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ABSTRACT Using data from the MIT Physionet EEG database collected at the Children’s Hospital Boston,
we identify a method of detecting seizures in ten pediatric patients at least thirty seconds before seizure onset
by identifying significant preictal locations and their respective frequencies within the high gamma band
of 30 through 100 Hz. We analyze the potential predictive performance of event-related potential analysis
in this high gamma band, provide evidence that detection algorithms should take into account the varying
strength of a patient’s common frequency extremes, and provide evidence that patient-specific approaches to
machine learning algorithms may be more successful in the detection of pediatric seizures as they are more
difficult to detect than adult seizures. Using these results, machine learning detection algorithm performance
on pediatric patient data, which is prone to issues from limitations within the algorithms, may be significantly
improved by incorporating high gamma band signal processing at the locations identified by this process.

INDEX TERMS Biomedical engineering, biomedical signal processing, computational systems biology,
encephalography.

I. INTRODUCTION
A. BACKGROUND
Epileptic seizures, caused by excessive synchronization of
large neural groups, affect 1% of the population [1]. Of these
patients, 30% have seizures that are resistant to anti-epileptic
drugs [1], also known as intractable seizures. Current treat-
ment options available for intractable epilepsy include sur-
gical resection and neuromodulation techniques. However,
not all patients are appropriate candidates for surgical pro-
cedures, and neuromodulation has been observed to give
few patients freedom from seizures [1], [2]. Most studies
attempt to address the need for more specific detection
methods and little success has been made with pediatric
seizures [3]. In addition, most studies are limited to between
4 and 21 patients due to the difficulty of obtaining reliable
data sets for multiple patients [4], [5].

Analysis types used to evaluate EEG data can be either
statistical or algorithmic. For a better understanding of the
practical problems in this field, early studies were catego-
rized [4], [5] on seizure prediction and detection according to
methodological standards along with relevant characteristics
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(type of epilepsy and EEG, type of EEG analysis, number of
patients and seizures, amount of data analyzed, etc.). Signif-
icant electrical changes can be subtle and difficult to iden-
tify through observation of an electroencephalogram (EEG)
recording. To overcome these obstacles, various univariate
and multivariate statistical measures have been used for EEG
analysis including wavelet transforms, entropy measures,
phase correlation, and synchronization measures [2].

Despite the importance of information visualization in
modern data analysis, few papers exploring preictal analysis
extend their data analysis to include visualizations. By com-
bining power frequency analysis of preictal epochs with
visual analysis of preictal patterns to explore possibilities of
seizure detection, we are able to observe patterns in the data
without compromising data integrity [6].

Here we analyze the potential predictive performance of
event-related potential (ERP) analysis in the high gamma
band, provide evidence that detection algorithms should take
into account the varying strength of a patient’s common
frequency extremes (CFEs), as defined below, and provide
evidence that patient-specific approaches to machine learn-
ing algorithms may be more successful in seizure predic-
tion than patient-specific approaches [3]. We note that some
researchers contest the validity of gamma wave activity
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detected by scalp EEG due to the fact that the frequency band
of gamma waves overlaps the electromyographic frequency
band. As this study shows, the high gamma band is relevant
in pediatric seizure detection.

B. PRIOR STUDIES
Prior to 2002, studies commonly focused entirely on preictal
periods and did not include an evaluation of interictal control
recordings. In the early 2000’s, another group of studies
tackled the issue of specificity by comparing preictal changes
in dynamics to interictal control recordings. Initial controlled
studies defined groups of patients with preictal and interictal
control recordings and evaluated measures such as correla-
tion dimension, dynamical entrainment, accumulated signal
energy, simulated neuronal cell models and phase synchro-
nization were shown to be suitable for distinguishing inter-
ictal from preictal data. Around 2003, a number of studies
were published that challenged the reliability of correlation
dimension, dynamical entrainment, and accumulated signal
energy [7].

Seizure detection algorithms are prone to issues that
arise from limitations within the algorithms. For example,
in 2012 Dalton et al. [5] developed and studied a body sensor
network that monitors and detects epileptic seizures based on
statistics extracted from time-domain signals. These statistics
include the mean, variance, zero-crossing rate, entropy, and
auto-correlation with template signals. The sensitivity of the
proposed algorithm for a data set of 21 seizures with five
patients is found to be 91% with a specificity of 84% but
yielded a fairly high rate of 50 false positives.

In 2018, Zhou et al. [3] compared the performances
of time and frequency domain signals in the detection of
epileptic signals based on the intracranial Freiburg and the
pediatric MIT Physionet EEG database (CHB-MIT) [8] col-
lected at the Children’s Hospital Boston (CHB) used in this
study. Using time domain signals in the Freiburg database,
the average accuracies were 91.1, 83.8, and 85.1% in their
experiments, while the signal detection accuracies in the pedi-
atric CHB-MIT database were only 59.5, 62.3, and 47.9%,
respectively. This underscores similar results that effective
identification using time domain signals as input samples is
achieved for only some pediatric patients.

In 2019, Zhang et al. [9] used convolutional neural
networks (CNN) to distinguish between the preictal state
and the interictal state in the frequency range of 5 to
50 Hz. Their model showed performance with a sensitivity
of 92.2% and false prediction rate of 0.12/h, however
they augment the preictal trials by splitting each train-
ing EEG trial into three segments, and then generate new
artificial trials as a concatenation of segments coming from
diverse and randomly selected training trials of the preictal
state.

Machine learning methods such as CNN and support vec-
tor machine (SVM) cannot achieve high sensitivity and low
false prediction rate (FPR) simultaneously. The additional
signal identifiers found in this paper may not only be useful

in helping machine learning algorithms improving detection
accuracy while alleviating the use of artificial trials.

II. METHODS
A. STUDY-SPECIFIC FREQUENCY ANALYSIS
Frequency analysis of ictal and preictal EEG recordings have
been used and proven as an effective technique to analyze
preictal epochs [2]. Frequency analysis consists of breaking
down a time signal into its composing sinusoidal waves and
which allows for analysis of the main frequencies which
constitute the time signal. Event-related potential analysis
can be used to analyze time-locked electric potential patterns
immediately following a stimulus [10]. In this study, ERP
imaging is used to explore electric potential patterns preced-
ing the stimulus of seizure onset.

Previous frequency analysis studies have proposed a cor-
relation between high frequency spectral activity and seizure
onset. However, there is no agreement across various studies
for the definition of ‘‘high frequency’’ [11]–[16]. Papers that
do identify high frequency oscillations (HFOs) as a feature
of preictal periods identify activity in broad frequency ranges
that vary from 40 to 140 Hz and 100 to 500 Hz [12], [14].
HFOs ranging between 80 and 500 Hz have been recorded
during interictal [17], [18], preictal [19] and ictal [20] periods.
These disparate ranges hinder comparison of studies as they
do not provide a concrete frequency range correlating with
seizure onset.

Here we focus on EEG frequency analysis in the band
commonly defined in the high gamma range between 30 and
100 Hz. This range covers the most common upper gamma
band interval used in EEG analysis and may help solidify
a concrete relationship between high frequencies and pre-
ictal activity. We note there is a debate on whether scalp
EEG information is appropriate as these recordings often
reveal spontaneous high frequency EEG components such as
sustained gamma and induced gamma, which increase with
visual, memory or sensorimotor tasks [21], [22]. It has long
been assumed that scalp EEG is heavily influenced by elec-
tromyogram activity and various methods attempt to remove
its influence have been devised as in the evoked response
methodology [23].

B. DATA AND PATIENT INFORMATION
The MIT Physionet EEG database [24], collected at the
Children’s Hospital Boston, published continuous scalp EEG
recordings for 23 pediatric intractable seizure patients using
the International 10–20 montage system [8] using longitudi-
nal bipolar montages, i.e. every channel displays the voltage
measured at one electrode in reference to the voltage mea-
sured at another position [25]. The implications of analyzing
bipolar channels rather than unipolar channels are discussed
below. The Physionet database is a part of PhysioBank,
a large and growing archive of well-characterized digital
recordings of physiological signals and related data for use
by the biomedical research community.

Each individual patient data set contains between 9 and
42 hours continuous recording. In order to protect the privacy
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of the subjects, all protected health information in the original
files have been replacedwith bipolar signals. For the purposes
of this study, the 23 patients in the database were narrowed
down to a group of 10 patients which meet the following
selection criteria: 1) the patient had at least 5 ictal and 5 inter-
ictal EEGs recorded; 2) the patient recordings included all
recorded channel and bipolar montage locations; and 3) the
patient had relatively artifact-free EEG recordings [26]. The
10 selected patients (Patients 3, 5, 8, 10, 14, 16, 18, 20 and 23,
respectfully) included 8 females and 2 males ranging from
the ages of 3 to 18. All EEG recordings were sampled at
a frequency of 256 Hz with 16-bit resolution. Anti-seizure
medications had been withdrawn from the patients prior to
beginning of the EEG recordings.

For a given patient, the spectral character of seizures within
the EEG is similar from one seizure to the next provided
that the seizures originate from the same cerebral site(s). It is
important to distinguish this work from investigations using
intracranial EEGs or machine-learning to detect seizures.
Methods that process intracranial EEG rely on features that
cannot be observed within the scalp EEG because of the
spatial averaging effect of the dura and skull. Intracranial
EEG is immune to corruption by artifacts (e.g. scalp mus-
cle contractions) that can mask the onset of seizure activity
within the scalp EEG. Although this is the ideal method for
studying seizures, intracranial EEGs require invasive surgery.

For each patient, five ictal epochs, five 30-second preictal
epochs, and five random interictal epochs were extracted
from the patient’s EEG recordings for a total of 150 epochs
(15 per patient). Increasing epoch duration increases spectral
resolution. As in other studies, we define an ictal epoch as
a recording encompassing a full seizure with at least 6 to
10 seconds of length. Data from the ictal epoch were only
used to time-stamp the intervals and are not otherwise used
in the study. For this study, an interictal epoch is defined as a
randomly chosen, artifact-free 90-second period.

We note that epochs with significant artifacts were
excluded from the study and that any remaining artifacts
such as eyemovement, speech, chewing or tonguemovement,
pulse, moving, electrode ‘‘pop’’, etc. do not affect the results
of the study due to the statistical impossibility (< .01%) of
the same artefact occurring at the same time for each patient
over multiple EEGs as well as the consistency of the preictal
and ictal activity at each individual frequency over multiple
EEGs for each patient.

C. FEATURE EXTRACTION
The method for feature extraction, feature selection and
post-processing included spectral power computation and
spectral power ratio computation using EEGLAB [27] tool-
box for Matlab 9.7. The time-frequency analysis options
of EEGLAB allow calculation of event-related spectral per-
turbation which reflects the extent to which the power at
different frequencies in a signal is altered in relation to a
specific time point such as signal onset. Power spectral anal-
ysis, the foundation of frequency analysis [28], is used to

determine which gamma band frequencies contributed the
most power during patient seizure ‘‘electrical surges’’ relative
to their non-seizure periods. Power spectral density (PSD)
graphs the density of the power of a signal as a function of
frequency [26], [29]. Using PSD, estimates of each patient’s
ictal and interictal epochs were compared to assess which
gamma band frequencies contributed the most power during
the ictal periods.

Power spectral density calculations rely on the Fourier
transform since any function can be represented as a com-
bination of sinusoidal waves with various frequencies and
amplitudes. The Fourier transform of a time-domain func-
tion creates a frequency domain representation of the same
function. The frequency domain representation represents the
amplitudes of each frequency in the frequency spectrum that
must be added to obtain the original function. The discrete
Fourier transform is defined as the following:

x̂(t) =
∫
∞

−∞

x(t)e−2π itf dt

where x̂(t) is the Fourier transform of x(t). Given that t is
a function of microvolts over time, |x(t)|2 is a function of
the instantaneous power of the signal over time with unit
resistance. The following represents the average power of the
signal:

AvePower = lim
T→∞

1
T

∫ T

0
|x(t)|2 dt

where x(t) is the time length of the signal. According to
Parseval’s theorem, the integral of the square of a function
is equal to the integral of its Fourier transform:

AvePower = lim
T→∞

∫ T

0

∣∣x̂(f )∣∣2
T

df

where |x̂(f )|
2

T is the spectral density of x(t). PSD calculations
for each epoch were then computed using Welch’s method of
power spectral density estimation as Welch’s method usually
involves less computation than other PSD methods. Welch’s
method divides the time signal into successive blocks, form-
ing the periodogram for each block, and then averaging [30].
In window-based signal processing, the input signal, s(t) is
divided into input segments and the signal is processed seg-
ment by segment. Let M denote the lengths of each segment
and L denote the total number of segments. Let sl = s(n +
(l − 1)M/2) for n = 0, . . . ,M − 1 and l = 1, . . . ,L denote
the windowed signal in the l th segment. The main advantage
of the window-based signal processing is that the number of
observation points computed is reduced by a factor of M/2
as compared to sample-by-sample processing.

Each epoch is divided into 10 segments of the same size
with 50% overlap for each epoch. Each segment is then
windowed with a Hamming window.We use the discrete Fast
Fourier Transform (FFT) to create a modified periodogram
for each segment. The FFT requires a dataset that is 2N

elements long, i.e. 2, 4, 8, 16, 32, etc., so the transform uses
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the value of N that is closest to the signal length (nFFT). The
modified periodograms were averaged to obtain the power
spectral density estimate of the epoch [19, 22]. It should be
noted that if the input signal cannot be divided into an integer
number of components, the signal is truncated accordingly.

To compute the (absolute) spectral power in the frequency
bands, the PSD of the input signal is estimated. The PSD of
a signal, s(n) describes the distribution of the signal’s total
average power over frequency. For this paper, the spectral
power Pi of a signal in a frequency band is computed as
the logarithm of the sum of the PSD coefficients within
each frequency band. The spectral power for window-based
processing in the ith frequency band is computed as

Pi = log
∑

w∈Band(i)

PSDi(w)

for i = 1, . . . , 10 where P(l) is a time series whose l th

element represents the spectral power of the l th input signal
in the segment in Band i. This procedure is used to estimate
the PSD at each of the 18 EEG recording channels for each
patient during their ictal and interictal epochs. During the ictal
events, EEG activities are largely obscured by muscle and
movement artifacts which canmake it difficult to differentiate
a genuine seizure from a pseudo-seizure. Thus we use the
fact that presence of post-ictal flattening or slowing provides
evidence of a genuine seizure [31].

Preictal and interictal EEG patterns across patients vary
substantially. The preictal data segment preceding the seizure
onset can range from a few seconds to several hours long [32].
To determine the start of the ictal event, the rhythmic activity
associated with the onset of a seizure is often composed
of multiple frequency components. Thus to determine the
onset of a seizure, multiple spectral components were con-
sidered. The spectral content of a seizure epoch may overlap
the dominant frequency of an epoch of non-seizure activity.
As the presence or absence of other spectral components
distinguishes them, expert visual marking combined with
EEGLAB’s event detector denoted the start of each ictal
event. Although the current the gold standard for seizure onset
is expert visual marking, the LOO (Leave-One-Patient-Out)
or First Seizures models of Gomez et al [33] may supersede
this standard.

Since an EEG cannot be segmented into short physiolog-
ically relevant units, two second long epochs are commonly
used. We extract the spectral structure of a sliding window
of length L = 2 seconds by passing it through a filter bank
composed of M = 8 filters, and then measuring the energy
falling within the passband of each filter. Although increasing
the number of filters does not greatly impact how quickly a
detector recognizes the onset of a seizure, the increase helps
better discriminate between seizure and non-seizure states.

To automatically capture the spectral and spatial infor-
mation contained within each two second EEG epoch at
time T = t , we concatenate the M = 8 spectral energy
extracted from each of N = 18 EEG channels. This process
forms a feature vector Xt with M × N = 144 elements.

FIGURE 1. Patient 1 (11-year old female). One of five 30-second preictal
epoch of the average-squared power spectral densities (PSDs). Eighteen
channel frequencies measured before a seizure with upper 10% and
upper 20% log-power spectral densities by channel and frequency
denoted. Excluded values are represented by sharp valleys at 60 and
76 Hz.

Electroencephalographers require an EEG abnormality to
persist and evolve for a minimum of 6 to 10 seconds before
considering the abnormality a seizure or a component of a
seizure. Taking this into account, we form a stacked feature
vector from XT that results from concatenating the feature
vectors from 3 contiguous, but non-overlapping, 2 second
epochs so that the classifier considers the evolution of feature
vectors over a period of 6 seconds.

For each patient, the average difference between the PSD
of each ictal epoch and the PSDs of the five interictal epochs
is calculated separately for each of the 18 EEG recording
channels. Five graphs were created for each patient depicting
the squared magnitudes of their average log-power differ-
ences. For each of the five graphs, the top 20% common fre-
quency extremes of their average log-power squared values
over all frequencies and bipolar locations of each patient’s
individual preictal episode over the respective preictal event
were recorded (Figures 1 and 2).

The resulting common extreme frequency values and their
respective ratio in the upper 20% threshold were recorded
for each patient (Figure 3). The resultant extrema signified
gamma band frequencies that contributed to abnormally high
power during most of a patient’s ictal epochs is recorded.
These common extreme frequency values for each patient are
referred to as CFEs and the bipolar channel location number
of the common extremes are referred to as BCNs. We note
that main drawback of using spectral powers is the high
false positive ratio (FPR) as the PSD increases often in the
interictal periods as well. False positives were not observed
in the data in this study as the probability of a false positive
over five separate epochs at the same frequency is statistically
improbable (<.01%).

We note that a band-pass filter is used to eliminate 60 Hz
and 76 Hz activity as power line noise occurs at 60 Hz and
since the third harmonic of 60 Hz which is 180Hz can be
aliased to 76 Hz when a sampling rate of 256Hz is used. Thus
data between the frequencies of 59 to 61 Hz and 75 to 77 Hz
are, as such, dismissed. We also note that Figures 1 and 2
show a small dip at 44 Hz which is most likely the fifth
harmonic of 300 Hz which is aliased to 44 Hz. Also, the third
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FIGURE 2. Patient 8 (18-year old female). Four of five thirty-second preictal epochs of average-squared power spectral densities. Eighteen
channels measured 30 seconds before a seizure with upper 10% and upper 20% log-power spectral densities by channel and frequency
denoted. Note that the preictal Log Power scale shifts for each epoch. Excluded values are represented by sharp valleys at 60 and 76 Hz.

harmonic of 20 Hz can also be seen when sampling at 200 Hz
aliasing 180 Hz to 20 Hz. We note that odd harmonics are
more often seen than even harmonics in EEG studies.

III. RESULTS
Nine of the 10 patients were found to have CFEs in the high
gamma band range between 70 Hz and 100 Hz (Table 1,
Figure 3). The only frequency outlier is Patient 3 who had
CFEs of 39 Hz and 54 Hz. Since each patient had focal
seizures in different brain areas, there is no significant overlap
with the BCNs (bipolar channel number) for each patient as
expected [7]. Eight of the nine relevant patients were found
to have significantly denser activity between ±[5,10] µV at
the 70 Hz to 100 Hz CFEs in preictal epochs in comparison to
their interictal epochs (Figures 4, 5, and 6). This indicates that
the buildup of 70 to 100 Hz activity is a distinguishing feature
of preictal epochs. Patient 4 is the only patient of the nine
patients to have no significant difference between preictal and
interictal epoch activity at its high gamma CFEs.

The data frequency outlier, Patient 3, did not show the
same pattern differences as other patients between preictal
and interictal epochs at 39 Hz and 54 Hz CFEs (Figure 6).

TABLE 1. Patient common frequency extremes (CFEs) with their
respective channel and bipolar channel location number (BCN).

However, when ERP images were created of Patient 3’s preic-
tal and interictal epochs at random frequencies between 70Hz
and 100Hz, the patient’s data followed the pattern as the other
patients. In other words, all of the patient’s preictal epochs
at frequencies between 70 and 100 Hz and at the respec-
tive BCNs corresponding with the patient’s actual CFEs had
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FIGURE 3. Ratio (%) of common frequency extremes (CFEs) of all
10 patients above 20% cutoff. Note: Twenty-eight of the 30 CFEs (93%) lie
in the high gamma band between 70 and 100Hz.

FIGURE 4. Patient 10 (6-year old female). One of five preictal (top) and
interictal (bottom) ERP images at bipolar montage channel 1 (FP1-F7) at
94Hz over 30-second intervals.

significantly denser activity between±[5,10]µV in compari-
son to the interictal epochs. Thus despite Patient 3’s lowCFEs
values (39 and 54Hz), their activity within 70 and 100 Hz
frequencies still served as the distinguishing feature of their
preictal epochs.

A. TECHNICAL VALIDATION
For each of a patient’s five preictal epochs, voltage at the
first CFE and its corresponding BCN is represented by a
color-coded rectangle. The five resulting colored rectangles
were vertically stacked upon each other. A Gaussian ver-
tically moving average is then used to smooth the stacked
rectangle colors into single vertical lines.

Finally, the color map is changed to a two-color red and
blue scale with the top quartile of the voltage scale repre-
sented in red and the bottom quartile in blue. The middle
quartiles were considered insignificant as they reflect normal

FIGURE 5. Patient 1 (11-year old female). One of five preictal (top) and
interictal (bottom) ERP images at bipolar montage channel 13 (FP2-F8) at
78Hz over 30-second intervals.

FIGURE 6. Patient 3 (7-year old female) - Outlier. One of five preictal
ERP (top) and interictal (bottom) ERP images at bipolar montage channel
14 at 54Hz over 30-second intervals. Although no visual differences are
detected between preictal and ictal ERP images at 54Hz, the activity ratio
at channel 14 was 90.2% higher than the value at the 20% cutoff line (see
Figure 3).

brain activity and were set to white. This process is used to
create an ERP Image of each patient’s thirty-second preic-
tal epochs at each of the patient’s CFEs and corresponding
BCNs. These images were then compared to ERP images of
the individual patient’s interictal epochs at the same CFEs
and corresponding BCNs (Figures 4, 5, 6). We note that the
ERP images of the interictal epochs were also thirty seconds
in length, so the original 90-second interictal epochs were
shortened to their middle 30 seconds for direct compari-
son. The preictal ERP images and interictal ERP images
are then compared using data visualization at each scale to
explore possible preictal patterns using color coding a scale
of [-10,10] µV with ±10 µV representing the extremes in
brain activity at a given bipolar scalp location.

B. DATA AVAILABILITY
A team of investigators from Children’s Hospital Boston
and the Massachusetts Institute of Technology created and
contributed the database to PhysioNet [24]. All raw data is
available online [8] and all datasets and analyses used in this
paper are available on figshare [34]. The EEG recordings of
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TABLE 2. Script to estimate the mean power for a specific lead which
uses the entire available time window, compute log spectrum for
different frequencies and find the average power within the predefined
frequency. EEGLAB’s spectopo function uses Matlab’s pwelch function
whose values can be adjusted to suit further studies.

the Children’s Hospital Boston recordings used a longitudinal
bipolar montage to insure patient confidentiality. We note
that the use of bipolar channels does not invalidate the power
spectral density analysis or ERP analysis performed on the
channel data [7], [29].

C. CODE AVAILABILITY
Initial analysis, computations and ERP images
(Figures 4, 5 and 6) were completed with the University
of California – San Diego. All relevant documentation are
available online [27]. The script in Table 2 estimates the
mean power for a specific lead which uses the entire available
time window. We note that EEGLAB’s spectopo function
uses Matlab’s pwelch function and that the values below
are arbitrary numbers which can be adjusted to suit further
studies. Figures 1, 2, and 3 were created using EEGLAB lab
data exported into Excel.

IV. DISCUSSION
We note that the 70 to 100Hz range is usually ignored in scalp
EEG as recorders often have filters that start attenuating the
signal at 70 Hz to reduce aliasing when the signal is digitized
so that signals above 70 Hz have lower voltage. It has been
suggested that only subdural recordings that are sampled at
1000 samples per second or higher give reliable data at these
higher frequencies, but the data in this study suggest that
this may not be the case. Distinct ictal activity is found in
the frequency range between 70 and 100 Hz. This prompts
exploration of whether this activity is a result of, or a cause
of, the ictal epochs. If preictal activity is found to be a cause
of the ictal epochs, medical reduction of 70 to 100 Hz brain
activity before the onset of a seizure may help prevent the
seizure or, at the minimum, reduce its severity.

Considerations include the fact that that preictal and inter-
ictal patterns vary substantially between patients and that
preictal and interictal patterns may vary substantially from
seizure to seizure, and from hour to hour, within a single
patient. Thus patient-specific approaches yield better seizure
detection performance. The results of this study also show
that the issues listed above are not a concern as the patients’

EEGs in this study were analyzed using extensive signal
processing techniques and, of the 50 preictal epochs analyzed
(five pre-seizure episodes per patient), 50 interictal epochs
(5 non-seizure episodes per patient) and 50 ictal epochs
(5 seizure episodes per patient), evidence of preictal seizure
activity occurred in every preictal epoch in 9 of 10 patients.
This degree of accuracy would not occur if spontaneous
high frequency EEG components were involved. Limitations
include the use of pediatric EEG data and the number of
patients in the study as the choice of patients evaluated is
designed to avoid the use of patient data with excessive
artifacts.

A. FURTHER RESEARCH
In addition to utilizing these results to supplement machine
learning algorithms such as CNN, SVM, dynamical similarity
index, mean phase coherence, phase-locking value, zero-
crossings, Gaussian mixture and other models, we suggest
that a direct extension of this study would be to apply the
same type of PSD analysis and visualization techniques to
non-pediatric seizure patients as well as determine a consen-
sus in the literature on a frequency ranges for seizure detec-
tion. This could establish whether the patterns found in this
study applies only to all intractable seizure patients. We also
recommend that these techniques be applied to preictal peri-
ods longer than thirty seconds to determine the beginning of
the increased preictal activity in the patients. In addition, fur-
ther study could be done to identify the possible contribution
of EMG to scalp EEG rhythms at rest and induced or evoked
by cognitive tasks as well as the undertaking of more studies
of this type in the gamma band.
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