%, and 4.65% from MOALO,
MOSOS, MOSMA, and MOPVS at minimum fyq value.
As per the FNRT, MOPGO obtained a maximum value
of 500 relatively, and at 95% significance level ranked first.
These outcomes exhibit the improved solution diversity of
MOPGO concerning other contrasted methodology.
Similarly, for PD performance measure as illustrated
in Table 7, the MOPGO algorithm reported a substantial
percentage increase of 97.14%, 29.65%, and 24,45% in fmean
value with respect to MOALO, MOSMA, and MOPVS.
MOPGO algorithm demonstrates its superior pure diversity
behavior through its best fnean and fsg that was eventually
proved by its highest 450 FNRT value in comparison to other
selected optimization techniques. For SP measure according
to Table 8, MOPGO and MOALO evidence an acceptable
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value of fimean and fyg among all contrasted methodolo-
gies. Furthermore, the FNRT metric indicates the best rank
of 225 by MOPGO and thus, at 95% significance level,
displays its enhanced spacing quality. From SD metric find-
ings as shown in Table 9, MOPGO finds the superior fyean
value that shows a percentage decrease of 38.71%, 33.71%,
25.42%, and 33.24% from MOALO, MOSOS, MOSMA, and
MOPVS. Also, MOPGO finds the better fyg value pertaining
to other algorithms and achieve the best FNRT value of 100
followed by MOSMA at 95% significance level, MOPGO
displays its well-distributed non-dominated solutions. In the
IGD test, as indicated in Table 10, the MOPVS and MOPGO
manifest superior fiean, fsrd and FNRT values were showing
its competing convergence-spread parity attribute compar-
atively. In terms of RT measure, the MOPVS realize the
best fmean and fyq value followed by MOPGO as shown
in Table 11. Moreover, the FNRT results portray the least
computational time executed by MOPGO and MOPVS rel-
atively to reach the optimal solution. Table 12 unveils the
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TABLE 5. Results of (CPF-Metric) on truss bar problems.

Algorithms MOPGO | MOPVS | MOSMA | MOSOS | MOALO | MOPGO | MOPVS | MOSMA | MOSOS | MOALO
10 bar 72 bar
frmin 0.641969 | 0.72494 0.71165 | 0.398605 | 0.368187 | 0.613982 | 0.523426 | 0.575082 | 0.425867 | 0.231503
frnax 0.726772 | 0.807655 | 0.740975 | 0.543499 | 0.496064 | 0.731293 | 0.732639 | 0.657412 | 0.486357 | 0.284085
fincan 0.694527 | 0.758201 | 0.726616 | 0.456103 | 0.426191 | 0.679746 | 0.660644 | 0.618115 | 0.456525 | 0.263712
finedian 0.704683 | 0.750106 | 0.726919 | 0.441153 | 0.420256 | 0.686854 | 0.693257 | 0.619982 | 0.456937 | 0.26963
fud 0.039562 | 0.038649 | 0.012341 | 0.066901 | 0.056313 | 0.056285 | 0.098276 | 0.041519 | 0.030417 | 0.023187
FNRT 325 475 400 175 125 425 425 350 200 100
25 bar 120 bar
fnin 0.733846 | 0.790876 | 0.795398 | 0.451823 | 0.515136 | 0.701273 | 0.716137 | 0.722061 | 0.376829 | 0.398076
frnax 0.792987 | 0.822968 | 0.823768 | 0.537116 | 0.554071 | 0.715219 | 0.768422 | 0.739315 | 0.44257 | 0.433238
fincan 0.773838 | 0.807236 | 0.810165 | 0.495303 | 0.531736 | 0.710896 | 0.737488 | 0.730748 | 0.40645 | 0.416306
finedian 0.784259 | 0.807549 | 0.810747 | 0.496137 | 0.528869 | 0.713547 | 0.732697 | 0.730808 | 0.403201 | 0.416955
fud 0.02717 | 0.014629 | 0.011702 | 0.044885 | 0.019715 | 0.006523 | 0.022164 | 0.007431 | 0.027103 | 0.014383
FNRT 325 425 450 150 150 300 475 425 125 175
37 bar 200 bar
fnin 0.709244 | 0.676191 | 0.627548 | 0.432487 | 0.288071 | 0.617241 | 0.520146 | 0.278424 | 0.328441 | 0.087688
finax 0.83038 | 0.753857 | 0.724174 | 0.490879 | 0.339872 | 0.798382 | 0.644281 | 0.410283 | 0.364408 | 0.245535
frnean 0.774506 | 0.708115 | 0.677357 | 0.473575 | 0.317438 | 0.706224 | 0.597845 | 0.323517 | 0.350783 | 0.145552
fimedian 0.7792 0.701206 | 0.678853 | 0.485467 | 0.320906 | 0.704636 | 0.613477 | 0.302681 | 0.355142 | 0.124493
fud 0.049801 | 0.034179 | 0.043273 | 0.027528 | 0.021584 | 0.087986 | 0.055477 | 0.060853 | 0.016311 | 0.073828
FNRT 475 400 325 200 100 500 400 225 275 100
60 bar 942 bar
funin 0.355249 | 0.419451 | 0.416612 | 0.347589 | 0.205133 | 0.221358 | 0.202351 0.06168 | 0.047292 | 0.04614
finax 0.483049 | 0.601221 | 0.604649 | 0.398281 | 0.291691 0.5012 0.368385 | 0.150211 | 0.213665 | 0.078325
frnean 0.442609 | 0.492879 | 0.502539 | 0.371738 | 0.244191 | 0.427331 | 0.284179 | 0.117496 | 0.111105 | 0.062012
finedian 0.466068 | 0.475422 | 0.494447 | 0.370541 | 0.23997 | 0.493383 | 0.282991 | 0.129046 | 0.091732 | 0.061791
fua 0.060037 | 0.076934 | 0.080582 | 0.025207 | 0.040528 | 0.137467 | 0.071258 | 0.041123 | 0.078014 | 0.015913
FNRT 325 450 400 225 100 475 400 250 225 150
Average FNRT 393.75 431.25 353.125 196.875 125 393.75 431.25 353.125 196.875 125

best-compromised solution (BCS) that satisfied each objec-
tive (fweight» feompliance) T€lying on fuzzy decision technique.
It is evident from the table that for a 72-bar truss, the superior
BCS, i.e. (6687.743, 65199.19), is achieved by MOPGO
among all executed algorithms.

Figure 16 depicts the best Pareto fronts for individual algo-
rithms and their corresponding BCS results. The combined
Pareto fronts illustration describes the diverse, continuous,
and smooth qualitative behavior of MOPGO relatively. The
dominance of the proposed MOPGO technique quantitatively
over others is also illustrated in Figure 17 comprehensively
in the form of all investigated performance metric outcomes
box-plots.

6) 120-BAR SPATIAL TRUSS

HV measure results are depicted in Table 2, and it displays
that MOPGO obtain the best fiean value of 0.553887 while
the least fig MOSMA realizes a value of 0.000939 in com-
parison to other algorithms. The FNRT values for MOPGO,
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MOPVS, MOSMA, MOSOS, and MOALO techniques are
450, 250, 425, 275, and 100, respectively. Thus, MOPGO
ranked first, followed by MOSMA among all algorithms at
95% significance level, and hence have better solutions den-
sity near the Pareto front. In terms of GD metric fpean value,
MOPVO obtained the least value of 91.44735, followed by
MOPGO as per Table 3. Moreover, MOPVO attain the best
FNRT values of 150 with minimum fgq result that describes
its improved convergence behavior. Table 4 shows the better
CVG values for MOALO relatively while the least value
of fyq is procured by MOSMA, and thus MOALO demon-
strates its improved coverage attribute relative to other con-
sidered algorithms. In CPF measure, as illustrated in Table 5,
the MOPVS obtain the best fiean result of 0.737488 and
MOPGO obtains the best fgq result of 0.006523, relatively.
The FNRT values for MOPGO, MOPVS, MOSMA,
MOSOS, and MOALO algorithms are 300, 475, 425, 125,
and 175, respectively. Thus, at a 95% significance level,
MOPGO shows its improved coverage over Pareto front
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TABLE 6. Results of (DM-Metric) on truss bar problems.

Algorithms MOPGO | MOPVS | MOSMA | MOSOS | MOALO | MOPGO | MOPVS | MOSMA | MOSOS | MOALO
10 bar 72 bar
frnin 0.804182 0.7566 0.5127 0.6393 0.6002 0.781268 0.7574 0.4561 0.6481 0.3643
finax 0.848621 0.7971 0.5444 0.7148 0.6965 0.832545 0.7857 0.5052 0.7116 0.4852
finean 0.831639 | 0.775275 | 0.522275 | 0.678225 | 0.641525 | 0.810576 0.7745 0.4852 0.676325 0.4256
fonedian 0.836877 0.7737 0.516 0.6794 0.6347 0.814245 | 0.77745 0.48975 0.6728 0.42645
fud 0.020127 | 0.01673 | 0.014889 | 0.032156 | 0.040236 | 0.021394 | 0.012513 | 0.02079 | 0.027789 | 0.054116
FNRT 500 400 100 275 225 500 400 200 300 100
25 bar 120 bar
fimin 0.834328 0.7085 0.581 0.633 0.6572 0.831 0.7501 0.5951 0.6248 0.652
finax 0.867969 0.7534 0.6003 0.7216 0.7054 0.909231 0.7792 0.6069 0.6506 0.6881
fnean 0.857506 | 0.73625 | 0.592075 | 0.68695 | 0.682825 | 0.867421 | 0.769625 0.6013 0.641275 | 0.66795
frnedian 0.863864 | 0.74155 0.5935 0.6966 0.68435 | 0.864726 0.7746 0.6016 0.64485 0.66585
fud 0.015579 | 0.01962 | 0.008514 | 0.038154 | 0.025815 | 0.032174 | 0.013297 | 0.006019 | 0.011329 | 0.014965
FNRT 500 400 100 275 225 500 400 100 200 300
37 bar 200 bar
fonin 0.827458 0.7425 0.5154 0.6649 0.4895 0.695833 0.7017 0.3634 0.502 0.2634
fnax 0.848305 0.7667 0.5772 0.7258 0.5168 0.801316 0.7558 0.5402 0.5681 0.3827
fnean 0.836355 | 0.755825 | 0.55085 0.6936 0.5073 0.749226 | 0.724775 | 0.44805 0.5476 0.293225
fonedian 0.834828 | 0.75705 0.5554 0.69185 0.51145 | 0.749877 0.7208 0.4443 0.56015 0.2634
fud 0.009164 | 0.012615 | 0.027033 | 0.030715 | 0.012712 | 0.055675 | 0.023067 | 0.072312 | 0.030725 | 0.05965
FNRT 500 400 200 300 100 450 450 225 275 100
60 bar 942 bar
fonin 0.589333 0.6574 0.4434 0.6031 0.3729 0.481919 | 0.481919 | 0.32755 | 0.299018 | 0.170778
fnax 0.760303 0.7079 0.5427 0.6965 0.4909 0.71474 | 0.622283 | 0.380748 | 0.508988 | 0.276233
finean 0.680282 | 0.680275 | 0.49605 0.64765 | 0.425974 | 0.62308 | 0.563493 | 0.343698 | 0.396347 | 0.207593
fonedian 0.685746 0.6779 0.49905 0.6455 0.420048 | 0.64783 | 0.574885 | 0.333246 | 0.388691 | 0.191681
fad 0.086651 | 0.020962 | 0.040721 | 0.040101 | 0.048818 | 0.099852 | 0.06394 | 0.025147 | 0.086221 | 0.047581
FNRT 400 425 175 375 125 475 400 225 300 100
Average FNRT | 478.125 409.375 165.625 287.5 159.375 478.125 409.375 165.625 287.5 159.375

quality. MOPGO frean value for DM metric as listed in
Table 6 has a percentage increase of 29.86%, 35.26%,
44.25%, and 12.70% from MOALO, MOSOS, MOSMA,
and MOPVS, respectively. The FNRT values for MOPGO,
MOPVS, MOSMA, MOSOS, and MOALO are 500, 400,
100, 200, and 100, respectively.

Thus, at a 95% significance level, the proposed MOPGO
algorithm outperforms others and exhibits better diversity
in solutions. Similarly, from Table 7 for PD measure,
the MOPGO has a percentage increase of 79.61%, 30.58%,
29.67%, and 47.60% in fmyean value from MOALO, MOSOS,
MOSMA, and MOPVS, respectively. Also, MOPGO obtains
the maximum FNRT value of 450. These outcomes illustrate
the improved pure diversity nature of investigated MOPGO
over other methodologies. Table 8 reveals the SP metric
results where MOPGO fiean value reported a substantial per-
centage decrease of 65.03%, 46.30%, 68.93%, and 87.17%
from MOALO, MOSOS, MOSMA, and MOPVS. Similarly,
MOPGO realize a major percentage decrease of 92.33%,
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57.34%, 91.43%, and 72.12% corresponding to MOALO,
MOSOS, MOSMA, and MOPVS in terms of fyq results.
Moreover, MOPGO manifests the best FNRT result that
describes its optimal spacing feature. For SD indicator as
per Table 9, fpean value reported by the MOPGO is a
large percentage decrease of 79.52%, 79.36%, 70.12%, and
79.15% against MOALO, MOSOS, MOSMA, and MOPVS.
MOPGO realize a best FNRT value of 100 at minimum
fsta value of 0.023643 that manifests its well-distributed
non-dominated solutions relative to others. For IGD per-
formance measure, the MOSMA realize the best fiean and
fsta value along with the least FNRT value, followed by
MOPVS and MOPGQO, as presented in Table 10. Regarding
RT metric, the proposed MOPGO realize a minimum fiean
value of 131.6244 relatively. MOPGO, MOPVS, MOSMA,
MOSOS, and MOALO realize the FNRT value of 150, 175,
325,350, 350, and 500. At a 95% significance level, MOPGO
ranked first and manifested its least computational time to
reach the optimal solution. Table 12 presents the BCS results
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TABLE 7. Results of (PD-Metric) on truss bar problems.

Algorithms MOPGO | MOPVS | MOSMA MOSOS MOALO | MOPGO | MOPVS | MOSMA | MOSOS MOALO
10 bar 72 bar
fnin 63896267 | 51838045 | 52114664 | 53783885 | 33395812 | 52094520 | 44620434 | 43023633 | 51354240 | 26916981
frnax 72464000 | 65318476 | 77688008 | 76290111 | 49650278 | 69519307 | 57137540 | 57143645 | 62163809 | 34973925
finean 69119969 | 58182377 65896975 62302844 38144989 63722203 51200123 49146439 58488576 32322964
finedian 70059805 | 57786494 | 66892614 | 59568689 | 34766934 | 66637492 | 51521259 | 48209238 | 60218127 | 33700474
fud 3796213 6599317 10795370 | 10055437 7715646 7942384 6306248 5890566 4845287 3721075
FNRT 425 275 375 325 100 450 275 250 425 100
25 bar 120 bar
fnin 33598182 | 24801785 | 26353988 | 26127797 | 24626669 | 4.05E+08 | 3.31E+08 4.1E+08 3.41E+08 | 2.14E+08
frnax 43972086 | 30047562 | 30727768 | 36219296 | 31815915 | 6.62E+08 | 4.42E+08 | 4.65E+08 5.3E+08 4.13E+08
finean 39459659 | 27799928 | 28479814 | 33561794 | 28413328 | 5.55E+08 | 3.76E+08 | 4.28E+08 | 4.25E+08 | 3.09E+08
frnedian 40134184 | 28175182 | 28418751 35950041 28605365 5.76E+08 3.66E+08 4.18E+08 4.14E+08 3.05E+08
fud 4625217 2635905 1804084 4957675 2945634 1.08E+08 | 51971669 | 25173050 | 78321456 | 86596859
FNRT 500 225 225 325 225 450 200 350 325 175
37 bar 200 bar
frnin 13003561 13079813 10768528 13985101 6835959 1.08E+08 1.28E+08 49333508 94404323 45336403
finax 24395936 | 17351166 12648096 17328534 9036429 2.57E+08 1.61E+08 83349790 1.52E+08 77149363
fincan 17315293 | 15637868 | 11411361 15898856 8099462 1.56E+08 | 1.44E+08 | 68720635 | 1.24E+08 | 56050768
fonedian 15930836 | 16060246 | 11114410 | 16140895 8262730 1.29E+08 | 1.44E+08 | 71099621 | 1.25E+08 | 50858653
fud 5339034 1810701 845748.2 1655964 1050231 68458456 | 17102375 | 15565291 | 23713875 | 14771458
FNRT 400 400 200 400 100 400 425 175 375 125
60 bar 942 bar
fnin 14820683 | 8360067 14916235 17458746 | 13365426 | 8.01E+09 | 5.81E+09 | 3.24E+09 | 5.66E+09 | 1.83E+09
fnax 22339929 | 20077248 | 24163371 | 20913061 | 16228165 | 1.15E+10 | 1.26E+10 5.6E+09 1.27E+10 | 3.67E+09
finean 18636119 | 13111841 20323843 19827690 14625593 9.51E+09 9.7E+09 3.97E+09 8.43E+09 2.53E+09
frmedian 18691931 | 12005024 | 21107883 | 20469475 | 14454390 | 9.27E+09 | 1.02E+10 | 3.53E+09 | 7.69E+09 2.3E+09
fud 3939996 5067413 3966399 1619731 1357086 1.49E+09 | 2.83E+09 | 1.09E+09 3.1E+09 8.18E+08
FNRT 375 125 375 400 225 400 425 200 375 100
Average FNRT] 425 293.75 268.75 368.75 143.75 425 293.75 268.75 368.75 143.75

for 120-bar 3D truss that proves that MOPGO, i.e., least
obtain the best result fye;gn: value of 20453.26 with maximum
Jeompliance 0f 1447942 against all other considered algorithms.
The best Pareto fronts achieved by individual algorithms
are indicated in Figure 19 simultaneously with their BCS
results. The combined Pareto fronts are contrasted for quali-
tative analysis in the last plot that reflects the continuous and
well-distributed nature of MOPGO solutions. Furthermore,
all ten performance metrics results are plotted in boxplot as
illustrated in Figure 20, demonstrating the dominance of the
suggested MOPGO algorithm quantitatively over others.

7) 200-BAR SPATIAL TRUSS

The HV metric results are illustrated in Table 2, from which
it is evident that MOPVS and MOPGO achieved the supe-
rior fiean and fyq value relative to other considered algo-
rithms. Moreover, the FNRT metric assigned the rank of
400, 425, 200, 375, and 100 to the MOPGO, MOPVS,
MOSMA, MOSOS, and MOALO algorithms, respectively.
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Hence atFNRT 95% significance level, MOPGO expressed
its high solutions density in the proximity of the Pareto front.
For GD indicator, MOSMA exhibit its dominance by obtain-
ing the best fiean and fyq value along with the best FNRT
value of 125 as depicted in Table 3. According to Table 4,
the best CVG metric finean the result was obtained by MOPGO
shows a percentage decrease of 34% from all other optimiza-
tion techniques. The FNRT results obtained by MOPGO,
MOPVS, MOSMA, MOSOS, and MOALO are 100, 350,
350, 350, and 350 each. At a 95% significance level, MOPGO
ranked first and illustrated its enhanced coverage charac-
teristic among all. The fiean results of CPF metric for the
MOPGO algorithm exhibit a substantial percentage increase
of 385.20%, 101.32%, 118.29%, and 18.12% from MOALO,
MOSOS, MOSMA, and MOPVS, respectively, as illustrated
in Table 5. Moreover, the FNRT results attain by MOPGO,
MOPVS, MOSMA, MOSOS, and MOALO techniques are
500, 400, 225, 275, and 100 each. These prospects manifest
MOPGO enhanced coverage over Pareto front characteristics
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TABLE 8. Results of (SP-Metric) on truss bar problems.

Algorithms MOPGO | MOPVS | MOSMA | MOSOS | MOALO | MOPGO | MOPVS | MOSMA | MOSOS | MOALO
10 bar 72 bar
Janin 297.6046 | 2184.726 | 888.3706 | 516.8352 | 531.2223 | 214.5549 | 1173.424 | 4282149 | 303.7444 | 191.6801
finax 685.4001 | 2801.511 | 1346.646 | 730.3162 | 1814.697 1751.82 | 2079.446 | 1597.901 | 479.3324 | 647.1748
finean 4273006 | 2476.311 | 1049.798 | 629.3917 | 941.9936 | 660.9634 | 1574.278 | 1162.472 | 403.7876 | 434.2584
fonedian 363.0989 | 2459.504 | 982.0871 | 635.2077 | 711.0277 | 338.7393 | 1522.122 | 1311.886 | 416.0367 | 449.0893
fud 176.6763 | 331.0173 | 206.5312 | 96.65837 | 588.6415 | 730.3312 | 383.1655 | 553.8538 | 73.65402 | 216.6911
FNRT 125 500 375 200 300 225 475 325 250 225
25 bar 120 bar
fruin 104.2963 | 619.3793 | 273.8689 | 226.2322 | 278.551 | 2228979 | 17510.02 | 5022.761 | 3407.838 | 3717.766
fnax 128.3055 | 1167.577 | 300.7606 | 317.179 1235.8 3212.08 | 21146.66 | 16053.08 | 5983.912 | 15990.16
finean 117.5281 | 822.0693 | 291.4915 | 269.8598 | 542.2806 | 2545.739 | 19853.94 | 8195298 | 4741.079 | 7280.604
finedian 118.7552 | 750.6605 | 295.6683 | 268.0141 | 327.3856 | 2370.948 | 20379.53 | 5852.677 | 4786.283 | 4707.248
fud 12.33472 | 238.6874 | 12.04796 | 41.16262 | 463.0835 | 450.0255 | 1614.615 | 5253.406 | 1055.037 | 5873.13
FNRT 100 475 300 250 375 100 500 350 250 300
37 bar 200 bar
fonin 53.62469 | 275.143 | 111.6223 | 107.9337 | 46.72249 | 233.1611 | 1510.139 | 686.2533 | 1128.689 | 224.7026
fnax 128.8711 | 446.2343 | 165.0344 | 244.5844 | 96.63768 | 411.9699 | 1966.236 | 1042.236 | 1971.306 | 598.0939
finean 79.51933 | 362.4493 | 149.5973 | 150.3453 | 73.37848 | 289.6515 | 1735.383 | 921.8234 | 1379.492 | 370.9954
fonedian 67.79075 | 364.2099 | 160.8663 | 124.4316 | 75.07688 | 256.7375 | 1732.579 | 979.4022 | 1208.986 | 330.5926
fud 33.76103 | 73.5329 | 25.39327 | 63.44049 | 20.86319 | 82.34433 | 196.0732 163.945 397.8876 | 174.3569
FNRT 150 500 350 325 175 150 475 300 425 150
60 bar 942 bar
fonin 86.12169 | 370.9343 | 137.425 141.9594 | 141.9138 | 24747.67 | 59830.61 | 79785.65 48140 35830
finax 325.133 | 1331.521 | 446.5709 | 270.3608 | 337.7114 | 38474.18 | 146823.9 164705 120490.3 | 45553.44
finean 193.363 | 727.5934 | 340.2282 | 208.9667 | 214.5523 | 29223.46 | 98820.21 | 104926.7 | 89495.66 | 39101.09
fonedian 181.0986 | 603.9593 | 388.4584 | 211.7733 | 189.292 | 26835.99 | 94313.15 | 87608.08 | 94676.15 | 37510.45
fud 100.1716 | 417.3559 | 144.3591 | 70.37141 | 85.91492 | 6377.023 | 36832.92 | 40063.3 36117.96 | 4519.288
FNRT 225 475 350 225 225 100 425 375 400 200
Average FNRT | 146.875 478.125 340.625 290.625 243.75 146.875 478.125 340.625 290.625 243.75

in relation to other investigated algorithms. Table 6 depicts
the DM metric results according to which MOPGO fiean
value has a percentage increase of 155.51%, 36.81%, 67.21%,
and 3.37% from MOALO, MOSOS, MOSMA, and MOPVS,
respectively, at minimum fyq value. MOPGO, as per the
FNRT obtained a maximum 450 value relatively and at 95%
significance level ranked first. These outcomes exhibit the
improved solution diversity of MOPGO concerning other
contrasted methodology.

Similarly, for PD performance measure as illustrated
in Table 7, the MOPGO algorithm reported a substantial
percentage increase of 178.31%, 25.80%, and 127% in
Jfmean Vvalue in respect to MOALO, MOSOS, and MOSMA.
Here, the MOPGO algorithm demonstrates its superior pure
diversity behavior through its best fnean and fsq that was
eventually proved by its high FNRT value of 400 in compar-
ison to other selected optimization techniques. For SP mea-
sure, according to Table 8, MOPGO evidence an acceptable
value of fiean i.€., 289.6515 that is significantly less than
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MOPVS, MOSOS, and MOSMA methodologies. Moreover,
fsta value reported by MOPGO is a percentage decrease
of 79.30%, 58%, 52.77%, and 49.77% from MOSOS,
MOPVS, MOALO, and MOSMA. Furthermore, the FNRT
metric indicates the best rank of 150 by MOPGO and, thus,
at 95% significance level, displays its enhanced spacing qual-
ity against other algorithms. From SD metric findings as
shown in Table 9, MOPVS and MOSMA finds the superior
Jfmean and fsg value over others. The FNRT results attain
by MOPGO, MOPVS, MOSMA, MOSOS, and MOALO
algorithms are 300, 150, 150, 425, and 475 each. At a
95% significance level, MOPGO displays its well-distributed
non-dominated solutions. In the IGD test, as indicated
in Table 10, the MOPGO algorithm exhibits a substan-
tial percentage decrease of 84.10%, 19.08%, 80.19%, and
17.86% from MOALO, MOSOS, MOSMA, and MOPVS,
respectively. The FNRT results attain by MOPGO, MOPVS,
MOSMA, MOSOS, and MOALO techniques are 175, 225,
425, 200, and 475 each. These results are showing its
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TABLE 9. Results of (SD-Metric) on truss bar problems.

Algorithms MOPGO | MOPVS | MOSMA | MOSOS | MOALO | MOPGO | MOPVS | MOSMA | MOSOS | MOALO
10 bar 72 bar
frmin 0.239788 | 0.924493 | 0.629585 | 0.918107 | 0.923815 | 0.464974 | 0.828689 | 0.572478 | 0.842599 | 0.88462
finax 0.344418 | 1.058567 | 0.830546 | 1.025942 | 0.959251 | 0.66236 | 0.889789 | 0.985028 | 0.884771 | 0.961603
finean 0.283055 | 0.988318 | 0.744116 | 0.982385 | 0.94139 | 0.571281 | 0.855764 | 0.766081 | 0.861879 | 0.932239
fonedian 0.274007 | 0.985106 | 0.758167 | 0.992746 | 0.941247 | 0.578895 | 0.852288 | 0.753409 | 0.860073 | 0.941367
fud 0.046962 | 0.055716 | 0.083838 | 0.048874 | 0.017233 | 0.086756 | 0.025545 | 0.171282 | 0.017739 | 0.033402
FNRT 100 425 200 425 350 100 325 275 325 475
25 bar 120 bar
frmin 0.177001 | 0.842797 | 0.542787 | 0.683891 | 0.752214 | 0.178727 | 0.896872 | 0.595314 | 0.901197 | 0.894332
finax 0.217493 | 0.948056 | 0.573612 | 0.88437 | 0.952348 | 0.229966 | 0.990101 | 0.69815 | 1.020614 | 1.082661
finean 0.199255 | 0.880547 | 0.55856 | 0.826468 | 0.858166 | 0.197805 | 0.949112 | 0.662095 | 0.958623 | 0.966314
fonedian 0.201262 | 0.865668 | 0.558921 | 0.868805 | 0.864051 | 0.191263 | 0.954737 | 0.677458 | 0.95634 | 0.944131
fud 0.018069 | 0.049028 | 0.01397 | 0.096023 | 0.085545 | 0.023643 | 0.041454 | 0.046297 | 0.049373 | 0.082048
FNRT 100 400 200 400 400 100 375 200 425 400
37 bar 200 bar
frnin 0.475421 | 0.736658 | 0.584838 | 0.844236 | 0.865627 | 0.773623 | 0.599074 | 0.594473 | 0.904169 | 0.909956
fnax 0.578204 | 0.938775 | 0.801246 | 0.90908 | 0.921314 | 0.845811 | 0.723365 | 0.759342 | 0.962052 | 0.95599
finean 0.523486 | 0.834174 | 0.71639 | 0.878386 | 0.901188 | 0.82185 | 0.659388 | 0.649975 | 0.92488 0.939279
fonedian 0.520159 | 0.830632 | 0.739739 | 0.880114 | 0.908906 | 0.833984 | 0.657556 | 0.623042 | 0.91665 0.945585
fud 0.049119 | 0.083162 | 0.092691 | 0.027418 | 0.026223 | 0.033901 | 0.054871 | 0.075505 | 0.025472 | 0.020249
FNRT 100 325 225 400 450 300 150 150 425 475
60 bar 942 bar
frnin 0.537625 | 0.903756 | 0.827936 | 0.936454 | 0.979852 | 0.83945 | 0.617021 | 0.718818 | 0.882062 | 0.959359
fnax 0.709925 | 1.026421 | 0.906392 | 0.972011 | 1.005357 | 0.873767 | 0.800822 | 0.899675 1.0147 0.979317
finean 0.603767 | 0.961691 | 0.873029 | 0.953616 | 0.987145 | 0.853372 | 0.683959 | 0.837065 | 0.975461 | 0.968067
fonedian 0.583759 | 0.958294 | 0.878895 0.953 0.981685 | 0.850135 | 0.658996 | 0.864883 1.00254 | 0.966797
fud 0.083026 | 0.052262 | 0.035189 | 0.01736 | 0.012193 | 0.015802 | 0.080384 | 0.084296 | 0.062559 | 0.00839
FNRT 100 375 200 350 475 250 100 275 450 425
Average FNRT 143.75 309.375 215.625 400 431.25 143.75 309.375 215.625 400 431.25

competing convergence-spread parity attribute compara-
tively. In terms of RT measure, MOPGO realize the best finean
and fyq value followed by MOPVS as shown in Table 11.
Moreover, the least FNRT value of 175 portrays the least
computational time executed by MOPGO relatively to reach
the optimal solution. Table 12 unveils the BCS that satisfied
each objective, i.e., minimum f.;gn, and maximum feompliance
and it is evident that the suggested MOPGO accomplishes a
superior value of (6687.743, 65199.19) for a 200-bar 3D truss
among all executed algorithms.

Figure 22 depicts the best Pareto fronts for individual algo-
rithms and their corresponding BCS results. The combined
Pareto fronts illustration describes the well-diverse, continu-
ous, and smooth qualitative behavior of MOPGO relatively.
The dominance of the proposed MOPGO technique quanti-
tatively over others is also illustrated in Figure 23 compre-
hensively in the form of all investigated performance metric
outcomes box-plots.
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8) 942-BAR SPATIAL TOWER TRUSS

According to Table 2 that displays HV measure results,
the best fmean and fyg value is obtained by MOPGO fol-
lowed by MOPVS. The FNRT values for MOPGO, MOPVS,
MOSMA, MOSOS, and MOALO algorithms are 425, 375,
125, 325, and 250, respectively. Thus, MOPGO ranked first
and at 95% significance level exhibit a superior solution
density near Pareto front. In terms of GD metric fipean value,
MOSMA, and MOSOS obtained the best value among all as
per Table 3. MOPGO attains the FNRT value of 425 that
describes its improved convergence behavior at a 95% sig-
nificance level relatively. Table 4 shows the best CVG fiean
value, according to which MOPGO manifest a 61%, 58.06%,
61%, and 61% from MOALO, MOSOS, MOSMA, and
MOPVS, respectively. The MOPGO, MOPVS, MOSMA,
MOSOS, and MOALO algorithms realize a FNRT values of
100, 375, 375, 275, and 375 each. MOPGO ranked at the first
position at 95% significance level and governed its improved
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TABLE 10. Results of (/IGD-Metric) on truss bar problems.

Algorithms MOPGO | MOPVS | MOSMA | MOSOS | MOALO | MOPGO | MOPVS | MOSMA | MOSOS | MOALO
10 bar 72 bar
fonin 1663.004 | 669.3506 | 1010.344 | 1496.253 | 16935.28 | 1447.864 | 735.9324 | 2151.355 | 1183.869 | 6799.245
frnax 2491.803 | 1448.771 | 1391.227 | 5831.317 | 18199.38 | 3692.308 | 1681.942 | 3236.961 | 3365.199 | 10546.19
fnean 2195.228 | 1105.985 | 1177.911 3281.61 17571.57 | 2619.698 | 1198.052 | 2716.422 | 2487.961 | 9412.384
fonedian 2313.052 | 1152909 | 1155.036 | 2899.435 | 17575.82 | 2669.31 1187.167 | 2738.687 | 2701.389 | 10152.05
fud 372.613 324.3478 | 164.507 1824.671 | 549.2313 | 1118.101 | 454.5308 | 510.1474 | 1030.674 | 1754.399
FNRT 325 150 150 375 500 275 125 300 300 500
25 bar 120 bar
fonin 376.755 174.2427 | 186.7903 | 271.4774 2350.4 9616.403 | 5351.738 | 4139.374 | 10269.31 | 70203.28
fnax 921.6493 | 1883175 | 297.684 | 659.4901 | 3611.171 | 20565.82 | 15325.65 | 5581.666 | 35020.58 | 168283.4
finean 560.3473 | 180.3499 | 226.2102 | 411.3597 | 2757.912 | 13619.08 | 8097.637 | 4603.163 | 18295.17 | 110218.4
fonedian 471.4924 | 179.4197 | 210.1832 | 357.2357 | 2535.038 | 12147.04 | 5856.579 | 4345806 | 13945.39 | 101193.5
fad 2451732 | 6.642211 | 49.68994 | 183.8964 | 576.7051 | 4783.979 | 4834.275 | 671.9493 | 11285.14 | 47221.25
FNRT 400 100 225 275 500 325 200 125 350 500
37 bar 200 bar
fonin 213.3998 | 149.1124 | 347.9143 | 192.0994 | 2305.397 | 3075.448 | 3804.123 | 21304.65 | 3626.427 | 29784.44
fnax 289.3297 | 724.9337 | 670.4392 | 481.891 3437.252 | 8863.133 11799.4 33331.05 | 10875.23 | 43353.69
fincan 239.7479 | 394.5028 | 481.7558 | 292.0681 | 2748.639 | 5707.932 | 6949.556 | 28826.64 | 7054.015 | 35899.25
frnedian 228.1311 | 351.9826 | 454.3349 | 247.141 2625.954 | 5446.573 | 6097.352 | 30335.44 | 6857.203 | 35229.43
fud 33.90431 | 247.2318 | 135.8339 | 129.5593 | 502.4452 | 2502.579 | 3799.514 | 5225.252 | 3031.048 | 7098.44
FNRT 175 250 350 225 500 175 225 425 200 475
60 bar 942 bar
fmin 3350.781 | 1082.766 | 1199.562 | 2001.666 | 3546.307 | 1208912 1720320 | 4030769 1635280 | 4894355
finax 9267.69 | 3177.081 | 2565.982 | 2643.415 | 5132376 | 2941170 | 3069593 4492126 3757705 | 6174558
fincan 5530.265 | 246742 | 1757774 | 2390.604 | 4543.579 | 1895785 | 2122510 | 4357333 2690449 | 5698860
frnedian 4751295 | 2804917 | 1632.777 | 2458.668 | 4747.817 | 1716529 1850064 | 4453218 2684405 | 5863262
fud 2673.076 | 952.8802 | 589.8991 | 286.5413 | 722.0399 | 737012.1 | 634401.2 | 218480.7 878142 567831
FNRT 450 250 125 225 450 175 200 400 225 500
Average FNRT 287.5 187.5 262.5 271.875 490.625 287.5 187.5 262.5 271.875 490.625

coverage quality. In CPF metric, as illustrated in Table 5,
MOPGO reported a 589.11%, 284.61%, 263.69%, and
50.37% increase in fean value relative to MOALO, MOSOS,
MOSMA, and MOPVS, respectively. The FNRT values for
MOPGO, MOPVS, MOSMA, MOSOS, and MOALO algo-
rithms are 475, 400, 250, 225, and 150, respectively. At a
95% significance level, the investigated MOPGO algorithm
outperforms others in terms of coverage over Pareto front
quality. MOPGO fiean value for DM metric as depicted
in Table 6 has a percentage increase of 200.14%, 57.20%,
81.28%, and 10.57% from MOALO, MOSOS, MOSMA,
and MOPVS, respectively. The FNRT results for MOPGO,
MOPVS, MOSMA, MOSOS, and MOALO are 475, 400,
225, 300, and100, respectively. Thus, at a 95% significance
level, the proposed MOPGO techniques exhibit better diver-
sity in solutions.

Table 7 describes the PD measure results according to
which the MOPGO finds the best fiyean value that shows
a substantial percentage increase of 275.88% and 139.54%
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from MOALO and MOSMA, respectively. MOSMA and
MOPGO also obtain the minimum value of fsq whereas the
best FNRT results are realized by MOPVS and MOPGO.
Hence at a 95% significance level, MOPGO illustrates the
improved pure diversity nature over other methodologies.
Table 8 reveals the SP metric results where MOPGO fiean
value reported a percentage decrease of 25.26%, 67.34%,
72.14%, and 70.42% from MOALO, MOSOS, MOSMA, and
MOPVS. Moreover, MOPGO, MOPVS, MOSMA, MOSOS,
and MOALO obtain the FNRT value of 100, 425, 375, 400,
and 200, respectively, describing the optimal spacing feature
MOPGO over other considered methodologies. For SD indi-
cator as per Table 9, MOPVS realize the best fiean value while
the best fyq result is procured by MOPGO. The MOPVO
realizes a best FNRT value of 100, followed by MOPGO. At a
95% significance level, the suggested MOPGO algorithm
manifests its well-distributed non-dominated solutions rela-
tive to others. From IGD performance measure, as depicted
in Table 10, MOPGO realize the best fyean value with
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TABLE 11. Results of (RUNTIME — RT-Metric) on truss bar problems.

Algorithms MOPGO | MOPVS | MOSMA | MOSOS | MOALO | MOPGO | MOPVS | MOSMA | MOSOS | MOALO
10 bar 72 bar
frmin 10.52134 | 10.60112 | 13.71625 14.032 24.48882 | 72.06388 | 72.40407 | 75.03435 | 78.25583 | 89.37959
frnax 11.72248 | 12.60622 | 14.37789 | 14.95669 | 25.16257 | 85.69324 | 78.58249 | 84.33703 | 88.71498 | 101.677
fincan 11.31989 | 11.20518 | 14.07731 | 14.41821 | 24.78684 | 75.50898 | 74.13212 | 77.44584 | 80.96273 | 92.83377
finedian 11.51787 10.8067 14.10755 | 14.34209 | 24.74799 | 72.1394 72.77097 75.206 78.44006 | 90.13923
fud 0.549554 | 0.943371 | 0.274431 | 0.418797 | 0.309626 | 6.789729 | 2.973097 | 4.595131 | 5.169407 | 5.908018
FNRT 175 125 325 375 500 150 175 275 400 500
25 bar 120 bar
fnin 27.15025 | 27.37074 | 31.30694 | 31.55037 | 43.60418 | 127.1529 | 127.4661 130.6324 135.676 | 147.1061
frnax 27.5003 | 27.89938 | 40.44693 | 34.84346 | 44.93789 | 143.1505 | 140.3373 148.2668 | 141.2581 | 162.4699
fincan 27.26802 | 27.5558 33.83647 | 32.42191 | 43.99345 | 131.6244 131.409 135.1752 | 137.1738 | 151.4025
funedian 27.21076 | 27.47654 31.796 31.64691 | 43.71587 | 128.0971 | 128.9163 130.9007 | 135.8806 | 148.0169
fud 0.157958 | 0.243625 | 4.421022 | 1.615126 | 0.636058 | 7.697764 | 5.996037 | 8.730048 | 2.727692 | 7.391627
FNRT 100 200 350 350 500 150 175 325 350 500
37 bar 200 bar
fnin 35.68907 | 36.00401 | 38.73837 | 40.01812 | 51.38625 | 196.3653 | 197.1134 198.8859 204.141 | 213.1838
fnax 36.32434 | 36.73899 | 45.76548 | 40.2507 | 59.62096 | 205.2674 | 219.7489 199.9099 | 204.7652 | 220.1894
frnean 359093 | 36.25632 | 40.51906 | 40.19059 | 53.78413 | 198.9954 | 203.1025 199.4259 204.484 | 215.2863
finedian 35.81189 | 36.14113 | 38.78619 | 40.24677 | 52.06466 | 197.1744 | 197.7739 199.4539 | 204.5148 | 213.886
fud 0.298144 | 0.346248 3.49769 | 0.114997 | 3.935561 | 4.223112 | 11.10212 | 0.525912 0.258 3.289835
FNRT 100 200 325 375 500 175 225 250 350 500
60 bar 942 bar
fonin 63.72904 | 64.26448 66.1612 | 69.28469 | 80.3214 1001.134 | 1005.016 1002.336 | 1011.926 | 1018.45
frnax 70.49556 | 70.51224 | 69.43394 | 74.16968 | 82.06947 | 1013.831 | 1029.895 1027.993 | 1016.438 | 1035.815
froean 65.45753 | 65.87182 | 67.09768 | 70.57497 | 80.97416 | 1006.416 | 1011.646 1016.036 | 1014.367 | 1025.095
finedian 63.80276 | 64.35527 | 66.39778 | 69.42276 | 80.75289 | 1005.349 | 1005.836 1016.908 | 1014.551 | 1023.056
fua 3359196 | 3.094192 | 1.565267 | 2.39865 | 0.764819 | 5.39259 12.17995 11.93667 | 2.252695 | 7.573137
FNRT 125 225 250 400 500 125 275 325 325 450
Average FNRT 137.5 200 303.125 365.625 493.75 137.5 200 303.125 365.625 493.75

a percentage decrease of 66.73%, 29.53%, 56.49%, and
10.68% from MOALO, MOSOS, MOSMA, and MOPVS.
The least FNRT value of 175 is manifest by MOPGO, which
is followed by MOPVS.

Therefore, at a 95% significance level, MOPGO proves its
improved uniformity-convergence-spread attribute relatively.
Regarding RT metric, the proposed MOPGO realize a min-
imum fipean value of 1006.416 relatively at minimum fyqg
result. MOPGO, MOPVS, MOSMA, MOSOS, and MOALO
realize the FNRT value of 125, 275, 325, 325, and 450. At a
95% significance level, MOPGO ranked first and manifested
its least computational time to reach the optimal solution.
Table 12 presents the BCS results for the 942-bar tower
truss that proves that the best result is obtained by MOPGO,
i.e. (6867423, 2296479) against all other considered algo-
rithms. The best Pareto fronts achieved by individual algo-
rithms are indicated in Figure 25 simultaneously with their
BCS results. The combined Pareto fronts are contrasted for
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qualitative analysis in the last plot, reflecting the continuous
and well-distributed nature of MOPGO solutions. Further-
more, all ten performance metrics results by all considered
are plotted in boxplot as illustrated in Figure 26 that demon-
strates the dominance of the suggested MOPGO algorithm
quantitatively over others.

To make an outlook of the proposed MOPGO efficiency,
each performance metric FNRT average value is computed
and analyzed. For SD, GD, CVG, CPF, DM, PD, SP, IGD, and
RT measure, MOPGO realizes a best 400, 206.25, 226.5625,
393.75, 478.125, 425, 146.875, 143.75, 287.5, and 137.5
value with respect to other algorithms. Moreover, MOPGO
finds the best-compromised solution for all the eight consid-
ered planar and spatial benchmarks. Thus, all these prospects
demonstrate the superiority of the proposed MOPGO algo-
rithm in solving multi-objective large and complex structural
optimization problems and can create harmony between the
local intensification and global diversification of search.
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TABLE 12. The best compromise solution (BCS) results of all algorithms.

Algorithms MOPGO MOPVS MOSMA MOSOS MOALO
10 — bar truss problem

fweight 3653.518 7764.568 6470.473 8113.873 9433.749

f comptiance 138077.3 62904.17 75972.26 60179.1 53160.87
25 — bar truss problem

fweight 2346.643 4569.145 4299.293 4458.512 5020.84

f compliance 35377.12 17574.4 18694.87 17916.99 16161.94
37 — bar truss problem

fweight 1180.289 2401.176 2232.516 2429.324 2572.644

f compliance 18411.19 8957.591 9534.427 8776.521 8447.349
60 — bar truss problem

Fweight 1955.053 5127.511 4032.198 5100.266 4994.388

f comptiance 81300.43 27080.56 33917.8 26945.6 29013.76
72 — bar truss problem

Fweight 6687.743 11126.34 8744.188 11845.38 11705.13

f comptiance 65199.19 36520.59 46750.3 33917.8 35036.05
120 — bar truss problem

fweight 20453.26 46565.56 41994.43 47102.66 53635.9

f compliance 1447942 633309.9 700154.4 623544.1 550986.3
200 — bar truss problem

fweighe 24956.83 45246.9 40631.44 44493.47 43150.95

f comptiance 70681.12 35508.79 37742.5 37242.01 35558.17
942 — bar truss problem

Fweight 6867423 8362877 9486430 7554179 7225323

f comptiance 2296479 1740965 1316513 1951677 1498586

VI. CONCLUSION

The framework and development of a new MOPGO
algorithm for multi-objective truss-bar design problems
are discussed in this paper. The MOPGO algorithm com-
bines the three primary phases of PGO, namely excitation,
de-excitation, and ionization, with plasma generation to sup-
port the search for the global best solution. For performance
measure, eight challenging multi-objective structure layout
optimization problems (i.e., 10-bar, 25-bar, 37-bar, 60-bar,
72-bar, 120-bar, 200-bar, and 942-bar) are tested related to
various constraints with distinct design variables to adjust
for the practicality of examination. The results obtained by
the proposed MOPGO are compared with four well-known
algorithms under the same input parameters. For all eight
design problems, ten performance metrics (HV, GD, CVG,
CPF, DM, PD, SP, SD, IGD, and RT) are used to assess the
enhancement and diversifying of a non-dominated solutionl
set. The analysis and discussions show that the MOPGO algo-
rithm has a significant advantage over MOPVS, MOSMA,
MOSOS, and MOALO in terms of coverage, convergence,
and solution diversity. Furthermore, the proposed algorithm
is rated first for all design problems based on the average
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FNRT values. The analysis shows that MOPGO is capable of
successfully solving large real-world optimization problems.
Therefore, it is concluded that the MOPGO algorithm can
solve problems involving a higher-dimensional optimization
process.

In future, the researchers in various fields can utilize the
proposed MOPGO algorithm to solve multi-modal and non-
linear functional demanding technical challenges with several
competing goals and assess the results. Furthermore, multiple
comparative analyses with other well-known optimizers may
be carried out to find the best optimizer for a specific design
problem.
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APPENDIX

The “sorting by fitness” concept in MOPGO has been
explained with one simple multi-objective benchmark func-
tion. The main aim of this appendix is to help the researchers
in other fields to use in their field of research. The
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TABLE 13. Initial population solution.

TABLE 15. Sorting by second objective fitness.

Initial population, P; Offspring population (PGO), O: Front 2 Sorting in
Solu Solu Solution  x; X2 fi f fi 1 e
on ¥ ¥ i S Gy @ X i S 1 031 089 031 610 Third Second  0.63
1 031 0.8 03 6.1 021 02 02 59 3 022 056 022 7.09 First Fourth Infinite
. 9 1 0 a . 4 1 0 b 0.79 2.14 079 397 Fourth First Infinite
1.9 04 67 21 07 39 d 027 0.87 027 693 Second Third 0.12
2 0.43 5 3 9 b 0.79 4 9 b
05 02 7.0 23 05 65
3 0.22 6 5 9 c 0.51 5 1 1 . . .
36 05 78 08 02 69 I, = {b, 1, d, 3}. Thus, Table 15 lists the solution sorting
4059 7 5 s d 027 7T a A,
of second objective fitness.
14 06 3.6 1.6 05 45 . . .
5 066 6 5 e 058 75 3 5 Step 4: A sorting according to the descending order of
6 083 25 08 42 ¢ 004 10 02 85 these CD values yields the sorted set {3, b, 1, d}. Then, choose
i 1 3 3 i 5 4 4 the first three solutions. The new population is P; + 1 = {5,
a,e,3,b, 1}.
TABLE 14. Sorting by first objective fitness. Step 5: The offspring population Q; + 1 must be created
next by using this parent population P; + 1 = {5, a, e, 3, b,
Front 2 Sorting in CD 1}. This is a complete one generation of MOPGO.
Solution X1 X2 fi J 2 fi f
1 031 089 031 6.10 Third Second 0.63
3 022 056 022 7.09 First Fourth Infinite REFERENCES
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Table 13 lists the initial solutions generated by the
population.

The following are steps in generating the solutions based
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