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ABSTRACT Driving at night with traditional headlamps poses significant threats, with many accidents
occurring during the night because of temporary blindness caused by the headlights of the oncoming traffic.
When in high beam, the headlights cause temporary visual impairment of human eyes called the Troxler
effect. While it reduces the time to react, it also leads to decreased visibility which contributes to most
mishaps that occur at night. Customarily the headlight adjustments are controlled manually where poor
driving skills or error in judgment can have catastrophic effects. Accidents also occur due to poor lighting
conditions as the current regular headlamp configurations do not illuminate the roads precisely, especially
during curves and on unpredictable terrains. Hence, there is a need for adaptive headlamps in automobiles
that can prevent Troxler’s effect on the drivers of the opposite vehicles while not compromising the road’s
illumination for the driver on-board. This paper reviews research papers and patents to understand various
methodologies used in implementing adaptive headlamps and explore the scope for future work in this area
of research. This paper also reviews vehicle detection algorithms and various vehicle mathematical models
for headlamp control based on steering angles.

INDEX TERMS Adaptive frontlight systems (AFS), adaptive headlamps, geometric path tracking, headlight

sight distance, HOG, kinematics model, SIFT, SPP-NET, SURF, Troxler’s effect, YOLO.

I. INTRODUCTION

Automotive Electronics has acquired a distinction as it does
not just improve auto’s comfort; it also helps ensure safety.
Statistics show that accidents at night are more pronounced
than those in the daytime, although the traffic volume during
the night is fundamentally lower than the former [1], [2].
In India, nearly a third of crashes occur during the night
when visibility is poor, and found the National Institute of
Mental Health & Neuro Sciences [3]. These accidents may
be attributed to lighting conditions on-road, lack of proper
illumination by the headlamp, or even Troxler’s effect. The
headlamps in most of the vehicles today are controlled manu-
ally, with a large percentage of drivers switching not between
high and low beam which often results in accidents when the
illuminated light causes momentary blindness in the driver
advancing in the opposite direction, or reflections from the
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mirrors in case if the other vehicle is ahead. This is called
the Troxler’s effect. The chances of havoc due to these are
further pronounced if the pathway is a curve or uphill. Also,
the typical low beam frameworks do not brighten the cor-
rect way on bent roads, resulting in an increased number
of accidents involving pedestrians [4]. Hence, it becomes
predominantly essential to have an advanced framework that
could effectively switch between high and low beams and
effectively illuminate the pathway. The point is to enhance
perceivability for drivers, thus accomplish a noteworthy
increment in security and driving experience by lighting the
street ahead in the night at the corner. The review aims
to determine the scope for developing products to prevent
accidents at night due to high beams and hence contribute
to society by saving lives and developing technological
solutions that is less expensive and affordable. The paper
outlines the developments in the intelligent headlamps in
section II and reviews various approaches in object detection
and tracking in section III and the mathematical models
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of vehicles for headlamp control based on steering angle
in section IV.

Il. ADAPTIVE FRONTLIGHT SYSTEMS IN VEHICLES

An automatic front light systems framework ensures better
visibility to drivers by carrying the beam projections as the
vehicle traverses [5]. As shown in Figure 1, using an AFS
system, the beam lobes of the headlamp are varied according
to the side where the vehicle takes a turn to improve the
drivers’ perceivability of the road and avoid accidents involv-
ing pedestrians or other objects. This framework is a simple
system that controls the headlamp divergence using a stepper
motor.

without AFS

FIGURE 1. Beam projections in a vehicle with AFS and other without AFS
system [5].

The team of Dahou et al. [5] further developed an AFS on
FPGA Board using Pulse Width Modulation Technique and
aimed at aiding both the onboard driver and the oncoming
driver as the safety of the latter is as crucial as that of the
former. The team designed a parabolic lighting system where
four LED lamps coordinate to illuminate the road, as shown
in Figure 2. An HB(L/R)- High Beam (Left/Right), and
LB(L/R)- Low beam (Left/Right), LBM (Low beam Middle),
and LB(R/L)- Low beam (Right/Left). The HB and LBM
lamps are placed parallel to the roll axis, while LBL & LBR,
in the case of the left headlamp, are placed at 10 degrees and
20 degrees to project the beam side lobes.

The combined trajectory of light beams projected from
each of these lamps is changed based on the input from the
steering wheel, and the zero state beam projection as shown
in Figure 3 is obtained. The HB lamp projects high-intensity
light on the trajectory path while the PWM Modulator con-
trols the projection of the LB lamps by the ON/OFF method
based on the vehicle motion. The PWM technique controls
the frequency and the electric power given to the stepper
motor and controls the electrical power applied to the lamps
of the car’s lighting parabola.

The PWM circuit adjusts the brightness of the low-beam
lamps according to the type of state it receives. The work
caters to most test cases with the bending angles in the range
of 0 degrees to 45 degrees tested, and the results are found
effective. However, the system’s latency, i.e., the response
time for the system to adjust to the changing driving con-
dition, is to be discussed and is critical for an automobile
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FIGURE 2. LED arrangement in the parabolic AFS design [5].
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FIGURE 3. The combine trajectory in zero state [5].

FIGURE 4. The parabolic headlamp illumination in zero state state [6].

application. While this system contributes to improving the
onboard driver’s visibility, it takes no measure to aid the driver
in the on-coming vehicles, which is essential.

Cesar, D. S., & Castro, M. [6] developed headlamp
swiveling algorithms based on the geometry of the high-
way to decide on the HSD(Headlight Sight Distance) its
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FIGURE 5. Swindeling headlamp concept of relative angle with respect to
driver & headlamp [6].

performance was studied as shown in Figure 5. To assess
the HSD, the headlamp beam is adjusted according to the
headlamp position of the vehicle relative to that of the driver,
and the geometric equation for the position of the headlamp
was deduced.

FIGURE 6. Arc projection used in the SGPSA algorithm [6].

Based on the mathematical equation derived from
Figure 6, the Steering-Governed Predictive Swiveling Algo-
rithm (SGPSA) HSD was developed and simulated on
MATLAB for various test cases. The outcomes demonstrated
that the swiveling headlights essentially increase sight dis-
tance. It tends to be presumed that the algorithm offers
potential increments in HSD based on the steering angle.

The design of the arc is of great importance because they
provide a proper transition between alignments of different
curvatures from the standpoint of driving comfort, but they
do not perform adequately enough in the event of sudden
curvature changes ahead of the vehicle. Also, the system
is not calibrated to meet the highway standard, which is
crucial. Finally, in [6], system performance in varying speed
conditions which is predominantly essential is not conducted.

The Hardware-in-loop vehicle model [7] uses a single-
track non-linear model with a simple engine and produces
for varying steering angle and throttle inputs, different yaw
rate, and velocity. The model has a vehicle simulator and
road model simulator that provides different input cases to
the system and the Adaptive Headlamp System. The HIL
model provides results that correlate well with the chang-
ing trajectory of the vehicle. The controller ascertains the
necessary angles precisely for the actuators and the step
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FIGURE 7. The closed loop preview control model [8].

motor controllers provide smooth passes of the front light
angles instead of discrete or abrupt changes. Consequently,
any uncontrolled behavior that could cause a frenzy response
or disabling driving habits is forestalled. Additionally, any
uncomfortable illumination for other drivers is avoided. The
framework responds with different angles of the steering
wheel input at varying speeds. While the model gives promis-
ing results, it needs to be tested extensively on a wide range
of test cases, and the model needs optimization on size and
power for real-time implementation.

The bending mode control was proposed based on pre-
view control to address the issue with lag in the adaptive
headlights [8]. In this approach, the mathematical relations
governing the safe braking distance, steering: Wheel angle,
and the vehicle’s turn radius were deduced, and the simulation
platform was developed as shown in Figure 7. The model is
better in terms of the response time when compared to that
with the traditional servo-controlled smart headlamps.

On comparing the response time of servo-controlled and
Preview control model at a speed of 40 km/hr, the response
time of the latter was found to be 0.4s faster than the former,
and it also showed better response to change in driving angles.
The prediction model has shown acceptable results at medium
driving speeds. However, efficiency at higher speeds has to be
further explored.

Class | Functions Beam pattern

2
L J

&> Basic or Country passing beam

v Urban passing m
E Highway passing m
W | Wet-road passing m

FIGURE 8. The beam pattern produced by the system [10].

Lee et al. [9] designed an adaptive headlamp system to
work automatically with the four classes of operation as
defined by the United Nations Economic Commission for
Europe regulation (ECE324-R123). The developed model
has a quad mode which has a neutral state/ country light
(Class C), urban light (Class V), highway light (Class E),
and adverse weather light (Class W), as depicted in Figure 8.
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Using the on/off of the LED array, the team designed the
optics, which produces these modes through the cutoff and
spread module, where the cutoff module lights the narrow
central area with high intensity, and the widespread beam
of low intensity through the spreading module. These two
optics modules combine to form the four beam patterns using
a simple on/off modulation of multi-array LEDs. The device
switches to one of the four modes based on the vehicle’s
speed, exploiting the fact of the speed limit in each of these
driving modes. However, speed cannot be the only feature to
decide on the mode of driving. Hence an intelligent switching
mode is predominantly essential. Also, manual shift to these
modes would be cumbersome for the driver and would deter
the actual need for this system.

Power
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FIGURE 9. The beam pattern produced by the system [10].

A Laser-based approach was  proposed by
Kloppenburg et al. in [10] by mixing colored light of two
diodes and combining three or more diodes, adaptable color
symbol projection, and white light generation was possible
using the setup shown in Figure 9. Quality color rendering is
crucial for the proper illumination of the objects.

Also, the work involved generating a long wavelength UV
or blue signal from a short wavelength using Phosphor. The
emitted light of the blue diodes was mixed with converted
yellow light to generate White light. The laser diodes emit a
small band around the peak and hence are monochromatic.

This is suitable for projection, whereas for illumination
it is the Color-rendering-index is essential to cater to the
ECE regulations for which a minimum amount of red light
(610 nm < A < 780 nm) is used with at least one of the
diode emitting this required range, and the arrangement of
the required arrangement angles was presented as shown
in Table 1.

The work does significantly solve the problems associated
with high beams, but generating a specific color of light
using a combination of laser diodes does come with inherent
challenges since they have to be precisely aligned, as shown
in Figure 10. Since the lasers are used at a constant current,
the output power rises above the threshold, below which the
emission is negligible and above being linear.

It is the diode temperature that rules this threshold, and it is
not easy to maintain the temperature in an automotive appli-
cation. Hence generating the exact color adjustment using a
specific color combination poses an immense challenge when
implemented in real-time application.
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TABLE 1. Diode characteristics in the scanning unit [10].

Diode Color Red Green Blue

Optical outputpower ~ 0.5W 0.15W 1.6W

Emission wavelength 638 +6nm  520+10nm 450+ 10nm
Beam divergence 36 23 23

(IFMHW)

Beam divergence 6 7 7

(IIFMHW)

Polarization P S p

FIGURE 10. Optical scanning system setup [10].

A responsive visual framework was proposed in [11] with
very low latency to detect, respond, and adjust rapidly to any
climate while moving at speeds even as high as the highway
limits. Anti-glare high beams, improved driver perceivabil-
ity during low visibility, expanded differentiation of lanes,
markings, sidewalks, and early visual warnings of deterrents
are implemented. The framework works on a three-stage
pipeline: Capture, Process, and Transfer. Capture hints at the
camera exposure, while the Process involves image analysis
and the transfer, the transfer of data between camera & com-
puter and the computer to the headlamp adjustment control
module.

Frame # Stage 1 Stage 2 Stage 3

ke 05 —vw 05sfa— 03 —re 07 o LD g
Frame 1 TX | Process ‘ TX | Humination
Frame 2 Capture 1 TX | Process ] TX | Iumination
Frame 3 Capture | TX | Frocess | TX | Hlumination ‘
Frame 4 Capture | TX | Process | TX |
Time {ms) 05 10 13 20 3.0 4.0

|~— Latency —ol

FIGURE 11. The timing diagram of the three stage adaptive system [11].

The architecture claims to have latency as low as lms,
with 63% of times the reaction time being within the peak
of two standard deviations, as shown in Figure 11. However,
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FIGURE 12. The headlamp experimental setup on a vehicle [11].

the statistics are based on only six trials that need to be
validated with ample numbers of trials, and it was tested in an
experimental setup and not real-life cases that may differ from
the projected results. The prototype, as shown in Figure 12,
greatly needs optimization in terms of size and power.

For years, the automotive industry has been leading the
development of adaptive headlamps for better illumination
of the roads and improving the driving experience. A few
industry leaders like Ford Corporations, Hella, and Nissan
Corporations were at the forefront of this area. This section
would discuss a few patents in this field of research.

FIGURE 13. Beam patterns for projections in the ford AFS [14].

A team from Ford Global Tech has developed an AFS with
Dynamic LED headlights depicted in Figure 13, which has
an electronic driving light framework with an illumination
source, a projection lens, combined with a digital micro-
mirror [13]-[15]. The lighting framework, which received
a Mexico patent [12], additionally incorporates a camera.
The controller is designed to decide on an objective parking
spot and start the electronic adaptive driving light to outline
its limit ceaselessly. A helpful night-driving guide, the Auto
High Beam briefly dips the headlights when it identifies
approaching traffic or a vehicle ahead, halting Troxler’s effect
on other drivers. Later, the system naturally returns to the
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FIGURE 14. The beam projections across a curve in the ford AFS [14].

high beam, giving the greatest perceivability, as shown in
Figure 14. Adaptive Lighting with Ford Dynamic LED head-
lights has LED arrangement that creates an exact light pat-
tern, and their strongly characteristic light gives exceptional
illumination.

L]
NA— /
FIGURE 15. The nissan motor corporation AFS representation [16].

Curve Crossroads

FIGURE 16. The nissan motor corporation AFS representation [16].

When driving over a bend, AFS will change the beam
lobes to change the pattern of lighting to make up for the
change in trajectory to help improve night perceivability,
which received a European patent [16]. At road junctions,
as shown in Figure 15, AFS will illuminate the direction
to which the vehicle would take a turn and aid the driver
immensely.

Teams from Nissan Global developed an AFS that natu-
rally turns on low beam as per vehicle speed and steer to give
better perceivability, as depicted in Figure 16.

In addition, companies like Hella, Valeo, Toyota Corpo-
rations, BMW, and Mercedes Benz have developed their
company-specific models and have patented a few. A com-
parison of the pricing of a few adaptive headlamps is
depicted in figure 17 [17]-[19]. Porsche Dynamic Light
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System (PDLS), Chevrolet Intellibeam, Genesis Adaptive
Cornering System (ACS), Mazda Adaptive LED Headlights
(ALH), Ford Auto High-Beam Headlamps, Mercedes-Benz
Intelligent Light System, Subaru: Steering Responsive Head-
lights, Lexus Adaptive Front Lighting System, Volkswagen
Dynamic Cornering Light, and Lincoln Adaptive Pixel
LED Lighting are the market competitors in the adaptive
headlamps.

2500

Cost Comparision
(Price 1n USD) 2200

BMW Adaptive-  Volvo XC60-
Advanced Premium

BMW Porsche Cayenne  Volvo XC40 Volvo XC60-
dapti i Bi-X Advanced

FIGURE 17. Prices of advanced headlamp system from various companies
in US dollars [17]-[19].

As depicted in Figure 17, the cost of these products needs
attention from researchers who must work on developing
low-cost solutions. Say, an automotive market like India,
where primarily mid-range cars are on the road the highest,
adding a feature this expensive would be a challenge that
many manufacturers would not take. The paper reviewed
the works carried out in the design and development of
adaptive headlamps, be it mechanical-based control systems,
camera-based systems, and a few sensor-based systems mod-
eled mathematically. Table 2 compares different systems in
terms of their design, significant work, and the possibility of
extended work.

Ill. VEHICLE DETECTION APPROACHES

The design of adaptive headlamps necessitates target detec-
tion and tracking to control the beam lobes effectively. The
detection process identifies the object in the frame, and
the tracking could be performed by repeatedly detecting the
object in each frame. However, this is not preferred as it is
a computational overhead in terms of speed and efficiency.
Hence target tracking algorithms that use the data like size,
shape, direction from the previous frame are used to antici-
pate the position in successive frames. This does not require a
huge search in the frame, unlike the detection, hence improv-
ing response time. When target detection and tracking are
performed simultaneously, the possibility of detection failure
cannot be ruled out as it depends on the object features
extensively. However, a tracking algorithm can still predict
the next position based on speed and vehicle position from the
previous frame. This section reviews various approaches used
in object identification techniques suitable for the on-road
applications as depicted in Figure 18 and classifiers for detec-
tion shown in Figure 19.
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TABLE 2. Comparison of the different adaptive headlamp systems.

System Methodology Observations
Parabolic lamp
design with four o The work cqters to
lamps in each test cases with )
Adaptive headlamp that are bendingangles in the
headlamps placed strategically at range of 0 degrees to
usingPWM  certain angles to 45 degrees
onFPGA[6] producedifferent effectively.
beam lobesin e Latency ofthe
responseto the system, not discussed
steering angle
e Steeringangle and
swiveling headlamps
Swiveling MATLAB based positioning
headlamps Steering-Governed developedandare
based Predictive Swiveling apt for the smooth
highway Algorithm: curvy road
geometric Mathematical e Response to sudden
design [7] modeling curvaturechanges to
be addressed and
Speed Vs
performance study to
be conducted
e Theangle of the
headlights changes
dependingon the
The non-linear single steering wheel input,
track model and a vehicle speed,and
simple engine vehicle's yawrate in
provide theyaw rate the lateral direction.
Hardware- and the velocity for
In-L. different steering e The controller
n-1.00p 1 d throttle calculates the
Simulation angies an . .
model [8] inputs. Hardware-in- required anglgs for
loop Simulator the actuators in an
creates a vehicle-road accurate manner
model as well as the
adaptive headlamp e Tested on limited
system road conditions anda
generic model. Real-
time response not
attributed.
Preview The simulation model ® Response time at 40
control based has deduced Km/hr found to be
bending geometrical relations faster by 0.4s when
mode control  amongsafety braking compared to servo-
system [9] distance, and therate controlled systems
of steering-wheel
angle & turning e Found efficientat
radius of thevehicle medium speeds, but
and a mathematical the response in
model is developed higher speedrange
to control the needs to be evaluated
illumination
Adaptive Quad Mode: o Shifts to one of these
headlamps Country, Urban, modes based on
for UN Highway, Wetroad speed
economic
Commission  Uses Cut-off (for e Suitable for places
Europe narrow central area) with stringent speed
Regulation & Spread Module( for regulation
[10] widespread) enforcement
e LowLatency: 1-2.5
The spatial light ms
Programmab mgdulatqr usesa o Needs
le adaptive glgl?al rr;llcrg-mmor miniaturization
Headlight evice that detects

vehicles and objects
to the beams usinga
beam splitter.

Compensation for
effect due to vehicle
vibration and heat to
be provided

(1]
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TABLE 2. (Continued.) Comparison of the different adaptive headlamp
systems.

The MEMS system

controls white light e Needs moreefficient
Optical luminanceby diodes, and diode
scanning generating it through heating an issue
based high- R,G,and B
resolution photodiodes, which e Performance at dawn
headlamps are focussed usinga or late eveningnot
[12] lens that diverges the satisfactory

individual colors as

needed.

e Correlations between
lamp and wheel tum
are found to begood.
Identifies the object
and beams less light on

The electronic the objects to make an
Ford Global  drivinglight intensity variationand
Tech AFS .frame'woﬂ( hasan alert the driver. This
with 111um1ngt10nsoume, a reduced intensity also
Dynamic projectionlens, reduces Troxler's effect

LED combined with a on the subject if the
headlights digital micro-mirror, object is alivingbeing
13 and has a camera for
[13] object detection using
image processing

e High processing
capability makes it not
viable for smaller
vehicles. The cost
factor also hinders its
use in mid and range
vehicles

Turns onlow beam as
per vehicle speed and
steer to give better
perceivability

Atroad junctions, AFS
will illuminate the
direction to which the
vehicle would take a
turn and reduces
accidents due to low
illumination

Limited features of
beam modification. No
detection of oncoming
traffic or adjustment

Beam adjustment
Nissan accordingto steering
Global AFS  angle and direction
[16] indicators and
mathematicalmodel
is developed

Scale-Invariant

Feature Extraction

Feature Speeded-Up
Extraction Techniques Robust Features

L— Histogram of Gradients

» Region-based Convolutional
Neural Networks

Vehicle detection

< Region Proposal based
techniques

Deep Learning Model SPP-Net

L— Faster RCNN

— You Only Look Once

Regression-hased
'— direction iteration
Deep Learning Models

Single Shot Multi
—* Box Detector

FIGURE 18. Classification of the techniques for vehicle and on-road
object detection.

An object or vehicle detection technique involves defin-
ing the region of interest, extraction of features, and
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Support Vector Machine

Classifiers for

Object detection k-Nearest Neighbor

AdaBoost

FIGURE 19. Classifiers used for object detection.

classification. The detection of vehicles through video can
be through models based on appearance or motion [20].
While appearance model detection is based on the color,
size, or shape, the latter works on relative object comparisons
with the background. The former exploits prior knowledge
to section the foreground from the background. The detec-
tion of vehicles can be performed through traditional fea-
ture extractors like SIFT [21], SURF [22], HOG [23] and
classifiers like SVM, which are complex, time-consuming,
or through deep learning region-based models like R-CNN,
Fast R-CNN, or regression methods like YOLO, SSD. This
section reviews methods of feature extraction, classifiers, and
deep learning models for target detection.

Scale Invariant Feature Transform (SIFT) is an approach
used extensively in detecting objects like cars or bikes from
a video where recognition of the crucial features from a
frame is through segmentation. The feature points defined in
SIFT method show invariant to rotation of objects, changes
in the image greyscale, scaling, or even the illumination
conditions, making it ideal for object tracking in challenges
where the object changes often in pose or illumination [20].
This works predominantly well for planar than 3D objects.
Here the feature is compared with new images and the fea-
ture that matches well are found using Euclidean distance.
Then based on the match features, the probability of the
existence of an object is computed. Studies have shown that
descriptors based on SIFT perform better compared to other
contemporary descriptors and show robustness, high distinc-
tiveness [21] since they are region-based and are conducive
for matching features. A vital feature detector and descriptor
in computer vision extensively used for recognition, registra-
tion, and Classification of the image are Speeded Up Robust
Features(SURF) that uses integral images using the Hessian
approximation, increasing the speed of detection remarkably
compared to SIFT [22]. The choice of SURF or SIFT is
problem-dependent and is majorly attributed to the speed
parameter where SIFT is found to perform better in applica-
tions where the computational time can be compromised or is
not critical [23] and also hints that Gaussian derivative-based
SIFT descriptors are better than SURF descriptors.

Another feature descriptor used extensively for cate-
gorizing the objects is the Histogram of Gradients that
deeds the gradients of the image or the edge orienta-
tion to define the features [24]. Here the normalization
of parameters like gamma and color is performed in the
small images derived from the larger frame to improve
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efficiency. The detector window explores the original image
region-by-region to obtain the small image and scales it.
Primarily, HOG deploys an SVM classifier. This descrip-
tor has shown better performance than wavelets and has
shown significantly closer performance to SIFT when
gradient-based detection is performed using HOG and needs
local-contrast-normalization significantly and cannot use a
central-based scheme. The approach is distinct through its
computational efficiency, even in deterring illumination con-
ditions and object positioning.

While performing object detection, feature extraction is
followed by Classification, where the class of the object
in an image is envisioned, and there are distinct ways of
implementing classifiers. When models are fed with fea-
tures and the decisions are established around the decision
boundary, it is referred to as unsupervised, and if the model
processes the dataset exquisitely, then it is a supervised clas-
sifier. A supervised classifier that finds extensive application
in object detection from video, aspect ratio, and color-based
detection is a Support Vector Machine(SVM) [25]-[28].

The classifier finds a hyperplane that can distinguish
between two classes amongst the fed dataset. SVM then finds
the data points closest to this hyperplane called the support
vectors and calculates their distance from the separating line
called the margin. The larger the margin, the better is the
classifier. SVM’s are predominantly used for image classi-
fication and regression owing to their robustness to errors in
the model, their efficiency, and the need for limited features
for Classification. The increased efficiency is attributed to
the quadratic programming problems used in their develop-
ment and the data mapping to Hilbert space and suppressing
errors by selecting appropriate trading values and insensi-
tivity parameters [29]. The selection of a relevant kernel to
characterize the dataset and the run time for the large dataset
is a challenge.

K-Nearest Neighbor classifier is a simple non-parametric
algorithm that performs classification based on the training
sample positions with respect to their class [30], [31]. The
effective distance between the dataset and the training sample
is computed. The samples close to the threshold k value and
the class with the most inbound samples (majority voting
in the data record) are predicted to be the matching class.
In multi-dimensional cases, Euclidean distance is measured.
The classifier labels the objects, computes the metric of sim-
ilarity or the distance and the k value for adequate classifica-
tion. The classifier is ideal for classes that are multi-modal,
and the error could be approximated and easily predicted as
it is comparable to Bayes’s error but poses a computational
tradeoff as the dataset becomes larger. Generation of a robust
classifier from a group of weaker classifiers is performed in
the AdaBoost algorithm for object detection [32], [33]. Here
the weaker classifiers are adjusted by the algorithm at the end
of each learning cycle. While the ease of implementation dis-
tinct Adaboost from the other classifiers, it also exhibits faster
concurrence and needs no knowledge of the weak classifiers’
pre-existent state, and shows excellent performance.
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The classifier models rely on time-consuming datasets
training and hence ruled out for big datasets, which has led to
the development and rampant use of Machine learning mod-
els, especially for object detection in videos. Algorithms like
YOLO and SDD are regression single-stage models and use
CNN to classify R-CNN, Fast R-CNN, SPP-Net, and Faster
R-CNN are region-based two-stage processes where a target
box is created first and classification later. Region-based
Convolutional Neural Network (R-CNN) is an object detec-
tor that is region-based [34] with noticeable performance
improvement when compared with traditional models dis-
cussed earlier. The multi-stage algorithm proposes at least
2000 multiple regions through a selective search for each
image [35] and extracts features by cropping each proposed
region, and creates a 4096-dimensional feature set that is
highly robust. An SVM classifier predicts an object using this
feature set. While the algorithm prerequisites the images to be
of a fixed size, it may also lead to the generation of redun-
dant proposals, and the feature extraction and the training
are time-consuming. The need for having fixed image sizes
which is a hindrance, is overcome using the Spatial Pyramid
Pooling- Net(SPP-Net) [36]. It has a Spatial-Pyramid-Pool,
which aids the generation of the feature vector with no need
for uniform image sizing utilized by the SVM classifiers and
the bounding-box regressors. The algorithm shows higher
efficiency and shorter response time than R-CNN but is still
time-consuming as it is a multi-stage process and depends on
fully connected layers.

To improve the accuracy and also the operation speed,
Fast R-CNN [36], [37] uses a detector that estimates the
feature-length and determines the pooling region of inter-
est (also used in SPP-Net) that predicts the fixed feature
size that is fed to the fully connected classification and
bounding-box which the CNN uses for improved classifi-
cation. Fast R-CNN network layers are processed in a sin-
gle stage and are faster because convolution is performed
once per image while compared to the multiple proposed
regions in R-CNN. Though better than the earlier discussed
schemes, the algorithm remains slower due to the selective
image search that it performs. To improve this stated problem,
a Faster R-CNN [38] provides the convolution features of
the complete image and avoids selective search for proposing
the ROI through a distinct network. It uses a specialized
layer called the Region Proposal Network(RPN) that can
operate on images of different sizes and create the feature
vector, which is fed to the classifier and the regression layer.
Although the algorithm shows faster response, it does not
show great response in images with paramount shapes or even
scales.

Review of the region proposal-based algorithms does hint
at the scarce possibility of their implementation in real-time,
where time is the critical overhead, and hence regression
models that are less time consuming are preferred. You Only
Look Once [40] is the foremost one-stage model in this
genre that looks only at the region with a high probability of
having the object. Here, the image is divided into matrix cells,
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which is predetermined, and each of these cells is a proposal.
The improved model of Yolo, V2, and V3 [40]-[42] shows
improvement in accuracy and speed of detection and is used
extensively for object detection in videos [43]-[46] though
there are underlying issues of localization in this algorithm.
YOLO is faster than the region-based models, but accuracy
is not on par with the latter, especially in distinguishing
objects of smaller size and images with different aspect ratios.
The SSD algorithm [47], [48] strives to overcome the issues
of YOLO architecture. It achieves speeds comparable with
Faster R-CNN by performing region proposal and classifica-
tion in a single stage. from the feature map, SSD probes the
anchor boxes generated on different aspect ratios to output the
bounding spaces. It also fuses the predictions obtained from
different feature maps to deal with objects of various sizes.
SSD does no filtering, unlike CNN algorithms, and performs
faster detection compared to multi-stage algorithms with a
compromise on accuracy. SSD uses non-max suppression to
combine bounding boxes that are similar and effectively uses
hard negative mining to club these boxes, often created on
large numbers with no objects.

— Geometric Path Tracking
F— Pure Pursuit Model

Vehicle Models for

Path prediction — Kinematics Model

— Vector Pursuit Model

“— C(Clothoid Curve Model

FIGURE 20. Major vehicle models used for path prediction.

IV. VEHICLE MODELS FOR ADAPTIVE HEADLAMPS

Along with detecting oncoming vehicles and tracking, it is
predominantly essential to adjust the headlamps according to
the road curve. This involves developing mathematical mod-
eling of the vehicle, and this section discusses various vehicle
models, as shown in Figure 20. Vehicle modeling using geo-
metric path tracking is modeled using the vehicle position,
its dimension, look ahead of the trajectory, and the orientation
with no need for the parameters like velocity or other external
features [49]. Nevertheless, this model inherently comes with
the overhead of complexity in the algorithm for selecting the
look-ahead-distance, which when at a larger distance escapes
the corners of the path and directly ends at the new point
and leads to the oscillation at high speeds. The Kinematic
model exempts the need for considering internal/ external
forces but advents to use the position and acceleration of the
vehicle in relation to the coordinates (local and global). The
absolute model using the bicycle model considers the front
wheels that are steerable as the fixed coordinates with the
front axle as the origin [SO]-[53]. Various controllers were
developed [54], [55] to make the model apt for linear and
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rotational motion with relatively better stability. The extended
Kinematic model, unlike the former, also considers the tire
slip, coupling [56], coefficient of friction [57].

The pure pursuit model [58] where along with the look
ahead, the error between the goal of the direction in which
the vehicle is heading is determined by defining a circular arc
between the point at which the vehicle is at present with the
final destination defined by the look ahead. This model was
extensively reviewed [60]-[62] and has been found suitable
for an array of applications [59], but its use for adaptive
headlamp vehicle model design cannot be suggested due to
its dependency on look-ahead distance. The vector pursuit
exploits the coordinate system, which predicts the necessary
orientation for arriving at the endpoint, which could be used
in adaptive headlamps [63], but the computational overhead
restricts its use. The Clothoid Curve method gets away with
the arc and can operate in real-time and has improved and
reliable performance [64].

Similarly, the dynamic path tracking method also uses the
force acting due to ground and the tire contact, longitudi-
nal and the lateral forces that act on the wheel [49], [65].
While the vehicle models show promising results, con-
trollers to reduce error and cope with uncertainties are cru-
cial. Adaptive controllers based on Kinematic and dynamic
models [66]-[68], neural network [69], PID controller [70]
shows high stability, performance even at varying condi-
tions, but their development is intricate, convoluted, and com-
plex. The Model Predictive Controllers tend to optimize the
algorithms and hence reduce the cost overhead. The non-
linear vehicle-based MPC [71], extended kinematic-based
model [45] are the most prevalent models. Robust Con-
trollers [57], [72], [73] though highly complex and robust in
their design, can negate the unpredictable changes in dynam-
ically changing conditions.

V. DISCUSSIONS

The need for adaptive headlamps to improve driving condi-
tions and reduce the mishaps that occur at night due to high
beams cannot be undermined. Table 2 compares different
prototypes, products, and patents in the segment. The review
finds that though immense work has been carried out and still
in progress, these systems’ performance at varying speeds is
not stable, with most of these designed at a specific boundary
constraint of speeds. These models are also not extensively
tested at different driving road conditions, and their response
time is crucial. Advanced models with better performance
tend to add the computational overhead as the algorithms are
complex and become expensive.

The review described and compared various approaches
for object detection are summarized in Table 3. SIFT, SURF,
HoG are the traditional approaches and are predominantly
used for object detection. However, their use for object
detection in high-speed vehicle driving conditions is ruled
out since they require either good illumination or complex
processing. Region-based deep learning model RCNN is
time-consuming and creates redundancy, SPP-Net although
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TABLE 3. Comparison of the approaches for object detection.

Category Approach

Remarks

Scale Invariant
Feature
Transform [20]
[21]

o Suitable for detection in conditions
with changing poses and
illumination

e More pronounced performance for
planar objects than for 3Dand
better than contemporary
descriptors.

Displays robustness and is a highly
distinctiveregion-based feature
extractor

Traditional ~ Speeded Up

feature Robust Features
extraction  [22][23]
model

Uses Hessian approximation of
images

Apt for a system with quick
responserequirement

Histogram  of
Gradients [24]

Feature extraction is performed
using gradients ofthe image orthe
edge orientation

Efficiency improvement through
gamma and colornormalization in
the small images obtained from the
larger frame

Better performance compared to
Wavelet transforms and
comparable performance with
SIFT

Region-based
Region Convolutional
pr(il) osal Neural Network
baseddeep (2014)

learning
Models (341035]

Upto 2000 regions are generated
from each image, and create a
4096-dimensional featureset is
created

Fixed image size is required

Redundant proposals may be
generated

Feature extraction and training
costs time

SPP-Net(2015)
[36]

Can operate on varied image sizes

Better efficiency but depends on
fully connected layers hence time-
consuming

Faster RCNN
(2015)
[37-39]

Estimates the feature-length and
determines the pooling region of
interest to predict the fixed feature
size

Single-stage processing where the
selective searchis avoided to
improve speed and uses Region
Proposal Network instead for
generating featureset

Improved accuracy and reduced
operational speed compared to R-
CNN

Response to change in shapes and
scales needs improvement

Regression

-based

direction You Only Look
iteration Once(2016)
deep [40-43]
leaming

Models
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The image is divided intoa
predetermined number ofcell
matrices

Three versions available: Yolo, V2
and V3 with improved accuracy
and detection speed

Apt for real-time object detection
from videos

Faster response but accuracy not
on par with region proposal based
models, especially for detection of
small objects and images of varied
aspectratio

TABLE 3. (Continued.) Comparison of the approaches for object
detection.

e Speed of operation is similar to
Faster R-CNN since region

Single Shot proposal and classification is

MultiBox performedin a single step, but

Detector(2016) accuracy oflatter is more

[471[48] e Non-max suppressionand hard-
negative mining for combining
redundant bounding boxes

e The margin or distance of

datapoint distance from Support
Vector/ hyperplane is calculated.
Hyperplane canbe even multi-
dimensional

Support vector o Increasedefficiency dueto data

Machine [25- mappingto Hilbert space and

29] suppression of errors by selecting
appropriate values oftrading off
and insensitivity parameters

Choice of arelevant kernel for a
dataset and large run time for the
huge dataset is a challenge

Traditional
Classifiers

Non-parametric algorithm that
computes the distance between the
dataset and thetraining sample and
those samples which are closeto
the k value and the most inbound
class is used for match

K-Nearest
Neighbor o Euclidean distanceis used for
classifier multi-dimensional classification
[30][31] . .
o Suitable for multi-modal classes
and the error is comparable to
Bayes error
e Computational overheadis an
issue as the dataset grows
o Uses weak classifiers to create
strong classifiers
AdaBoost e The weaker algorithms are updated
Algorithm after every learning cycle
[32](33] o Needs no priorknowledge ofthe

preexisting(weak classes) and
shows improved performance in
terms of speed

efficient its dependency on layers costs time. Faster RCNN
copes with this, but the performance in changing object
shapes is not appreciable hence cannot be pronounced for
adaptive headlamp systems where the vehicle moves at vary-
ing speeds and objects are unpredictable and subject to
changes. Regression-based models, YOLO, and their ver-
sions show high performance and are apt for object detec-
tion in adaptive headlamps and could be exploited for this
application.

Table 4 summarizes the different vehicle models to predict
the vehicle movement and their feasibility for adaptive head-
lamps. The geometric model of the vehicle undermines the
external factors and the vehicle speed and acceleration, which
is a bottleneck for the models’ implementation in real-time at
varying speeds.
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TABLE 4. Comparison of the different vehicle models to predict the path
of travel.

Category Approach Remarks
. e Uses vehicle position, .
Geometric dimension, and look ) Challenglng when the
path ahead pointdata distance o the
tracking d endpoint is larger,
[49] * Does not consider which might lead to
external perturbations loss of comers
e Exploits theposition,
velocity as well as
acceleration ofthe e Complexityand
Kinematics vehicle with respect to increased
[50]-[57] the local and global computational time is
coordinates an overhead.
e Does notconsider
external perturbations
. e Notapt for adaptive
Pure _ o Inaddition to look headlamp vehicle
Pursuit ahead direction, error model as the look-
Model calculator using ahead dircction is an
[58]-[62] circular arc overhead
Vector e Uses coordinate :
pursuit system for predicting * }/? g)at dflce)lrr;ldzgtslive
Model[63] _thepath pdesign
e Efficientin real-time
Clothoid _ and cquld be l_lseq for
Cuorv eo ! e Uses Clothoid Curve adaptive applications
instead of the Arc e Complexityis high.
Model [64]
Hence the costand
increased latency.

The Kinematic model progresses ahead with the inclusion
of these features in the algorithm design but is highly com-
plex. The extended model further improves by considering
external perturbations, making the system more complex but
feasible for real-time applications. Since the model uses these
factors, the system becomes expensive as it necessitates the
need for precise sensors.

VI. CONCLUSION AND FUTURE SCOPE
The review highlights the need for advanced headlamps for
an automobile to ensure that driving is safer and more com-
fortable. Current research focus in this area is case-specific,
and most of the solutions cater only to a few test cases
and are not tailor-fit for varying speeds and road conditions.
Firstly, the products in the market work well in countries
where the lanes and lane markings are predictable and well
defined, which is not the case worldwide, and the system
needs to be intelligent to be accustomed to predict and control
the headlamps without the dependency on lane markings or
traffic signs. Universal implementation of these is still at an
early phase as the functionalities are limited. The solutions
to date are performing well in Urban limits and crossovers,
whereas cases of sudden turns, multiple crossover lanes need
to be addressed, and a significant region for future work.
Second, the correlation between speed and performance
of most of the systems is not studied well and are found
to be performing well in a particular range of speed.
This is crucial in the safety device design and opens
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opportunities for research work. Third, with most auto-
motive applications using IoT applications and embedded
with cameras, the potential of using artificial intelligence
and deep learning is immense and may result in more
dynamic and better responsive systems. Finally, researchers
need to develop cost-effective products as the current prod-
ucts fit advanced automobile due to the cost factor. This
opens opportunities for researchers to use technology and
develop affordable products and those that are to the reach of
everyone.
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