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ABSTRACT An integrated method comprising DEA and machine learning for risk management is proposed
in this paper. Initially, in the process of risk assessment, the DEA cross-efficiency method is used to evaluate a
set of risk factors obtained from the FMEA. This FMEA-DEA cross-efficiency method not only overcomes
some drawbacks of FMEA, but also eliminates several limitations of DEA to offer a high discrimination
capability of decision units. For risk treatment and monitoring processes, an ML mechanism is utilized
to predict the degree of remaining risk depending on simulated data corresponding to the risk treatment
scenario. Prediction using ML is more accurate since the predictive power of this model is better than that of
DEA which potentially contains errors. The motivation for this study is that the combination of the DEA and
ML approaches gives a flexible and realistic choice in risk management. Based on a case study of logistics
business, the results ascertain that the short-term and urgent solutions in service cost and performance are
necessary to sustainable logistics operations under the COVID-19 pandemic. The prediction findings show
that the risk of skilled personnel is the next concern once the service cost and performance strategies have
been prioritised. This approach allow decision-makers to assess the risk level for handling forthcoming events
in unusual conditions. It also serves as a useful knowledge repository such that appropriate risk mitigation
strategies can be planned and monitored. The outcome of our empirical evaluation indicates that the proposed
approach contributes towards robustness in sustainable business operations.

INDEX TERMS Data envelopment analysis (DEA), DEA cross-efficiency, machine learning (ML), artificial

neural network (ANN), failure mode and effect analysis (FMEA), risk management.

I. INTRODUCTION

The significant transformation of the business world due
to globalization leads to rapid changes in operations
and customer demands. Business organizations nowadays
face intense competition and arduous challenges. Indeed,
in today’s dynamic environments, organizations need to
tackle various uncertainties and handle them effectively.
In this respect, risk management is a robust approach to
becoming prepared to face risks and their consequences [1].
Identification and assessment of risks are a crucial aspect of
the risk management process [2]. Risk assessment includes
the analysis and evaluation processes. It requires a sensible
technique to ascertain the qualitative and/or quantitative risk
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levels and examine the prospective outcomes of possible
failures with respect to an organization’s resources [3].

Data Envelopment Analysis (DEA) has been broadly
used for evaluating the efficiency of decision-making units
(DMUs) in many areas [4] for organizational performance
improvement, such as financial institutions, manufacturing
companies, hospitals, airlines, and government agencies.
DEA has also been applied to assess organizational risks [5].
There are many studies on deterministic DEA methods for
examining the relationship between efficiency and various
risk aspects [6]. Indeed, DEA (DEA extension or DEA
integrated with other methods) offers a logical approach
to analyze and determine the risk level of activities in an
organization. Nonetheless, when a set of new DMUs is
available for analyzing its performance level (represented
by the efficiency scores), it is necessary to re-compute the
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DEA procedure [7]. When applying the DEA to risk man-
agement in the situation where an organization has already
evaluated the current level of risk for a sizable number of
DMUs, the subsequent re-application of DEA for risk eval-
uation renders different results. This is because DEA utilizes
dynamic information over time for internal benchmarking
computation of the DMUs. If only some DMUSs need to
be re-computed in terms of its new value of efficiency to
represent the new level of risk, usually what managers do is
to apply the entire DEA procedure again. This can result in a
new set of efficiency scores for all other DMUs. The second
round of efficiency scores can be similar or different from
those from the first evaluation, which can create confusion
in a decision-making process, especially for risk monitoring
purposes. In this study, we propose a machine learning (ML)
approach to predict the new level of risk embodied by the
efficiency scores. Previous studies have considered hybrid
DEA-ML methods for estimating or predicting the DMUs
efficiency in several fields, but yet in risk management.

Corresponding to the reliability methodologies of risk
assessment, the Failure Mode and Effects Analysis (FMEA)
offers a qualitative method to recognize and counteract fail-
ures, delivering information to support decision-making in
risk management [8]. FMEA has been utilized as a useful
tool for risk and reliability analysis in various enterprises [9].
Investigations on FMEA cover theoretical enhancement to
overcome the drawbacks of conventional FMEA method-
ology [10] as well as practical evaluation in a variety of
applications [9]. A key problem in FMEA is the need to
consider the importance level of each factor pertaining to
the weight and/or the relationship of various failure modes.
In this aspect, DEA offers a utility measurement method
to gain more complete weights of the corrective actions
in FMEA. However, there are still some limitations in a
traditional DEA method, such as a low discriminating power
in efficiency evaluation [11]. The cross-efficiency approach
increases the discriminatory power of DEA [12]. Extending
the cross-efficiency approach to enhance DEA-FMEA for
risk analysis is one of the contributions of this study.

Risk treatment and monitoring constitutes a vital process
in risk management. Actions involving the selection of appro-
priate treatment strategies and estimating success of the treat-
ment strategies are the salient aspects of risk treatment and
monitoring, respectively [13]. The development of effective
methods and tools to predict the potential outcomes of treat-
ment strategies is important to enhance the risk management
process towards a more holistic and robust approach. Artifi-
cial Intelligence (AI) serves as a useful methodology for mon-
itoring the influence of variations in strategy pertaining to
the predicted variables (i.e., scenario prediction) [14]. As an
example, neural networks have been shown as an promising
tool for periodic risk monitoring purposes [15], [16]. There
are two key benefits of utilizing neural networks for estima-
tion or prediction tasks. Firstly, they are proficient in output
estimation with massive volume of data. Secondly, they can
produce good prediction accuracy. Moreover, the operation
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speed neural network is rapid [17]. In this study, applying
neural network models for prediction in risk treatment and
monitoring is another contribution of our work.

The primary goal of this research is to provide methods
for assessing the risk level of sustainable operations in the
risk assessment process. And to forecast the outcomes of
risk treatment based on the scenario of risk treatment mit-
igation measures and monitoring procedures. In summary,
this paper proposes a DEA cross-efficiency model for risk
assessment. It allows efficient evaluation of risk data per-
taining to the failure modes from FMEA or DMUs from
DEA. It exploits the power of DEA classification with respect
to the optimal weights of the input and output data based
on the risk factors of FMEA. In addition, a ML approach
utilizing neural networks is devised for risk management.
From the risk treatment and monitoring perspective, ML can
predict the results of treatment strategies, in order to facilitate
effective implementation and monitoring processes. Note that
the predictive power of ML is better than re-running the
DEA model for risk treatment and monitoring.

The rest of this paper is organized as follows. In Section 2,
a literature review is presented. The review covers risk man-
agement and associated methodologies, the applications of
FMEA and DEA methods as well as DEA cross-efficiency
and ML approaches in risk management. The proposed
FMEA-DEA cross-efficiency and ML method is explained
in detail in Section 3. A case study is presented Section 4.
The results are analyzed and discussed comprehensively.
In Section 5, the managerial implications pertaining to risk
management and policy recommendations of the proposed
method are presented, along with concluding remarks.

II. LITERATURE REVIEW

A. RISK MANAGEMENT AND METHODOLOGIES

Risk management in an enterprise generally involves four
primary processes, namely (i) risk identification; (ii) risk
assessment (a continuous sub-process of risk analysis and
risk evaluation); (iii) risk treatment; and (iv) risk monitoring
[13], [18]-[20]. Firstly, risk identification defines the events
that can negatively impact the operational objectives [21].
Secondly, risk assessment merges risk analysis and risk evalu-
ation. Risk analysis involves recognizing each risk, as well as
its likelihood and consequences. Irrespective of whether the
result is stated in a quantitative, semiquantitative, or qualita-
tive manner, performing risk analysis requires considering the
effectiveness and reliability of the existing control measures
along with any potential controlling gaps [20]. The process
continues to risk evaluation that involves deciding the risk
level and priority, applying the benchmarking criteria related
to the established context area [20]. Thirdly, risk treatment
entails plan design, selection and implementation. This is a
crucial stage involving the selection of appropriate strategies,
and further treatment is required for those that remain unac-
ceptable [22]. Fourthly, risk monitoring continuously scruti-
nizing and appraising how the sources of risk are expanding
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and whether any adjustment to the treatment strategies needs
to be modified, as risk is not a static phenomenon [13].

Quantitative and qualitative approaches are two aspects of
the framework of risk management [23], which are relevant
to the risk identification and assessment processes. How-
ever, both aspects can generate different recommendations in
practice [24]. Quantitative risk assessments are favored when
sufficient data are obtainable. Nonetheless, comprehensive
quantitative data are often not available. While qualitative
approaches may not be ideal, the development of an inte-
grated model for improving qualitative risk management is
therefore vital. In this regard, methods like multiple criteria
decision- making (MCDM) have been employed in various
risk and uncertainty contexts, which are based on the process
of risk management [25], [26].

FMEA is a qualitative methodology for risk management
and decision-making [27]. It prioritizes the failure modes in
the form of a Risk Priority Number (RPN) with respect to
each failure [28]. These RPN outputs are used to enhance the
production or service performance by controlling, reducing,
and/or eliminating the failures [28]. The higher the RPN is,
the more urgent the corrective (or preventive) action is [29].
The RPN is computed by multiplying the Occurrence (O),
Severity (S), and Detect (D) scores (O x S x D), i.e., the
inputs of an FMEA system. Specifically, O is the probability
or frequency of a failure, S is the seriousness of the effect of a
failure, while D is the probability of a failure being detected
before its effect/impact is actualized and propagated to other
entities [30].

In the literature, the limitations associated with the crisp
RPN scores in a standard FMEA model have been high-
lighted, such as the questionable mathematical formula for
computing the RPN, which results in some non-intuitive sta-
tistical properties [30]. Moreover, the RPN technique does not
consider both direct and indirect relationships between each
failure mode and is inadequate for a system or process with
many subsystems and/or components [31], [32]. In this paper,
we adopt the DEA method to deal with the mathematical
formula issues of the RPN computation. Moreover, the DEA
method can handle the weights of risk factors and consider
the direct/indirect relationships between the failure modes.
A review on FMEA using DEA is presented in the next
subsection.

B. DEA-FMEA WITH AN EXTENSION OF DEA
CROSS-EFFICIENCY

While FMEA is a useful risk assessment method, it ignores
the comparative significance among O, S and D [33]. Count-
less MCDM practices have been utilized to evaluate the risks
of failure modes and enhance the effectiveness of FMEA
results [9], and one of them is the DEA. DEA is a performance
determination tool for investigating the relative efficiencies of
different DMUs. In this regard, the potential risks or failure
modes in FMEA can be considered as DMUs, and the O-S-D
ratings of FMEA serve as the inputs to the DEA [34], forming
a synergized FMEA and DEA model.
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From the FMEA perspective, the weights associated with
the risk factors are normally assigned directly or verified
based on judgement of human experts. In this respect, MCDM
methods can be applied to determine the weights of risk fac-
tors. While the Analytic Hierarchy Process (AHP) and Ana-
lytic Network Process (ANP) method are widely accepted
techniques [9], the DEA offers another useful weighting
method. The DEA not only supplements the standard FMEA
by enhancing its capability of assessment but also, notably,
provides correct information involving the failure factors,
O-S-D. It considers multiple criteria and can be used as an
appropriate weight assignment method. The DEA does not
need to specify or determine the relative importance pertain-
ing to the weights associated with the risk factors subjectively.

The weights are determined by the inter-related processes
in the DEA [28]. The evaluation of efficiency of a DMU
is characterized by its position comparative to the finest
performance formed mathematically based on the ratio of
weighted sum of outputs to the weighted sum of inputs [35].
Another distinctive feature of the DEA, in addition to deter-
mining the importance of risk factors by weights, is exam-
ining the ranking of failure modes by considering not only
the direct impact of indices of individual failures but also
the influence of these indices relative to the efficiency scores
among the DMUs [30]. Therefore, the DEA can be useful for
manipulating the weights of risk factors by considering the
direct or indirect relationships among the failure modes. This
is because the main principle of DEA is to produce optimal
weights for each DMU in its set to maximize the ratio of
weighted sum of outputs to weighted sum of inputs while
preserving all the DMU ratios close to one [36]. In the stan-
dard DEA model, one limitation is the lack of ability to dif-
ferentiate among DMUs with similar efficiency scores. The
standard DEA model with total weight tractability appraises
numerous DMUSs as efficient, and cannot further differentiate
among these efficient DMUs [36].

An extension of DEA with a cross-efficiency technique has
been developed for assessing and rating DMUs. Sexton, Silk-
man, and Hogan [37] integrated the peer evaluation percep-
tion into DEA and proposed this evaluation method to enrich
the discriminating power of DEA. There are three funda-
mental advantages of the cross-efficiency technique. Firstly,
it reduces unrealistic weight schemes without incorporat-
ing weight restrictions. Secondly, it efficiently distinguishes
good and weak performers among the DMUs. Finally, it can
constantly organize the DMUs in a distinctive order [36].
Owing to these benefits, DEA cross-efficiency has been used
in many fields including business operations under risk and
uncertainty [12] or supply risk for sustainable operations [38].
In this regard, multiple input and output parameters are con-
sidered as the inputs, e.g. insufficient resources involving
manpower, operation cost, facility, social and environment
impact, and management systems. The outputs can include
quality level, financial performance, and other items. Linguis-
tic terms can also be used to express the input and output
parameters, instead of the original data [38]. To the best of
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our knowledge, studies on evaluating risk factors related to
FMEA integrated with DEA cross-efficiency are yet to exist
in the current literature, therefore the contribution of this
work.

C. ML IN RISK MANAGEMENT

ML can be applied to various disciplines e.g., statistics,
convex analysis, probability, approximation, and algorithm
complexity theory. Recent advances in ML deep learning-
based approaches are offering excellent results. ML algo-
rithms focus on how computers implement and simulate the
learning behaviors of humans, in order to obtain new knowl-
edge and constantly enhance prediction performance [7].
As a branch of Artificial Intelligence (AI), ML models
entail many principles by exploiting the rapid growth of
data [7]. Predictive or classification analytics is a cru-
cial capability of ML [39]. There is a growing influ-
ence of ML in business applications, with several solutions
already employed and countless more being developed [40].
Commonly, the main concept of ML is utilizing computerized
algorithms to describe and learn from data. ML algorithms
generalize the learned knowledge and make predictions when
new data are given, facilitating the process of decision-
making with respect to new scenarios. ML algorithms cover
unsupervised learning, semi-supervised learning, supervised
learning, and intensive learning. One of the broadly uti-
lized ML algorithms is supervised learning, which uses a
set of known or unknown patterns to train neural networks.
It is useful for classification and prediction (or regression)
tasks [7]. In prediction, the ML algorithms use previous
data to predict the future, and their predictive power grow
with additional data, accordingly, improving their predic-
tion accuracy over time [40]. Due to the prediction accu-
racy is the extremely crucial indicator for the predicting
performance [41].

Focusing on the business sector, ML has been applied
to risk management, e.g. risk assessment or prediction of
probability of risks. Past studies on risk assessment using
ML mostly focused on the financial industry, e.g. the review
of Leo et al. [40] demonstrated ML applications to bank-
ing risks management, including credit risk, liquidity risk,
operational risk, and market risk. In terms of investment,
Chandrinos et al., [42] presented an ML-based risk man-
agement system to improve the performance of two port-
folios through estimated losses. ML is also embodied in
other areas such as industrial risk assessment. A deep neu-
ral network (DNN) was applied for risk assessment per-
taining to a drive-off scenario in an Oil & Gas drilling
rig [43]. The established model could predict risk increase
(or decrease) with respect to the change in system con-
ditions, in order to provide proper support for decision-
making. For the construction area, the predictive power
of ML enables evidence-based decision-making, utilizing
interdependent, active, and dynamic risk factors for for-
mulating appropriate strategies in proactive project risk
management [44].
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lll. METHODOLOGY

A. DEA APPROACH FOR FMEA AND THE EXTENSION OF
THE DEA CROSS-EFFICIENCY METHOD

In the traditional DEA method, a set of DMUs is formed,
utilizing the inputs X € x™ to deliver the outputs ¥ € y°,
where m and s are the numbers of the inputs and outputs,
respectively. Given a DMU j, x;; denotes the ith input utilized
and y,; the rth output delivered. The efficiency score of
each DMU, 6, is measured as:

Zi:l HrYr
Yot vii
when p, and v; are the weights of outputs and inputs,
respectively [45]. The multiplier formulation of an input-

oriented structure to indicate the constant returns of scale
(CRYS) situation [46] is shown in model (2):

)
max 6 = Zr:l UrYro

N m
s.t. Z WrYrj — Z vix;j <0
r=I1 i=1
m
Z vixjp = 1
i=1

M, vi = 0(e) 2

where subscript ;o or o characterizes the DMU under eval-
uation, ¢ is non-Archimedean infinitesimal. Model 2 is an
input-oriented DEA model, where the objective function and
constraints are maximizing the outputs while maintaining the
inputs at their existing levels [46]. With an optimality result
(6 = 1), the DMU is said to be CRS-efficient, and is operating
at the CRS frontier. Otherwise, the DMU is CRS-inefficient.

In DEA, a DMU is responsible for converting the quantita-
tive inputs to the outputs. Its efficiency can be evaluated with
an output-to-input ratio associated with productivity [47],
which can be used for comparison purposes. A set of DMUs is
used for evaluation of the relative efficiency of DMU. When
the standard FMEA is employed with the DEA, the Fail-
ure Modes (FM) correspond to the DMUs, while the inputs
(O-S-D) correspond to the multiple inputs of the DEA [30].
The RPN output, however, does not conform to the DEA
output. In the DEA method, the output is a product of mul-
tiple inputs in a “black box™ process, where the associated
transformation function is unknown. The inputs enter and
the outputs exit, devoid of transparency in the intermediate
steps [48]. In contrast, the RPN output is based on multipli-
cation of O, S and D. To achieve an efficiency score for risk
prioritization and to replace the standard RPN computation,
previous studies have proposed the DEA model without the
outputs, or constant outputs equivalent to one when applying
the DEA to FMEA [30], [34], [49], [50].

In the cross-efficiency approach, the DEA model enlarge-
ment is executed through two phases, involving self- and
peer-evaluation. This extension evaluates the entire perfor-
mance of every DMU by contemplating not only its individual
weights but the weights of all DMUs [51]. Self-evaluation

6 = ey
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is based on (2), where each DMU j is evaluated with its
extremely favorable weights. Specifically, u,; and v;; are the
respective optimal outputs and inputs weights of the self-
evaluation stage for a given DMU j (j € N). Under the peer-
evaluation stage, it can be simply proved that, by employing
the cross-efficiency approach, all DMUs are evaluated cor-
responding to a similar set of weights. Indeed, the jth DMU
value of cross-efficiency (CEj) is identical to the following
model [52]:

1 N
CEj =+ > . Ei
_ 1 ZN (PR Yk - T i
N ~k=1 "vixyj+voxgk + - - - + VmXmjk

3

Model (3) requires k times of solution, each time for
an efficiency score of the target, in order for DMU j (Ej)
to acquire the cross-efficiency scores of all DMUs. All
these scores can be displayed as a j x k cross-efficiency
matrix where the diagonal parts present the CRS-efficiency
scores E j’;(, as shown in Table 1 [51].

TABLE 1. Cross-efficiency matrix of the DMUs.

DMU  Target DMU Cross-efficiency

DMU, DMU, ..  DMU;  (CE)
DMU, Ej; Eip Ey CE, = %Zﬁﬂ Eix
DMU,  Ep E3, Ey CE, = %Zﬁﬂ Ey
DMU, By By . Ei B =iRNiB

B. ML APPLICATION IN RISK MANAGEMENT CONTEXT
ML can autonomously learn using supervised learning algo-
rithms from a set of the input and output data [17].
An artificial neural network (ANN) is a useful ML model.
It generally comprises generally three layers of nodes
(neurons) [17], namely input, hidden, and output layers,
as indicated in Fig. 1(a). The input layer receives a data
sample while the output layer yields the corresponding target
category [53].

In Fig. 1(b), a simple ANN structure is shown, covering
the neuron connections, biases allocated to neurons, and
weights designated to the connections, depicting a multi-layer
model [7]. A neuron k can be identified by two equations, as
follows [54]:

i = f(ug + by) 4
N
u = Zi:] WiiX; (5)

where x1, X2, ..., x, are the inputs, w1, wi2, . . . , Wi, are the
neuron weights, uy is the computation outcome of weighted
inputs, by is the bias term, f is the activation function, and
Vi is the output.

When applying DEA-FMEA to ML, there are N DMUs
and each DMU j has the three inputs features (O-S-D), and
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FIGURE 1. Architecture of a neural network.

each DMU j has a target variable of efficiency score obtained
by DEA cross-efficiency. For DMU j, the significance of
each feature is different, so each feature has distinct weights
with varying significance. Subsequently, the sum of weighted
O-S-D inputs and efficiency score can determine a mapping
relationship via an activation function. By gathering N DMUs
with known O-S-D inputs and outputs of efficiency score,
the weights and bias term can be computed according to (4)
and (5) through model training [7].

In this study, the Neural network toolbox of MATLAB
2020b has been utilized. The ANN was created based on
the default settings. Specifically, a feed-forward ANN with
backpropagation learning has been established for prediction
tasks [55]. TRAINML is selected for a function of network
training, which updates the weight and bias values using the
Levenberg-Marquardt optimization method. TRAINML is
fast, but it requires more memory than other algorithms [56].
LEARNGDM or Gradient descent with momentum weight
and bias learning function is used for error minimization.
This function computes the change of weight with respect to
a certain neuron, covering the input and error terms, weight
and bias, learning rate, and momentum term of the neuron,
corresponding to gradient descent with momentum backprop-
agation [57]. A tangent sigmoid function (TANSIG) is used
as a transfer function by the following equation for input
variable x: [58]:

TANSIG (x) = (6)

1+e %
TANSIG is utilized for both hidden and the output layers.
They compute the output from its net input. This activation
function provides output from —1 to 41 [59]. After obtain-
ing the trained model, the ANN can be applied to a new
DMU (efficiency improvement scenario), whose new inputs
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of O-S-D are known but the outputs of efficiency score are
unknown. The predicted output can be obtained through the
ANN model. Fig. 2 depicts the integration of DEA-FMEA
and ANN model used in this study. When evaluating the
improvement of organizational performance, nevertheless,
if a new improved data set of DMU needs to be deter-
mined for its efficiency score, the DEA evaluation process
has to be re-conducted. The result includes the prediction
error because the weight assigned to the DMU is rearranged,
causing changes in the efficiency score of non-improvement
DMUs as well. Consequently, we predict the efficiency score
employing the ANN, which provide more robust prediction.
To demonstrate the usefulness of the proposed method, a
discussion on an illustration and a case study is presented in
the next section.

IV. COMPUTATION AND DISCUSSION
A. ILLUSTRATION
Obtained from Karatop, Tagskan, Adar, and Kubat [60], twenty
sub-criteria with respect to the risk of five renewable energy
sources (hydropower, wind, solar, geothermal and biomass)
according to the risk factors are selected for illustration,
as shown in Table 2.

Based on Table 2, the risk of the main criterion is analyzed
under 5 dimensions. They are cost, political, technology,
environmental, and management of construction, which are

VOLUME 9, 2021

F

h

approach

Efficiency

Risk factors

also related to the sustainable dimension. Risk analyses are
performed according to a 10-scale pertaining to the proba-
bility of occurrence, detectability, and severity. The RPN is
calculated based on the standard FMEA method.

As shown in Fig. 2, the DEA cross-efficiency approach
(Model (3)) is applied. All three risk factors (O-S-D) are
considered as the input, due to this indicator is expected to
be as low as possible while a dummy or constant output
is considered. The dummy output is set at one, and this
number is applied to all DMUs. All sub-criteria depend on
the five types of renewable energy sources that constitute the
DMUs in the DEA cross-efficiency approach, producing a
total of 100 DMUs. The results comparing the DEA cross-
efficiency and the traditional or CRS approach are shown
in Table 3. The selected DEA cross-efficiency model can
compute the precise efficiency scores of different DMUs,
as compared with those of the CRS. Eight highest effi-
cient DMUs (efficiency score = 1) of CRS are reduced
to three DMUs, which reach the highest efficiency score
of 0.96. Moreover, 31 DMUs with the highest frequency risk
score (= 0.5) of CRS are changed to a more diverse value
by the DEA cross-efficiency method. Generally, a low RPN
is tagged with a high efficiency score when DEA is applied.
However, the efficiency scores of DMUs of this method
do not completely rely upon the RPN value, as can be
observed in Fig. 3 (fluctuation of the line chart). From this
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TABLE 2. Data set of risk factors of renewable energy resources (from Karatop et al. [60]).

Risk criterion Sources of renewable energy
Hydropower Wind Solar Geothermal Biomass
O S D RPN O S DRPN O S DRPN O S D RPN O S D RPN

Cost

C1-Operating 32 2 12 4 6 6 144 35 6 9 5 5 6 150 6 5 3 90
C2-Territory 2 3 2 12 4 2 56 8 6 3 144 33 3 27 3 3 18
C3-Investment 6 6 4 144 5 7 3 105 6 6 4 144 9 7 4 252 8 6 4 192
Political

P1-Terror 2 8 8 128 2 4 8 o4 35 8 120 2 7 8 112 2 7 7 98
P2-Civil/external war-unrest 4 7 5 140 2 6 6 72 4 6 6 144 37 7 147 4 7 6 168
P3-Change of laws and regulations 2 2 2 8 3 4 3 36 3 4 3 36 6 5 3 9 7 6 2 84
Technology

T1-Design defects 3 8 6 144 3 5 3 45 4 5 2 40 3 7 5 105 4 5 3 60
T2-Development of alternative Technologies 5 3 5 75 4 5 80 5 6 5 150 6 8 5 240 4 5 140
T3-Incorrect material selection 2 7 6 84 2 6 3 36 2 6 36 2 7 5 70 2 6 72
Environmental

E1-Noise 2 2 2 8 2 3 3 18 2 1 1 2 2 2 2 8 6 5 3 90
E2-Odor 1 1 2 2 1 1 2 2 11 2 2 3 3 4 36 9 6 2 108
E3-Emission 1 2 2 4 1 2 2 4 1 2 2 4 3 5 3 45 8 7 2 112
E4-Waste 1 2 2 4 2 2 3 12 4 3 2 24 5 4 2 40 7 6 2 84
E5-Harm to living things 2 6 8 96 5 5 3 75 2 4 2 16 33 3 27 3 5 3 45
Construction — management

M1-Occupational accidents 2 2 3 12 4 3 4 48 4 3 3 36 4 4 48 3 4 4 48
M2-Failures during construction and 3 4 36 4 3 48 4 4 48 3 24 3 4 3 36
operation

M3-Extending periodic maintenance times 3 5 6 90 4 4 6 96 4 4 6 96 35 6 9 5 4 6 120
M4-Extension of construction times 4 4 8 128 3 4 7 84 3 5 7 105 3 5 7 105 3 4 8 96
MS5-Low productiveness 36 3 54 2 4 4 32 5 5 3 75 8 6 4 192 7 4 4 112
Mo6-Physical workload/ need for a qualified 2 3 3 18 33 3 27 4 3 3 36 5 3 3 45 6 6 4 144
employee
TABLE 3. The result of DEA approach.

Hydropower Wind Solar Geothermal Biomass

DMU CRS-  Cross- DMU CRS- Cross- DMU  CRS- Cross- DMU CRS- Cross- DMU CRS- Cross-

eff. eff. eff. eff. eff. eff. eff. eff. eff. eff.

1. HC1 0.6 0.5473 21. WC1 0.3 0.2787 41.SCl 03333 03173 61.GCl 0.2727 0.2512 81.BCl1 0.3333 0.304
2.HC2 0.75 0.6817 22. WC2 0.5 0.3145 42.SC2 03333 02518 62.GC2 0.5 0.4567 82.BC2 0.5 0.46
3.HC3 03 0272 23.WC3 0375 0.339 43.8C3 0.3 0272 63.GC3 0.25 0.2114 83.BC3 0.25 0.2283
4. HP1 0.5 0.3145 24. WP1 0.5 0.317 44.SP1 0.3333 0.2692 64.GP1 0.5 0.3149 84.BP1 0.5 0.341
5. HP2 0.3333 0.3055 25.WP2 0.5 03742 45.SP2 0.3 0.2787 65.GP2 0.3333 0.2896 85.BP2 0.3 0.2782
6. HP3 0.75 0.685 26.WP3 0.5 0.455 46.SP3 0.5 0.455 66.GP3 03333 0304 86.BP3 0.5 0.3129
7.HTI1 0.3333  0.3158 27.WT1 0.5 0.454 47.ST1 0.5 0.454  67.GT1 0.375 0.3497 87.BT1 0.4286 0.3878
8. HT2 0.3333  0.2767 28. WT2  0.3333 0.3077 48.ST2 0.3 0.2733 68.GT2 0.2727 0247 88.BT2 0.3333 0.3055
9. HT3 0.5 0.3737 29. WT3 0.6 0.554 49.ST3 0.6 0.554 69.GT3 0.5 0.416 89.BT3 0.5 0.3742
10. HE1  0.75 0.685 30. WE1 0.6 0.5573  50.SE1 1 0.92 70. GE1 0.75 0.685 90.BEl 0.3333 0.304
11.HE2 1 096 31.WE2 1 0.96 51.SE2 1 0.96 71.GE2 04286 03971 91.BE2 0.5 0.2629
12.HE3 1 095 32.WE3 1 0.95 52.8SE3 1 0.95 72.GE3 0.5 0.454 92.BE3 0.5 0.2849
13.HE4 1 095 33.WE4 0.6 0.5607  53.SE4 0.5 0.4567 73.GE4 0.5 0.3941 93.BE4 0.5 0.3129
14.HE5 0.5 0.3153 34. WE5 0.375 0.3402  54.SE5 0.75 0.68 74.GE5 0.5 0.4567 94.BE5 0.5 0.454
15.HM1 0.6 0.5607 35. WM1 0.375 0.3442  55.SM1 0.4286 0.3905 75.GM1 0.4286 0.3955 95.BM1 0.4286 0.3955
16. HM2 0.5 0.455 36. WM2 0.4286 0.3888 56.SM2 0.4286 0.3888 76.GM2 0.5 0.4567 96.BM2 0.5 0.455
17.HM3 0.3333 0.3173 37.WM3 0.3 0.2803 57.SM3 0.3 0.2803 77.GM3 0.3333 03173 97.BM3 0.2727 0.2522
18. HM4 0.25 0.24 38.WM4 0.3333 0.2918 58.SM4 0.3333  0.2908 78.GM4 0.3333  0.2908 98.BM4 0.3333  0.2702
19.HM5 0.5 0.4533 39. WMS5 0.5 0.475 59.SM5 0.375 0.3402 79.GMS5 0.25 0.2283 99.BMS5 0.2727  0.2497
20. HM6 0.6 0.5573 40. WM6 0.5 0.4567  60.SM6 0.4286  0.3905 80.GM6 0.375 0.3428 100. BM6 0.3 0.272

Average 0.5717 0.5108 Average  0.5060 0.45 Average 0.5022  0.4587 Average 0.4118 03629 Average 0.4043 0.3253
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FIGURE 3. The result of traditional FMEA and DEA approach.
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FIGURE 4. The performance of ML approach.

phenomenon, it shows that the DEA result does not adhere
to the mathematical formula for computing the RPN, which
is questionable. When we prioritize the average value of
efficiency scores (Table 3) with respect to the source of
renewable energy, biomass yields an average efficiency score
of 0.3253, which is at the highest risk level. It is followed
by geothermal, wind, solar, and hydropower, with the aver-
age efficiency scores of 0.3629, 0.45, 0.4587, and 0.5108,
respectively.

As shown in Fig. 2, the ML approach is used to predict
the level of risk based on an improvement or risk treatment
scenario. ML is widely used for prediction or estimation
tasks [17]. In this study, the ANN network includes four
layers: the input layer, two hidden layers, and the output layer.
All three variables of the risk factors (O-S-D) are mapped
to the input layer. The output layer comprises the efficiency
scores in which the DEA cross-efficiency is obtained. Both
hidden layers consist of four neurons. The learning process is
undertaken based on the data set of input and target (output)
according to the training algorithm in the Neural network
toolbox of MATLAB 2020b. The data samples are randomly
divided into two sets: a training set (70%) and a test set (30%).
The ML performance is shown in Fig. 4. Based on the results
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from multiple training epochs, the regression coefficient (R)
between the target and output reaches one, indicating the high
performance of the ML method. The comparison of cross-
efficiency scores (target) and efficiency scores of the ML
approach (output) is shown in Table 4 and Fig. 5. Moreover,
we evaluate the ML performance using the root mean square
error (RMSE), as shown in Model (7) [17].

1 )
RMSE = \/ - Zi:l (target; — output;) @)

where target indicates the experimental or DEA cross-
efficiency results and output indicates the estimated or ML
results, n is the number of DMUs. Using Model (7),
the RMSE obtained is 0.0005, which indicate a high per-
formance. Therefore, the designed ANN model is useful for
prediction purposes.

The leading goal of this study is to the development of
methods for predicting the altered risk values when risk
mitigation strategies are implemented. As such, we estab-
lish an ideal improvement scenario of risk mitigation in this
illustration. The scenario is consistent with the results of the
DEA cross-efficiency approach focusing on low-efficiency
DMUs with respect to the two energy sources with the low-
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TABLE 4. The comparison of target and output of ML approach.

Hydropower Wind Solar Geothermal Biomass
5 Cross-eff. ML- —  Cross-eff. ML- —  Cross-eff. ML- 5 Cross-eff. ML- 5 Cross-eff. ML-
E (target)  eff. g (target)  eff. E (target)  eff. E (target)  eff. E (target) eff.
(output) (output) (output) (output) (output)
1 0.5473 0.5472 21 02787 0.2787 41 03173 0.3175 61  0.2512 0.2519 81 0.304 0.3042
2 0.6817 0.6819 22 03145 0.3148 42 02518 0.2523 62 0.4567 0.4568 82 0.46 0.4582
30272 0.2724 23 0339 0.3384 43 0272 0.2724 63 02114 0.2133 83 0.2283 0.2275
4 0.3145 0.3145 24 0317 0.3159 44 0.2692 0.2693 64 03149 0.3149 84 0.341 0.3412
5 03055 0.3054 25 03742 0.3742 45 0.2787 0.2787 65  0.2896 0.2899 85 0.2782 0.2781
6 0.685 0.6852 26 0455 0.4555 46 0455 0.4555 66 0.304 0.3042 86 0.3129 0.3122
7 0.3158 0.3159 27 0454 0.4542 47 0454 0.4536 67  0.3497 0.3499 87 0.3878 0.3883
8 02767 0.2758 28 03077 0.3074 48 0.2733 0.2737 68  0.247 0.2465 38 0.3055 0.3054
9 0.3737 0.3737 29 0.554 0.5534 49 0554 0.5534 69 0416 0.4154 89 0.3742 0.3742
10 0.685 0.6852 30 0.5573 0.5584 50 0.92 0.92 70 0.685 0.6852 90 0.304 0.3042
11 0.96 0.9599 31 096 0.9599 51 0.96 0.9599 71 0.3971 0.3966 91 0.2629 0.2629
12 0.95 0.95 32 095 0.95 52095 0.95 72 0454 0.4542 92 0.2849 0.2853
13 095 0.95 33 0.5607 0.5601 53 0.4567 0.457 73 0.3941 0.3934 93 0.3129 0.3122
14 0.3153 0.3152 34 0.3402 0.3403 54 0.68 0.6791 74 0.4567 0.4568 94 0.454 0.4542
15 0.5607 0.5601 35 0.3442 0.3435 55 0.3905 0.3905 75 0.3955 0.3958 95 0.3955 0.3958
16 0.455 0.4555 36 0.3888 0.3894 56 0.3888 0.3894 76  0.4567 0.457 96 0.455 0.4555
17 0.3173 0.3175 37 0.2803 0.28 57 0.2803 0.28 77 03173 0.3175 97 0.2522 0.2526
18 0.24 0.2408 38 0.2918 0.2914 58 0.2908 0.2909 78  0.2908 0.2909 98 0.2702 0.2699
19 0.4533 0.4529 39 0475 0.4744 59 0.3402 0.3403 79  0.2283 0.2275 99 0.2497 0.2504
20 0.5573 0.5584 40 0.4567 0.4568 60 0.4286 0.3905 80  0.3428 0.3423 100  0.272 0.2724
Cross-efficiency —o—ML-efficiency
1
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FIGURE 5. The comparison of target and output of ML approach.

est efficiency (biomass and geothermal). Table 5 presents
the likelihood of improving the high level of risk factors
of biomass and geothermal to match those of other renew-
able energy sources. The improvement scenario assumes
that the risks associated with operating and investment
costs, and the environmental impacts can be reduced in
the future with more flexible and robust regulations. The
improvement can also be induced by an increase in the
development of technology, productivity, and competence of
workforce. There are nine improved DMUs in the scenario
(see Fig. 6).
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With the simulated data set (nine DMUs with improve-
ment and 91 DMUSs without improvement of risk factors),
the ML approach is used to obtain the prediction efficiency
scores. The results of the prediction stage pertaining to
the nine improved DMUs are analyzed and compared,
are shown in Table 6 and Fig. 6. Without the integrated
DEA cross-efficiency and ML approach, one can re-evaluate
the improvement scenario using the DEA cross-efficiency
approach. The percentages of improvement with respect to
any improved DMUs and the average value is not signif-
icantly different (30.48 and 30.34). However, as can be
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TABLE 5. An ideal of improvement scenario of risk mitigation.
Risk Base data set Improvement scenario
Geothermal Biomass Geothermal Biomass
(6] S D RPN O S D RPN O S D RPN O S D RPN
C1-Operating 5 5 6 150 6 5 390 5 5 6 150 4 5 360
C3-Investment 9 7 4 252 8 6 4 192 7 7 4 19 7 6 4 168
P3-Change of laws and 6 5 390 7 6 2 84 6 5 390 4 4 2 32
regulations An example of improvement: 7 to 4 *
T2-Development of alternative 6 8 5 240 4 7 5 140 6 6 5 180 4 7 5 140
Technologies
E2-Odor 3 3 4 36 9 6 2 108 3 3 4 36 4 3 2 24
E4-Waste 5 4 2 40 7 6 2 84 5 4 2 40 5 6 2 60
MS5-Low productiveness 8 6 4 192 7 4 4 112 7 6 3 126 7 4 4 112
M6-Physical workload/ need fora 5 3 3 45 6 6 4 144 5 3 3 45 4 3 3 36
qualified employee
=/ nario of improving of risk factors
TABLE 6. The results of RPN and efficiency of improvement DMUs.
DMU RPN Cross-efficiency ML-efficiency
Current Improve % Current Improve % Current Improve %
63. GC3 252 196 2222 0.2114 0.248 17.31 0.2133 0.2471 15.85
68. GT2 240 180 25 0.247 0.2493 0.93 0.2465 0.2483 0.73
79. GM5 192 126 3438 0.2283 0.2742 20.11 0.2275 0.2756 21.14
81. BCl 90 60 33.33 0.304 0.3897 28.19 0.3042 0.3883 27.65
83.BC3 192 168 12.5 0.2283 0.2485 8.85 0.2275 0.2482 9.1
86. BP3 84 32 61.9 0.3129 0.455 45.41 0.3122 0.4553 45.84
91. BE2 108 24 77.78 0.2629 0.4567 73.72 0.2629 0.457 73.83
93. BE4 84 60 28.57 0.3129 0.391 24.96 0.3122 0.3906 25.11
100. BM6 144 36 75 0.272 0.3924 44.26 0.2724 0.3905 43.36
Average 36.36 30.48 30.34

seen in Table 7, the change of efficiency scores occurs
in the DMUs without improvement. Specifically, the aver-
age change in efficiency score of the 91 non-improvement
DMUs is 0.73 percent when DEA cross-efficiency is
re-conducted. This value (DEA prediction average error) can
be different when another improvement scenario is executed.
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Moreover, referring to DMU 68 in Fig.7, the efficiency
score after improvement is lower than some DMUs without
improvement, indicating the approach of ML is more robust
for prediction. Finally, using the ML approach, the aver-
age prediction efficiency scores of risk with respect to
biomass and geothermal change from 0.3253 to 0.3572 and

85987



IEEE Access

S.

Jomthanachai et al.: Application of DEA and ML Approach to Risk Management

TABLE 7. The difference of average efficiency score.

Type of DMU Number of Avg. cross- Avg. cross- % of Avg. ML- Avg. ML- % of
DMU eff. eff imp changed eff eff imp changed
Improvement 9 0.2644 0.345 30.48 0.2643 0.3445 30.34
Non-improvement 91 0.4371 0.4403 0.73 0.4371 0.4371 0
All 100 0.4215 0.4317 242 0.4215 0.4288 1.73
—+—Diff. of Cross-eff & Cross-eff imp ——Diff. of ML-eff & ML-eff 1imp
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FIGURE 7. The difference of efficiency score after improvement for Cross-efficiency and ML approach.
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FIGURE 8. The average efficiency score for ML approach base on renewable energy sources.

0.3629 to 0.3672, respectively, when applying the abovemen-
tioned risk mitigation scenario, as shown in Fig.8.

B. CASE STUDY

To demonstrate the applicability of the FMEA-DEA cross-
efficiency and ML approach for risk management, a case
study on Malaysian logistics business with a group of twelve
Logistics Service Provider (LSP) companies is conducted.
Logistics is a critical contributor to trade and economic
growth of Malaysia, which include land freight, sea freight,
air freight, contract logistics (e.g., warehousing), as well as
courier, express, and parcel services [61]. According to infor-
mation published in 2019 [62], the Malaysian logistics sector
is in its growing phase, powered by e-commerce. Indeed, the
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growth rate of e-commerce in Malaysia is accelerating expo-
nentially. With expansion of the investment of government
to improve the infrastructure and technology-based solutions,
the logistics market is expected to further develop [63].
Unfortunately, logistics operations that are involved in the
movement, storage, and flow of goods, have been directly
affected by the COVID-19 pandemic, particularly the impact
on transport and logistics connectivity in the landlocked
areas [64]. COVID-19 has affected the global economy
in three major aspects: directly influencing production and
order, causing supply chain and market disruption, and creat-
ing financial impact on businesses and financial markets [65].
In the growing sector of logistics, these disruptions are
impending, and risk management is required to promptly
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TABLE 8. Results of risk analysis of logistic service provider (LSP) in Malaysia.

Criteria LSP 1 LSP 2 LSP 3 LSP 4

O S D RPN O S D RN O S D RPN O S D RPN
A. Service price and cost 4 5 3 60 5 5 3 75 4 4 4 o4 3 4 3 36
B. Service performance and customer satisfaction 4 5 3 60 5 4 3 60 2 3 4 24 3 4 4 48
C. Strategies and tactics and competitiveness 4 5 1 20 5 4 1 20 1 1 3 3 33 2 18
D. Operational technology 5 5 1 25 4 4 1 16 3 2 5 30 33 2 18
E. Waste management 2 2 3 12 2 3 5 30 1 1 5 5 4 4 3 48
F. Coordination and collaboration 5 5 1 25 5 5 1 25 2 2 3 12 5 5 3 75
G. Safety, healthy, security, and privacy 4 4 3 48 4 5 2 40 1 1 5 5 1 1 3 3
H. Employee-related skills and workforce 3 4 3 36 5 5 1 25 1 1 3 3 4 4 3 48
Criteria LSP 5 LSP 6 LSP 7 LSP 8

O S D RPN O S D RN O S D RPN O S D RPN
A. Service price and cost 4 3 4 48 33 3 27 4 4 3 48 1 1 4 4
B. Service performance and customer satisfaction 3 2 5 30 3 3 4 36 4 3 3 36 1 1 1 1
C. Strategies, tactics and competitiveness 2 2 5 20 2 2 3 12 1 1 3 3 1 1 5 5
D. Operational technology 1 1 5 5 1 1 4 4 4 3 5 60 1 1 1 1
E. Waste management 1 1 5 5 1 1 5 5 1 1 5 5 1 1 5 5
F. Coordination and collaboration 1 1 5 5 1 1 5 5 1 1 3 3 4 2 5 40
G. Safety, healthy, security, and privacy 1 1 4 4 1 1 3 3 1 1 5 5 1 1 5 5
H. Employee-related skills and workforce 1 1 5 5 2 2 5 2 5 5 5 125 5 3 3 45
Criteria LSP9 LSP 10 LSP 11 LSP 12

O S D RN O S D RN O S D RPN O S D RPN
A. Service price and cost 5 3 4 60 4 3 4 48 1 1 3 3 33 3 27
B. Service performance and customer satisfaction 4 3 4 48 2 3 4 24 2 2 3 12 33 3 27
C. Strategies, tactics and competitiveness 4 3 3 36 3 4 5 60 32 2 12 1 1 3 3
D. Operational technology 4 2 5 40 3 2 5 30 1 1 5 5 3 3 5 45
E. Waste management 4 3 5 60 1 1 5 5 1 1 5 5 1 1 5 5
F. Coordination and collaboration 1 1 3 3 2 2 5 20 2 3 5 30 3 3 5 45
G. Safety, healthy, security, and privacy I 1 1 1 5 3 4 60 11 2 2 33 3 27
H. Employee-related skills and workforce 4 2 2 16 3 3 4 36 32 2 12 3 3 2 18

adapt business operations. In addition to economic impact,
the COVID-19 pandemic has also immensely affected the
social and environmental sustainability of human lives [66].
A case study of LSP is selected to implement the proposed
risk management method for handling sustainable operation
risks in logistics businesses.

To manage the sustainable operation risk under the con-
text of COVID-19, eight criteria of sustainable operations
are selected. They are (i) service price and cost, (ii) service
performance and customer satisfaction, (iii) strategies, tactics
and competitiveness, (iv) operational technology, (v) waste
management, (vi) coordination and collaboration, (vii) safety,
healthy, security, and privacy, and (viii) employee-related
skills and workforce. These criteria cover three sustainable
dimensions (economic, environmental, and social). The risk
analysis is executed following a 1-to-5 scale of O-S-D risk
factors. The responses have been obtained using online ques-
tionnaire with participants comprising twelve experts at the
managerial level of each company. The ranking of 1 to 5 offers
expediency and ease of interpretation [67] which is suitable
when data collection is conducted via the online platform.
The RPN is calculated based on the standard FMEA method.
The analysis results are shown in Table 8.

All eight criteria with twelve participants constitute the
DMUs, producing a total of 8 x 12 = 96 DMUs. To apply
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the DEA cross-efficiency approach, three risk factors
(O-S-D) are considered as the inputs and constant of one
as the output to obtain the DEA results of efficiency scores,
as shown in Table 9. The ANN contains four layers: the input
layer, two hidden layers, and the output layer. The risk factors
(O-S-D) go to the input layer, the output layer comprises the
efficiency scores with respect to the DEA cross-efficiency,
while the hidden layers contain four neurons. The results of
the ML approach are shown in Table 9, along with a compar-
ison between DEA and ML. When we prioritize the average
efficiency score, the service price and cost criterion yields
an average efficiency score of 0.3634, which is the highest
risk level. The average efficiency scores for the remaining
criteria are shown in Table 10. The RMSE of the ML approach
is 0.0006.

Another highlight of this case study is the prediction with
respect to modification of risk values when risk mitiga-
tion strategies are identified. The Malaysian government has
appropriate policies, plans, mechanisms and regulatory mea-
sures to help sustaining the logistics service sector. Among
the initiatives include the Short Term Economic Recovery
Plan (Penjana) and the National Technology and Innovation
Sandbox (NTIS), which focus on digitalization to spur eco-
nomic recovery. We anticipate that there is improvement in
risk mitigation pertaining to the Malaysian logistics domain.
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TABLE 9. The results of efficiency score of DEA and ML for the case study.

DMU Cross-eff. ML-eff. DMU Cross-eff. ML-eff. DMU Cross-eff. ML-eff.
1.LSP1-A 0.2681 0.2684 33. LSP5-A 0.2604 0.2607 65. LSP9-A 0.2313 0.2313
2.LSPI1-B 0.2681 0.2684 34. LSP5-B 0.3153 0.3151 66. LSP9-B 0.2604 0.2607
3.LSP1-C 0.4625 0.4623 35. LSP5-C 0.4125 0.4125 67. LSP9-C 0.2847 0.2843
4.LSP1-D 0.4333 0.4332 36. LSP5-D 0.7667 0.7667 68. LSP9-D 0.2667 0.2666
5.LSPI-E 0.4514 0.4514 37. LSP5-E 0.7667 0.7667 69. LSP9-E 0.2458 0.246
6. LSPI-F 0.4333 0.4332 38. LSP5-F 0.7667 0.7667 70. LSP9-F 0.8056 0.8056
7.LSP1-G 0.2743 0.2744 39. LSP5-G 0.7813 0.7813 71. LSP9-G 1 0.9999
8. LSP1-H 0.3229 0.3232 40. LSP5-H 0.7667 0.7667 72. LSP9-H 0.3542 0.3543
9. LSP2-A 0.2389 0.2389 41. LSP6-A 0.3333 0.3333 73. LSP10-A 0.2604 0.2607
10. LSP2-B 0.2451 0.2446 42. LSP6-B 0.309 0.3091 74. LSP10-B 0.4063 0.4065
11. LSP2-C 0.4396 0.4395 43. LSP6-C 0.4514 04514 75. LSP10-C 0.284 0.2838
12. LSP2-D 0.4688 0.4688 44. LSP6-D 0.7813 0.7813 76. LSP10-D 0.3153 0.3151
13. LSP2-E 0.3917 0.3917 45. LSP6-E 0.7667 0.7667 77. LSP10-E 0.7667 0.7667
14. LSP2-F 0.4333 0.4332 46. LSP6-F 0.7667 0.7667 78. LSP10-F 0.4125 0.4125
15. LSP2-G 0.3167 0.3153 47. LSP6-G 0.8056 0.8056 79. LSP10-G 0.2313 0.2313
16. LSP2-H 0.4333 0.4332 48. LSP6-H 0.4125 0.4125 80. LSP10-H 0.309 0.3091
17. LSP3-A 0.25 0.2495 49. LSP7-A 0.2743 0.2744 81.LSP11-A 0.8056 0.8056
18. LSP3-B 0.4063 0.4065 50. LSP7-B 0.2847 0.2843 82.LSP11-B 0.4514 0.4514
19. LSP3-C 0.8056 0.8056 51. LSP7-C 0.8056 0.8056 83.LSP11-C 0.4028 0.4019
20. LSP3-D 0.3153 0.3151 52. LSP7-D 0.2458 0.246 84.LSP11-D 0.7667 0.7667
21. LSP3-E 0.7667 0.7667 53. LSP7-E 0.7667 0.7667 85. LSP11-E 0.7667 0.7667
22. LSP3-F 04514 0.4514 54. LSP7-F 0.8056 0.8056 86. LSP11-F 0.3917 0.3917
23. LSP3-G 0.7667 0.7667 55. LSP7-G 0.7667 0.7667 87.LSP11-G 0.8542 0.8542
24. LSP3-H 0.8056 0.8056 56. LSP7-H 0.2 0.2001 88. LSP11-H 0.4028 0.4019
25. LSP4-A 0.3229 0.3232 57. LSP8-A 0.7813 0.7813 89. LSP12-A 0.3333 0.3333
26. LSP4-B 0.2986 0.2984 58. LSP8-B 1 0.9999 90. LSP12-B 0.3333 0.3333
27. LSP4-C 0.3819 0.3818 59. LSP8-C 0.7667 0.7667 91. LSP12-C 0.8056 0.8056
28. LSP4-D 0.3819 0.3818 60. LSP8-D 1 0.9999 92. LSP12-D 0.2944 0.2946
29. LSP4-E 0.2743 0.2744 61. LSPS-E 0.7667 0.7667 93. LSP12-E 0.7667 0.7667
30. LSP4-F 0.2389 0.2389 62. LSP8-F 0.2667 0.2666 94. LSP12-F 0.2944 0.2946
31. LSP4-G 0.8056 0.8056 63. LSP8-G 0.7667 0.7667 95. LSP12-G 0.3333 0.3333
32. LSP4-H 0.2743 0.2744 64. LSP8-H 0.2556 0.2505 96. LSP12-H 0.3819 0.3818
TABLE 10. The average efficiency scores based on the criteria.
Criteria Average Average RMSE
cross-efficiency ML-efficiency 7)
A. Service price and cost 0.3633 0.3634 0.0002
B. Service performance and customer satisfaction 0.3815 0.3815 0.0003
C. Strategies, tactics and competitiveness 0.5252 0.5251 0.0003
D. Operational technology 0.5030 0.5030 0.0001
E. Waste management 0.6247 0.6248 0.0001
F. Coordination and collaboration 0.5056 0.5056 0.0001
G. Safety, healthy, security, and privacy 0.6419 0.6418 0.0004
H. Employee-related skills and workforce 0.4099 0.4094 0.0015
All criteria 0.4944 0.4943 0.0006

This is consistent with the efficiency score that focuses on
the low-efficiency DMUs. Hence two criteria, i.e., the ser-
vice price and cost (A) and the service performance and
customer satisfaction (B), are selected to generate the antic-
ipated improvement. Table 11 depicts the short-term one
level improvement for the high risks related to the S and
D factors. We fix the O factor (the occurrence of risk
events) because it usually is stable since it is more related
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to external conditions. The improvement is also based on
the comments of participants on handling the impact of
COVID-19. As an example, the companies mentioned that
they strongly focus on cost reduction activities by provid-
ing flexible operations to support their customers based on
the emergency plan under an abnormal situation like the
COVID-19 pandemic. In summary, there are 24 improved
DMUs in total.
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TABLE 11. An ideal improvement scenario of risk mitigation for the case study.

Risks LSP 1 LSP2 LSP 3 LSP 4 LSP 5 LSP 6
O S D RN O S D RPN O S D RN O S D RN O S D RPN O S D RPN

Current

A 4 5 3 60 5 5 3775 4 4 4 o4 3 4 3 36 4 3 48 33 27

B 4 5 3 60 5 4 3 |60 2 3 4 24 3 4 4 48 32 5 30 3 3 4 36

Improvement scenario An example of one level of improvement

A 4 4 2 32 5 4 2440 4 3 3 36 33 2 18 4 2 3 24 32 2 12

B 4 4 2 32 5 3 2 30 2 2 3 12 33 3 27 31 4 12 32 3 18

Risks LSP 7 LSP 8 LSP 9 LSP 10 LSP 11 LSP 12

O S D RN O S D RPN O S D RN O S D RN O S D RPN O S D RPN

Current

A 4 4 3 48 1 1 4 4 5 3 4 60 4 3 4 48 1 1 3 3 33 3 27

B 4 3 3 36 1 1 1 1 3 4 48 2 3 4 24 2 2 3 12 3 3 3 27

Improvement scenario

A 4 3 2 24 1 1 3 3 5 2 3 30 4 2 3 24 1 1 2 2 32 2 12

B 4 2 2 16 1 1 1 1 2 3 24 2 2 3 12 2 1 2 4 32 2 12

= scenario of improving of risk factors
TABLE 12. The results of efficiency of improvement DMUs.
DMU ML- ML- DMU ML- ML- DMU ML- ML-
eff. eff imp. eff. eff imp. eff. eff imp.
1. LSP1-A 0.2684 0.3218 33.LSP5-A 0.2607 0.3045 65. LSP9-A 0.2313 0.2572
2.LSP1-B 0.2684 0.3218 34. LSP5-B 0.3151 0.3745 66. LSP9-B 0.2607 0.3045
9. LSP2-A 0.2389 0.2862 41. LSP6-A 0.3333 0.4019 73. LSP10-A 0.2607 0.3045
10. LSP2-B 0.2446 0.2907 42. LSP6-B 0.3091 0.3539 74. LSP10-B 0.4065 0.4514
17. LSP3-A 0.2495 0.2843 49. LSP7-A 0.2744 0.3325 81. LSP11-A 0.8056 0.8542
18. LSP3-B 0.4065 0.4514 50. LSP7-B 0.2843 0.3543 82. LSP11-B 0.4514 0.5401
25. LSP4-A 0.3232 0.3818 57. LSP8-A 0.7813 0.8056 89. LSP12-A 0.3333 0.4019
26. LSP4-B 0.2984 0.3333 58. LSP8-B 0.9999 0.9999 90. LSP12-B 0.3333 0.4019
—O0—ML-efficiency —2—ML-eff imp

The improvement DMUs of twelve companies

A
| | I

|

Tn

1 4 7 101316 1922252831 343740434649 52555861 646770737679 8285889194

FIGURE 9. The results of ML approach based on simulated data set for the case study.

The simulated data set (24 DMUs with improvement and
72 DMUs without improvement of risk factors) is used with
the ML approach to obtain the prediction efficiency scores.
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The results of the prediction stage of the 24 improved DMU,
along with a comparison, are shown in Table 12 and Fig. 9.
With the ML approach, the average prediction efficiency
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TABLE 13. An average of efficiency changed for ML and DEA Cross-efficiency approach.

Risks Average ML-efficiency Average DEA cross-efficiency (Rerun)
Base Improvement Percentage Base Improvement Percentage
(rank*) (rank*) (rank*) (rank*)

A. Service price and cost 0.3634 (8) 04114 (7) 13.20 0.3633 (8) 0.4183 (7) 15.12

B. Service performance and 0.3815(7) 0.4315 (6) 13.09 0.3815 (7) 0.4421 (6) 15.88

customer satisfaction

C. Strategies, tactics and 0.5251 (3) 0.5251 (3) - 0.5252 (3) 0.5205 (3) -0.89

competitiveness

D. Operational technology 0.5030 (5) 0.5030 (5) - 0.5030 (5) 0.5002 (4) -0.55

E. Waste management 0.6248 (2) 0.6248 (2) - 0.6247 (2) 0.6008 (2) -3.82

F. Coordination and 0.5056 (4) 0.5056 (4) - 0.5056 (4) 0.4982 (5) -1.45

collaboration

G. Safety, healthy, security, and 0.6418 (1) 0.6418 (1) - 0.6419 (1) 0.6260 (1) -2.47

privacy

H. Employee-related skills and  0.4094 (6) 0.4094 (8) - 0.4099 (6) 0.4098 (8) -0.02

workforce

* ranking on low to high risk level

scores of the risk of both criteria (service price and cost
as well as service performance and customer satisfaction)
change from 0.3634 to 0.4114 and 0.3815 to 0.4315, respec-
tively, when applying the abovementioned risk mitigation
scenario. Other non-improvement criteria remain unchanged.
The results are as shown in Table 13.

To confirm the robustness of the ML approach,
Table 13 presents the prediction results by re-executing the
DEA cross-efficiency method for comparison. The percent-
age of change in the improved criteria under DEA cross-
efficiency is higher than those of the ML approach. Moreover,
for all non-improvement criteria, the percentage of change
decreases. This implies the limitations of using the DEA
cross-efficiency method for prediction purposes.

V. MANAGERIAL IMPLICATIONS AND CONCLUSION

According to the illustrations and case studies presented
in Section 4, the implications pertaining to offering risk
management strategies and/or policy recommendations can
be deduced. Knowledge of these risks is needed by decision-
makers in risk management. This study sheds light on how the
proposed approach is helpful for the evaluation and prediction
of efficiency based on risk information with respect to sus-
tainable operation. There are two main findings. First, based
on the FMEA-DEA cross-efficiency, the efficiency scores of
DMUs of this method do not completely rely upon the RPN
value. From this phenomenon, it shows that the DEA of risk
assessment result does not adhere to the mathematical for-
mula for computing the RPN, which is questionable as men-
tioned in the literature. Second, the efficiency scores obtained
through the ML approach are comparable (in fact similar) to
the results of DEA cross-efficiency method. And based on the
literature which re-conducted DEA method, changes occur on
all the efficiency scores even for the non-improved factors,
leading to inconclusive judgement whether the strategies are
effective or otherwise. In contrast, the ML approach targets
only on predicting the improved ones. Nonetheless, managers
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adopting the methodology can encounter the following chal-
lenges.

Primarily, to obtain the complete results, the FMEA
method requires tackling the O-S-D score definition. After
the O-S-D information is identified, the manager can run
the failure modes evaluation process using the DEA cross-
efficiency method. In this phase, the risk level of DMUs can
be presented by the risk-based efficiency. A DMU with a high
score is deemed to have a low level of risk, while a DMU with
a low score is considered as a high level of risk. The manager
can then take note of the DMUs with low-efficiency score
when implementing risk mitigation strategies and monitoring
process establishment. However, there are various risk man-
agement strategies. Predicting the possible outcomes using
ML under the strategy being considered (scenario prediction)
is one of the most important processes in risk mitigation. The
manager can establish the expected outcomes as a monitoring
target pertaining to the risk mitigation plan.

In summary, the main research findings according to the
illustration and case study indicate that the ML approach
is an effective prediction method that can be applied in
mitigation—monitoring stage of risk management. Com-
bined with DEA, this DEA-ML method has been verified
to yield reliable and robust results. When applying this risk
management approach of integrated DEA and ML to a case
study of LSP in Malaysia to manage the risks of sustainable
operations under the COVID-19 pandemic, the results are
noteworthy and insightful. Some managerial and high level
policy recommendation are discussed, as follows.

Service price and cost, performance, and customer satisfac-
tion are considered to have a higher degree of risk in operation
than the risk of operational technology. Since technology-
based solutions are in the country’s logistics development
plan set before the COVID-19 outbreak, the government,
as well as businesses, should re-adopt the development
policies that focus on cost reduction and increase the per-
formance and flexibility in providing a logistics service to
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customers that must be balanced against pandemic control.
Short-term and urgent solutions in service cost and perfor-
mance are also necessary. Moreover, the prediction results
indicate that the risk of skilled workers stands as the next
priority influencing the risk mitigation policy, after the risk
of service cost and performance have been focused.

In conclusion, the present study has proposed an integrated
DEA and ML method for predicting and determining the risk
level based on the efficiency of DMUs. The contributions of
this paper are two fold. Firstly, the proposed DEA module
improves the existing FMEA technique and the traditional
DEA by applying the DEA cross-efficiency approach. Sec-
ondly, the ML algorithms provide better power of prediction
than that of the DEA re-conducted scheme. The outcomes of
this study support managers and decision-makers to assess
and monitor the level of risk for handling forthcoming events
in unusual conditions. It also serves as a useful knowledge
repository whereby the appropriate risk treatment strategies
can be planned and the associated results can be predicted,
contributing towards significant robustness in sustainable
business operations. However, there are certain drawbacks
to this suggested technique, such as the assessment informa-
tion supplied by decision makers for FMEA-DEA be given
fuzziness and ambiguity while transferring language infor-
mation to precise DEA input. Particularly when applied to
large-scale collective decision-making. In future work for
the DEA, it can be conveyed via fuzzy information in more
relevant circumstances. For example, when compared to a
typical DEA, the fuzzy logic related tools are helpful for
describing the qualitative assessment information of decision
makers. On the one hand, using the ML technique, a shallow
network may be used to a small and uncertain dataset. On the
other hand, a larger number of DMUs can be used to further
improve the accuracy. This increases the size of the training
and validation data sets, which can yield more robust results
with statistical significance.
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