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ABSTRACT In millimeter-wave (MMW) networks, the channel state information (CSI) carries essential
information from the user to the base station (BS). The CSI values depend highly on the geometrical
and physical features of the environment. Therefore, it is impossible to generate CSI data for computer
simulations or analysis through mathematical models. The CSI in MMW networks can only be acquired
through physical measurement(s) or with the help of expensive and complicated ray-tracing software. For
many users, both these options are infeasible. This work aims to propose a simple and fast method that can
generate artificial samples from the real data samples while ensuring that the artificial samples look similar
to the real ones. The proposed method helps increase the size of existing CSI datasets and likely to benefit
the evolution of deep learning models that need a large amount of training/testing data. The proposed method
comprises two parts. (i) The first part applies data clustering and transformations such as principal component
analysis (PCA)-based dimensionality reduction and probability integral transform (PIT) to convert the real
data into a multivariate normal distribution of a smaller number of variables, and (ii) The second part
synthesizes artificial data by learning from the multivariate normal distribution of the first part. The last
step in the second part is to apply PIT and inverse PCA transformations to transform the artificial data into
the same space as the input data. We compared the proposed method’s performance with the well-known
Kernel density estimation (KDE)-based methods that use Scott’s rule and Silverman’s rule to choose the
bandwidth parameter value. The results show that the artificial samples generated by the proposed method
exhibit very high similarity with the real ones as compared to the KDE-based methods.

INDEX TERMS Millimeter wave networks, wireless communications, machine learning, principal compo-
nent analysis, artificial data.

I. INTRODUCTION
Millimeter-wave (mmWave) and massive-multiple-input
multiple-output (MIMO) are two critical components of
fifth-generation (5G) networks. The spectrum of mmWaves
lies between 30 GHz and 300 GHz [1] and meets the
wider bandwidth and low latency requirements of the 5G
communication systems. However, the implementation of
mmWave communications also has technical issues, such
as (i) mmWaves suffer very high path loss as compared to
the traditional wireless communications that operate below
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6 GHz and (ii) are sensitive to blockages because of its
lesser penetration capability [2]. A technique known as
beamforming (BM) can improve the range of themmWave by
concentrating the transmission power within a narrow beam
towards the receiver. In traditionalMIMOnetworks, the inter-
ference plays a major role in the signal-to-interference-
noise-ratio (SINR) values. However, in the mmWave-based
MIMO systems, BM limits the role of interference, and
SINR values depend on the signal loss and blockages.
The mmWave is adopted in two communication standards:
(a) IEEE 802.15.3-2016; and (b) IEEE 802.11ay. The IEEE
802.15.3-2016 facilitates data and multimedia transmission
using the 2.4 GHz and 60 GHz frequencies in wireless
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personal area networks (WPAN). The IEEE 802.11ay is a
wireless local area network (WLAN) standard that has a
frequency of around 60 GHz and bandwidth of 2.16 GHz.
The massive-MIMO uses a large number of antennas at the
small-base-station (SBS), and improves the performance of
mmWave networks by suppressing interference in dense net-
works, providing wireless back-haul, and improving energy
efficiency.

Massive-MIMO is another key technology of 5G networks
in which the small-base-stations (SBSs) employ an array of
antennas. In massive-MIMO systems, each user-equipment
(UE) receives signals from multiple antennas of each SBS.
The UE computes the channel state information (CSI) using
data-packets from each antenna of different SBSs. The UE
should transmit the CSI back to the SBSs through feedback
to enable the SBSs to perform tasks vital to maintain per-
formance in the network, e.g., BM, spatial multiplexing, and
user-association.

In massive-MIMO networks, researchers developed the
geometry-based stochastic channel model (GSCM) that con-
tains the physical models of the components of the net-
work [3]. However, in the realm of mmWave, the CSI
is highly dependent on the geometrical and physical fea-
tures of the environment, limiting the usefulness of the
mathematical models. Therefore, researchers have recom-
mended collecting the CSI through real-world measurements
or ray-tracing software. Both these approaches require expen-
sive software tools, signal measurement instruments, and
human-efforts [4]. In short, the artificial CSI data of mmWave
cannot be generated using any analytical model or mathemat-
ical equations. It is impossible to extend a dataset without
recapturing data through physical experimentation or using
commercial ray-tracing software. Both these methods are
inaccessible for most of the users, and they also require
expertise in wireless communications.

In the field of data science, methods for the generation of
artificial data comprise two steps. The first step is to esti-
mate the probability-density-function (PDF) from the given
data, and the second is to use the estimated PDF to sample
new data points [5]. The density estimation can either be
explicit or implicit [6]. Explicit methods of density estima-
tion are of two types: (i) parametric and,(ii) non-parametric.
Parametric methods postulate a model for the data and then
use the data to fit the model’s parameters. The PDF of the
data is usually unknown, making it very difficult to esti-
mate the it by parameter-fitting of known function types.
The non-parametric methods estimate the PDF by finding
a model that fits the distribution of the given data. His-
tograms are the most basic type of non-parametric method
of density estimation. The kernel density estimation (KDE)
method is a popular non-parametric method that assumes
that we can express the data’s distribution as a sum of each
data point’s kernel function, and the most common kernel
function used is the normal distribution function. It has a
critical parameter bandwidth that controls the smoothness of
the density estimate. When the bandwidth is too small, the

density estimate becomes over-fitted and has many peaks.
When the bandwidth is too large, then it skips critical details.
For high-dimensional and large-size datasets, it is difficult
and computationally intensive to use the KDE method [7].
The generative adversarial Network (GAN) is an example of
methods that implicitly estimate the PDF of the given data.
The GANs consist of two models: Generator and Discrim-
inator. The role of the generator is to synthesize artificial
data samples, and that of the discriminator is to distinguish
the artificial data samples from the real ones. The generator
and discriminator compete against each other until the system
reaches an equilibrium state. Although the idea of GANs is
impressive, they have some critical problems [8]–[10], such
as the following: (i) Mode collapse, which is the lack of
diversity in the artificial data, and this happens because the
generative adversarial networks (GANs) generate only a few
types of signals; (ii) The architecture of the discriminator and
generator should be competitive to each other, and imbal-
ance architectures lead to unstable training; (iii) The GANs
also consume a lot of training time to be able to generate
high-quality artificial data; (iv) They have complex architec-
tures that require too many design choices and optimization
of many parameters.

This work proposes a simple and fast method to generate
high-quality artificial CSI data of mmWave networks. The
proposed method is motivated by the GAN’s architecture and
does not estimate the PDF of the input data. It is also fast
and simple, like the statistical methods. The proposedmethod
consists of two parts. The first part processes the real data,
and the second generates the artificial data. The first part
performs three tasks: (i) Division of the data into clusters; (ii)
Dimensionality reduction of each cluster; and (iii) Transfor-
mation of the data clusters into a multivariate normal distri-
bution. The second part generates the artificial data using the
multivariate normal distribution of the first step. The second
part generates data for one dimension1 at a time, starting
from the first to the last. It samples the first dimension’s data
from the normal distribution of the first dimension of the first
part’s multivariate normal distribution. For the second to last
dimensions, it uses a multilayer perceptron (MLP) model that
learns the correlations between the current dimension and
the first one using the first part’s data. It uses the MLP to
predict the values for the remaining dimensions of data. It also
transforms the artificial data back to the space of the given
real data.

We conducted experiments on a popular CSI bench-
marks [4] to demonstrate the efficiency of the proposed
method. We also compared the performance of the proposed
method with two KDE methods. We used two types of tests
to measure the performance of the proposed method. The
first test uses the Kendall correlation coefficient to find the
similarity between the artificial and real samples. The second
test is employed to calculate the number of local extrema in

1Please note that in the context of this article, the terms variables, dimen-
sions and columns of the data have the same meaning.
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FIGURE 1. A mmWave network of three SBSs and two UEs.

the samples to detect outliers’ presence. The outliers cause
non-smoothness in the samples. The results indicate that the
proposed method outperforms the KDE-based methods by
generating data samples of high similarity with the real data
and also is free of outliers that cause non-smoothness.

This article is organized as follows. In Section II we
present the relevant background information. In Section III
the proposed method is presented. Section IV contains the
experimental results in detail. The last section contains the
conclusion.

II. BACKGROUND
A. CHANNEL STATE INFORMATION
We consider a MIMO mmWave communications network
that employs orthogonal frequency division multiplexing
(OFDM). The network consists of N user-equipments (UEs),
M SBSs, and K subcarriers. The SBSs use the mmWave
links to transmit data to the UE. We denote the set of UE
with U = {U1,U2, . . . ,UN }, and the set of SBSs with
B = {B1,B2, . . .BM }. We assume that each SBS is equipped
with a uniform planar array (UPA) based antenna that has
A1×A2 antenna elements with uniform spacing of d , and each
user has a single antenna element. Fig. 1 shows a mmWave
network in which three SBSs transmit data to two UEs by
using directed beams. The signals from the SBS reaches the
UE following up to L number of multipaths. Multipaths exist
because the objects present in the environment cause the sig-
nals to go through different degrees of reflection, refraction,
and scattering before reaching the UE. The figure also shows
the channels between each pair of SBS and UE, and hki,j
denotes the block-fading channel between the SBS Bi and UE
Uj for the subcarrier k .
As already mentioned, for each pair of SBS and UE,

the channel consists of up to L paths, and for each path,
we have an angle-of-departure (AoD) at the SBS and an
angle-of-arrival (AoA) at the UE. Both AoD and AoA
have azimuth and elevation components. For Bi and Uj,
the azimuth and elevation AoD at the SBS are given by φAi,j,
φEi,j, respectively. The azimuth and elevation AoA at the Uj
can be denoted by θAi,j, and θ

E
i,j, respectively. Fig. 2 illustrates

FIGURE 2. Illustration of the AoD and AoA between a pair of SBS and UE.

the azimuth and elevation angles. The channel gain hki,j is
expressed as follows:

hki,j =
L−1∑
l=0

√
pi,jl
K
eµ

i,j
l +

2πk
K τ

i,j
l Bai(φAi,j, φ

E
i,j) (1)

In the above equation, pi,jl , µ
i,j
l , and τ

i,j
l denote the power,

phase, and propagation delay of the signal that follows path
l. The symbol B denotes the bandwidth of the signal. The
function a(φAi,j, φ

E
i,j) denotes the array response vector of the

SBS Bi and is given by:

a(φAi,j, φ
E
i,j) = az(φEi,j)⊗ ay(φ

A
i,j, φ

E
i,j)⊗ ax(φ

A
i,j, φ

E
i,j) (2)

where, ax , ay, and az denote the array response vectors in the
x, y, and z directions, and their values are given as follows:

ax(φAi,j, φ
E
i,j)

= [1, eĵkdsin(φ
E
i,j)cos(φ

A
i,j), . . . , eĵkd(Ax−1)sin(φ

E
i,j)cos(φ

A
i,j)]T (3)

ay(φAi,j, φ
E
i,j)

= [1, eĵkdsin(φ
E
i,j)sin(φ

A
i,j), . . . , eĵkd(Ay−1)sin(φ

E
i,j)sin(φ

A
i,j)]T (4)

az(φEi,j)

= [1, eĵkdcos(φ
E
i,j), . . . , eĵkd(Az−1)cos(φ

E
i,j)]T (5)

In the above equations, ĵ denotes the imaginary number,
and [..]T denotes the transpose operation. The parameters in
the above equations (e.g., AoD and AoA angles, propagation
delays of the signals, etc.,) depend on the multi-dimensional
environment geometry, materials, locations of SBSs and UEs,
etc [4]. Therefore, we need to rely on accurate ray-tracing
simulations to provide the necessary data. It is impossible
to generate new CSI data samples without any accurate
ray-tracing software. In this work, we used a dataset of real
CSI samples, denoted by (Ri), and is given as follows.

Ri =


h1i,1 h2i,1 h3i,1 . . . hKi,1
h1i,2 h2i,2 h3i,2 . . . hKi,2
. . .

h1i,N h2i,N h3i,N . . . hKi,N

 (6)
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The dataset Ri contains the CSI samples belonging to the
SBS Bi, and any element hki,j indicates the complex CSI value
of the k th-subcarrier between the SBS Bi and UE Uj. In the
above equation, hki,j is a complex number and is given by
{x1+ĵy1, x2+ĵy2, . . . , xK+ĵyK }, where xm, yn ∈ R, form, n ∈
{1 . . .K }. In this work, we represent a complex number as
a concatenation of the real and imaginary parts as follows:
hki,j = {x1, x2, . . . , xK , y1, y2, . . . ., yK }.

III. PROPOSED METHOD
This section contains the description of the proposed method.
Fig. 3 shows an overview of the proposed method. The input
is a real CSI dataset, and the output is the artificial CSI
dataset. The real dataset is denoted by Ri, and refers to the
CSI samples of the SBS Bi. The first step is to cluster the
given dataset Ri into B clusters based on similarity between
the samples. The steps following the initial clustering analyze
and synthesize artificial data in a cluster-by-cluster manner.
The second step is to apply the principal component analysis
(PCA)-based dimensionality reduction to transform the data
from 2K to K ′ dimensions, where K ′ < 2K . The third step is
to transform the distribution of the data to multivariate normal
distribution through the application of probability integral
transform (PIT) transformations. The fourth step applies a
procedure to generate the artificial data using an MLP-based
regression model. The fifth step transforms the artificial data
into the same space as the original data through the applica-
tion of PIT transformations. We discuss each step in detail in
the remaining part of this section.

A. CLUSTERING OF DATA
An essential step of the proposed method is clustering that
enhances the PCA [11], [12] to successfully reduce the
dimensions of the data with minimum information loss.
We employed the PCA method for the dimensionality reduc-
tion whose information loss is controlled by the percentage
of variance explained by the selected number of principal
components (i.e., number of dimensions after transforma-
tion) [13]. In large-size datasets, a fewer number of principal
components explains a small percentage of the total variance,
and hence it is impossible to reduce the dimensions of huge
size data-sets to a smaller value with a minimal information
loss.

The PCA method can reduce the dimensions to a greater
extent where there exists a similarity between the samples.
Therefore, we divide the given dataset into clusters of rela-
tively similar CSI signals and reduce the dimensions of each
cluster separately using the PCA method. The CSI signals
have complex shapes, therefore we propose to first transform
the signals into a simplified notation that retains the following
three features of the data: (i) Number of local extrema (max-
ima or minima); (ii) Locations of the extrema; and (iii) Type
of extrema as eithermaxima orminima.We empirically found
that clustering using these three features can significantly
enhance the performance of the PCA method as compared to

TABLE 1. Description of important variables and parameters.

using random clustering. The proposed clustering method is
described formally in the remaining part of this sub-section.

The proposed clustering method consists of two steps:
(i) Application of the data transformation and (ii) Clustering
of the transformed data using the K-Means method. The data
transformation step contains a transformation function which
is applied individually to each channel gain value, i.e., hki,j that
indicates the channel gain of the k th subcarrier of the channel
between the SBS Bi and user uj. The transformation function
for hki,j is shown-below, and also requires the channel gain of
the k − 1th and k + 1th subcarriers.

5k
i,j = Tc(hki,j|{h

k−1
i,j , h

k+1
i,j })

=


+1, if hk−1i,j < hki,j > hk+1i,j

−1, if hk−1i,j > hki,j < hk+1i,j

0, else

(7)

We apply the function Tc(..) to all elements of Ri, and
denote the resulting transformed form with Si, as follows.

Si =


51
i,1 52

i,1 . . . 5K
i,1

51
i,2 52

i,2 . . . 5K
i,2

. . .

51
i,N 52

i,N . . . 5K
i,N


The next step is to apply the K-Means method to partition

the complete dataset (Ri) into clusters of smaller datasets,
denoted by Ri,j, where j ∈ {1, 2, ..,B} is the index of the
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FIGURE 3. Overview of the proposed method.

Algorithm 1: Algorithm to Partition the Real Data Sam-
ples Into B Clusters

1 Input: Ri real dataset, Si transformed dataset, Im ∈ Z+ ;
2 Initialize the cluster centroids {µ1, µ2, . . . , µB} ;
3 Initialize Ri,j = φ, for j = 1..B and set it = 0;
4 while it < Im do
5 for each 5k

i,j ∈ Si do
6 cki,j = argmin

x∈B
||5k

i,j − µx ||
2;

7 end
8 for x ∈ B do

9 µx =

∑M
i=1 1{c

k
i,j=x}5

k
i,j∑M

i=1 1{c
k
i,j=x}

10 end
11 it = it + 1;
12 end
13 for j = 1 to N do
14 for k = 1 to K do
15 v = cki,j;
16 Rki,v = Rki,v ∪ h

k
i,j;

17 end
18 end
19 Output: {R1i,j,R

2
i,j, . . . ,R

K
i,j}

cluster, and B the number of clusters. Algorithm 1 shows the
procedure to cluster the data samples. The algorithm consists
of two separate loops. The first ’while’ loop performs the
clustering using the transformed dataset Si. The second ’for’
loop uses the results of the clustering of the first step to cluster
the dataset Ri. The first inner loop (lines 5-7) allocates the
sample 5k

i,j ∈ Si to the cluster whose mean (µx) is closest to
its value (i.e., having the smallest Euclidean distance), where

µx denotes the mean of the x th cluster. The second inner
loop (lines 8-10) computes the new means for all clusters
as equal to the mean of the samples allocated to them. The
first part performs clustering using the transformed dataset Si,
however, the clustering results remain valid for the original
dataset Ri. The second outer loop (lines 13-18) clusters the
samples of dataset Ri using the results of the previous part of
the algorithm.

B. DIMENSIONALITY REDUCTION
Dimensionality reduction reduces the number of variables in
a cluster of real CSI data (i.e., Ri,j). This step is important in
our work because it enables synthesizing of data with fewer
dimensions. The proposed method uses the PCA method,
a popular method of dimensionality reduction. Given a data
cluster Ri,j having B rows and 2K columns (i.e., a CSI sample
has K real and K imaginary values), the PCA method can
reduce the number of columns to K ′, where K ′ < 2K . In the
following, we briefly describe the process of applying the
PCA to Ri,j as follows:

Ri,j[k] = Ri,j[k]− µi,j[k], k ∈ {1 . . . 2K } (8)

Ci,j =
1

B− 1
RTi,j.Ri,j (9)

λi,j.Wi,j = Ci,j.Wi,j (10)

The above equations use the following notations: Ri,j[k]
denotes the k th column of Ri,j; µi,j[k] denotes the mean of
Ri,j[k]; Ci,j is the covariance of Ri,j which can be obtained
by taking the dot product of Ri,j and its transpose (RTi,j); λi,j
and Wi,j denote the Eigenvalues and Eigenvectors of Ci,j,
respectively. We call Wi,j as principal components of Ri,j.
We assume that λi,j contains Eigenvalues in a descending
order and Wi,j also contain Eigenvectors following the order
of Eigenvalues in λi,j, i.e., the first column ofWi,j contains the
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Eigenvector corresponding to the largest Eigenvalue in λi,j.
To reduce the dimensions of data, we need to keep the first
K ′ Eigenvectors in Wi,j. Mathematically, the dimensionality
reduction can be expressed as follows:

W ∗i,j = Wi,j[, 1 : K ′] (11)

R∗i,j = Ri,jW ∗i,j (12)

In the above expression, R∗i,j denotes the data (Ri,j) pro-
jected to the subspace of K ′ dimensions (where K ′ < 2K ).
The dimensions of R∗i,j is equal to (bi,j × K ′), where bi,j
denotes the number of samples in the cluster Ri,j. An impor-
tant design decision is to choose a suitable value of K ′ for a
given batch size B. We choose the value of K ′ by considering
the explained variance of each principal component. The
explained variance is often used in statistics to express the
model’s accuracy, and its value can lie between 0 and 1, and
higher values are considered better. We use the symbol νi to
denote the explained variance of the ith principal component
(where the ith principal component is equal to the Eigenvector
at the ith column inWi,j) is given by:

νi =

√
λi∑2K

i=1
√
λi

(13)

We can minimize the information loss in reducing the
dimensions of the data by choosing a value of K ′ which is
a compromise between being a small and a high value of per-
centage of explained variance, i.e.,

∑K ′
i=1 νi. K

′ is considered
a user-defined parameter in this work, and the experimental
results section discusses the observations relevant to choosing
appropriate values of the parameters including B and K ′.

C. TRANSFORMATION TO NORMAL DISTRIBUTION
We apply the PIT method [14] to transform the distribution
of each column of data to normal. We should independently
apply the PIT method to each dimension of data. The trans-
formation procedure consists of the following steps. Let us
consider the k th column of the data-cluster, denoted by R∗i,j[k]
whose PDF is fR, and cumulative distribution function (CDF)
is FR. The transformation of R∗i,j[k] comprises the following
steps.

Ui,j[k] = FR(R∗i,j[k]) (14)

RNi,j[k] = F−1N (Ui,j[k]) (15)

The above equations show the two steps. The first step is to
transform R∗i,j using its own CDF that returns a uniform dis-
tribution Ui,j[k] ∼ U (0, 1). The second step is to transform
the data obtained in the first step by the inverse CDF of the
standard normal distribution (N (0, 1)), which is also known
as the Quantile function. The data obtained after applying
inverse CDF transformation to Ui,j[k] has the normal dis-
tribution, denoted by RNi,j[k]. The quantile function, denoted
F−1N , does not have a closed-form algebraic equation, and it
should be determined by approximation. Currently, almost
all statistical softwares contain the implementation of the

quantile function of the normal distribution. Readers can refer
to the documentation of individual tools for further details,
e.g. ’norm.ppf’ function in Python’s SciPy package [15].

D. GENERATION OF ARTIFICIAL DATA
The task of synthesizing the artificial data is to generate a
multivariate normal distribution of K ′ variables with correla-
tions between different variables (or columns). The proposed
work sequentially generates the data starting from the first to
the last column.We sample data from a normal distribution to
generate the first column, and use an MLP regression model
to generate data for the remaining columns. The remaining
part of this section describes the algorithms for the generation
of artificial data.

Algorithm 2: Algorithm to Generate the First Column of
the Artificial Data
1 Input: RNi,j[1]: First column of the data-cluster RNi,j
ζm = E(RNi,j[1]);

2 ζs =
√
E(RNi,j[1]− ζm)2;

3 Generate an array of data, X ∈ U (0, 1) ;
4 Apply transformation ANi,j[1] = F−1N (X , ζm, ζs) ;
5 Output: ANi,j[1]

Fig. 2 shows the method to generate the first column of the
batch of the artificial data, denoted by Ai, jN [1]. The input
is RNi,j[1] (i.e., the first column of RNi,j), and the output is
the first column of the artificial data, ANi,j[1]. The method
first computes the mean (ζm) and standard deviation (ζs) of
RNi,j[1]. Assuming that the artificial data’s batch size is equal
to the real dataset, the remaining part of the algorithm gener-
ates random real numbers following the normal distribution
using the inverse CDF method. In the inverse CDF method,
we first sample random numbers X from a uniform distri-
bution U (0, 1), and then transform the generated data using
the inverse-CDF of the normal distribution, F−1N (ζm, ζs) [15].
The length of X can be same as the length of RNi,j[1] which is
denoted by bi,j.

Algorithm 3: Algorithm to Generate the Second to K ′

Columns of the Artificial Data
1 Input: ANi,j[1], R

N
i,j ;

2 for i = 2 to K ′ do
3 Train the MLP regressor (MR) with data {RNi,j[1],

RNi,j[i])} ;
4 UsingMr , predict the value of ANi,j[i] by giving input

ANi,j[1] toMR

5 end
6 Output: ANi,j[2] . . .A

N
i,j[K

′]

Algorithm 3 shows the method to generate the second to
K ′th columns of the artificial data (ANi,j[2] . . . [K

′]). The input

83446 VOLUME 9, 2021



U. F. Siddiqi et al.: Machine Learning Method to Synthesize CSI Data in MMW Networks

are the batch of real dataset (RNi,j), and the first column of the
batch of artificial data (ANi,j[1]). The method uses an MLP-
model to predict the values of the new columns using the
values of the first column, i.e., we use the MLP to predict
the columns 2 to K ′ using the data of the first column. For
each column (where, k indicates the index of the column),
the prediction consists of two steps: (i) Training of the MLP
model (MR) using the data of the two columns RNi,j[1], and
RNi,j[k]; and (ii) Using MR to predict the values when the
input to it is ANi,j[1]. The prediction returns the values of
ANi,j[k], i.e., the k

th column of the data-cluster of the artificial
data. The MLP used in the regression consists of single input
and output with a hidden layer of lm number of neurons.
The activation function is rectified linear unit (ReLU). The
training of the MLP uses two columns of the real dataset
RNi,j[1] and R

N
i,j[k], where k is the index of the column whose

data we need to generate. Up-to vr% of the data is used
as a validation set and the remaining as the training set in
each batch. The training also uses regularization, and the
weight-decay parameter of L2-regularization is denoted by
αr . The learning-rate that controls the amount of change in the
value of parameters is denoted by αl . The training of weights
is accomplished using Adam [16], which is a popular stochas-
tic gradient-based algorithm. The convergence criterion of
the training is considered equal to the occurrence of up-to nr
number of iterations with an improvement less than tr in the
value of the loss function, and the training always terminates
after Tr number of iterations.

E. INVERSE TRANSFORMATIONS
The generated artificial data have a normal distribution and
are in the K ′-dimensional space. The PIT method describes
the method to transform the data in any distribution to the
standard uniform distribution (U (1, 0)) by transforming it
from its CDF. Similarly, the data with a standard uniform
distribution can be transformed to any other distribution by
employing the inverse-CDF of the target distribution. In this
work, we apply three transformations to the artificial data
to project it to the same space as the input CSI data, and
transformations are applied independently to each column.
Below we discuss the procedure to obtain the k th column of
the artificial data, denoted by ANi,j[k]. The first transformation
inFN , i.e., the CDF of the normal distribution to transform the
data to the uniform distribution. The second transformation
is to apply the inverse CDF of the R∗i,j[k], denoted by F−1R .
The third transformation is to multiply by W ∗i,j to project the
data back to the space of K -dimensions. The mathematical
expressions denoting the application of three transformations
on ANi,j[k] are given below.

A∗i,j = FN (ANi,j) (16)

A∗i,j = F−1R (A∗i,j) (17)

Ai,j = A∗i,j.(W
∗
i,j)

T (18)

TABLE 2. Parameters used in dataset generation.

TABLE 3. Parameters of the proposed method.

In the above equations,FN refers to the CDF function of the
standard normal distribution, and FR

−1 refers to the inverse
CDF of Ri,j. The last equation indicates the transformation
from the K ′ to K dimensional space. Please note that the
dimensions of A∗i,j, and W ∗i,j are equal to (bi,j × K ′), and
(2K × K ′), and the dot-product of A∗i,j.(W

∗
i,j)

T project the
artificial data to the 2K -dimensional space.

IV. EXPERIMENTAL RESULTS
This section describes the experimental results conducted to
demonstrate the performance of the proposed architecture.

In this work, we use the mmWave dataset, ’Deep-
MIMO’ [4].We configure the dataset to use raytracing data of
the scenario ‘‘O1’’ with a 60 GHz operating frequency. The
scenario ‘‘O1’’ is an outdoormodel and consists of two streets
and one intersection. The SBS lie along the roads’ sides, and
the UEs lie uniformly distributed on the streets. The model
also contains buildings of varying heights that affect the path
of the signals. Table 2 shows the critical parameters used in
the dataset generation. Please note that the parameters not
specified in Table 2 maintain their default values.

In the selection of the parameter values of the proposed
method, a critical decision is to choose the B and K ′ values.
These two values control the amount of information loss in
reducing the dimensions of the given real dataset. Increasing
the number of clusters, i.e., the value of B enables us to
choose a smaller K ′ while ensuring minimal information
loss. In this work, we want to keep K ′ to a smaller value
to prevent the generation of high-dimensional artificial data.
We measure the information loss of a data sample as the
Euclidean distance between a recovered data sample and its
original data sample, where recovered data is the one which
is inverse transformed to the original 2K dimensions after
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being reduced toK ′ dimensions. Fig. 4 shows the relationship
between the values K ′, B, and information loss using the
dataset of B3. The results show that for K ′ = 3 and B = 500,
the upper, middle, and upper quartiles of the loss values are:
0.0566, 0.124, and 0.1989, respectively. For K ′ = 4, and
B′ = 500, the lower, middle and upper quartiles of the loss
values are: 0.033, 0.077, and 0.131, respectively. The loss
values for the remaining pairs of K ′ and B are higher than
these two cases. Therefore, we used K ′ = 3 and B = 500 in
this work.

The mmWave networks contain a large number of users
visible to each SBS, a large number of subcarriers, and
multi-paths between the SBS and users [4]. Therefore,
the CSI dataset of even one SBS has a high number of rows
and columns, i.e., it is both high dimensional and has many
samples of different shapes. We need to reduce the dimen-
sions of the data to simplify the problem of the generation of
synthetic data. A challenge in dimensionality reduction is to
keep the information loss to a small value. We propose a data
clustering method that uses an innovative data transformation
and enable us to cluster the CSI dataset for dimensionality
reduction with very small information loss. Here, we demon-
strate the benefit of applying the proposed clustering method
by comparing it against two alternative approaches of doing
clustering: random clustering, and no-clustering. In random
clustering, we randomly divide the samples into B number of
clusters, and in the no-clustering approach we do not divide
the data. Fig. 5 shows that the mean information loss in
reducing the dimensions while employing: (i) the proposed
data method, (ii) random-clustering, and (iii) no-clustering.
The plot shows the results of information loss in applying
dimensionality reduction with the number of reduced dimen-
sions equal to three (K ′ = 3) to the dataset of B3 that has
50K samples, and 128 columns (K = 128). The results
show that the proposed clustering method has an information
loss of only 0.14, whereas the alternative approaches suffer
a very high information loss that lies between 0.5–1.29. The
significant loss of information results in the generation of dis-
torted signals. Fig. 6 shows the CSI samples generated using
the three approaches of doing clustering. The figure shows
that the samples generated using random and no-clustering
are distorted, and the sample generated using the proposed
method is not distorted. These simulations suggest that the
proposed clustering method can greatly improve the dimen-
sionality reduction process and hence improve the quality of
the artificial data.

To compare the performance of the proposed method with
existing ones, we also implemented the KDE method which
is one of the popular methods for the generation of artificial
data. A crucial choice in the implementation of the KDE
method is the value of the bandwidth parameter. We have two
popular rules of thumbs for choosing the bandwidth value,
given as follows:

h1 = 1.06τjN
1
5 (19)

FIGURE 4. Relationship among B, K ′ and information loss.

FIGURE 5. The information loss in applying the PCA based dimensionality
reduction (K ′ = 3) using the proposed clustering technique, random
clustering with different number of clusters and without any clustering.

h2 = 0.9 min(τj
Ij

1.34
)n−

1
5 (20)

In the above expression, τj, and Ij denote the standard
deviation (SD) and interquartile range (IQR) of the jth column
of the data-set. The expression in Equation 19 of h1 is called
as Scott’s rule, and the formula for h2 is known as Silverman’s
rule. The Scott’s rule of thumb has a limitation that the
input data should have a normal distribution. We denote the
implementation of the KDEmethods with the Scott’s rule and
Silverman’s rule as KDE1, and KDE2, respectively. In both
KDE1, KDE2, we used the quantile transformation (QT) to
transform the input data to normal distribution.

Our aim in this work is to generate synthetic data which
is similar to real data. To accomplish this, we used Kendall
correlation coefficient [17], [18], denoted by τD, and detec-
tion of outliers that cause non-smoothness in the samples.
The Kendall coefficient is used to determine the similarity
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FIGURE 6. Illustration of original and artificial CSI samples,(a) Original;
(b) Generated with the proposed clustering technique (B = 500);
(c) Generated using Random clustering (B = 500); and (b) Generated
without any clustering.

between data samples, and the number of outliers given the
non-smoothness in the samples. We detect outliers by find-
ing extrema points [15] in the samples. Further details are
discussed in subsections below.

A. USING KENDALL CORRELATION COEFFICIENT
TheKendall coefficient (τD) is often used in signal processing
to determine the similarity between two signals. The values of
τD lies between 0-1 and the two signals are closer when they
have a value closer to one. This section presents the results
of applying τD between the real dataset and the artificial data
generated by the proposed method, KDE1, and KDE2 meth-
ods. The τD of each signal is computed by finding its mini-
mum values with all signals present in the real dataset. The
x-axis contains the index and the y-axis contains the values of
the attributes CSI of CSI samples.Wewant to recall that a CSI
sample contains K complex numbers, and our representation
of the CSI samples consists of 2K attributes, where the first
half indices contain the real components and the last half
contains the imaginary components. As examples, Figs. 7-8
show the real and artificial samples, and the captions indicate
the τD values of the samples. The examples show that the
proposed method’s artificial samples look similar to the real
ones and have high τD values. The remaining part of this
section presents the results of the τD computation for the
proposed method, and for KDE1 and KDE2 methods.

The histograms in Figs. 9-10 show that in general the
artificial CSI samples of the proposed method have higher
τK values as compared to KDE1 and KDE2 for both SBSs
(B3 and B4). Fig. 9 shows that the artificial generated by the
proposedmethod for the SBSB3 have the lower quartile (Q1),
upper (Q3) quartile and, mean (Q2) equal to 0.975, 0.986,
and 0.990, respectively. For the KDE1 and KDE1 methods,
the values of the three quartiles (Q1, Q2, Q3) are as follows:
0.874, 0.905, and 0.928, respectively, for the KDE1 method,

FIGURE 7. Illustration of a real CSI data sample of SBS B3 and its
closest-shape artificial signal generated by the proposed and existing
methods: (a) Real data; (b) Proposed method (τK = 0.98); (c) KDE1,
(τK = 0.94); and (d) KDE2, (τK = 0.95).

FIGURE 8. Illustration of a real CSI data sample of SBS B4 and its
closest-shape artificial signal generated by the proposed and existing
methods: (a) Real data; (b) Proposed method (τK = 0.97); (c) KDE1,
(τK = 0.84); and (d) KDE2, (τK = 0.87).

and 0.892, 0.892, and 0.916, respectively, for KDE2 method.
For the SBS B4, the values of the Q1, Q2, and Q3 quartiles of
the proposed method are as follows: 0.942, 0.964, and 0.984,
respectively. The values of the Q1, Q2, and Q3 quartiles of
the KDE1 method are as follows: 0.878, 0.909, and 0.931,
respectively. The values of the Q1, Q2, and Q3 quartiles for
the KDE2 method are as follows: 0.903, 0.921, and 0.941,
respectively.

This subsection shows that the proposed method’s signals
have a much closer resemblance to the real signals than the
KDE1 and KDE2 methods’ signals.

B. DETECTING OUTLIERS IN THE SAMPLES
An artificial sample could contain some points known as
outliers that deviate from the assumed values and make the
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FIGURE 9. Histograms showing the Kendall coefficient (τK ) values of the
proposed and existing methods for the SBS B3.

FIGURE 10. Histograms showing the Kendall coefficient (τK ) values of the
proposed and existing methods for the SBS B4.

FIGURE 11. An artificial sample generated by the KDE1 method along
with its version after smoothness.

signal appear non-smooth or rough. The outliers are a result
of the inaccurate generation of values. As an example, Fig. 11
shows a sample of the KDE1 method (in orange) with its
smoothed version (in blue). The sample has outliers that cause
it looks non-smooth. The methods to detect outliers vary

FIGURE 12. CSI samples and their number of local extreme points,
(a) real data sample (# of extrema = 9); (b) Artificial data sample of the
proposed method (# of extrema = 9); (c) Artificial data sample of the
KDE1 method (# of extrema = 20); (d) Artificial data sample of the
KDE2 method (# of extrema = 14).

with data types. In this work, any deviation of the values
from the smooth curve illustrates local extrema. The local
extrema include all those points in a CSI sample for which
the value is either minimum ormaximum than its neighboring
points [15]. We can say that the CSI samples Ri,j or Ai,j
of length equal to K have a local maxima at k under the
following conditions:

Ri,j[k − 1] < Ri,j[k] > Ri,j[k + 1] (21)

Ai,j[k − 1] < Ai,j[k] > Ai,j[k + 1] (22)

Similarly, the CSI samples Ri,j or Ai,j have a local minima
at k , if the following conditions hold.

Ri,j[k − 1] > Ri,j[k] < Ri,j[k + 1] (23)

Ai,j[k − 1] > Ai,j[k] < Ai,j[k + 1] (24)

Fig. 12 shows the CSI samples belonging to the real dataset
and the artificial datasets generated by the proposed methods,
namely KDE1 and KDE2. The figure caption also mentions
the number of extreme points in the samples. The number
of extreme points in the artificial samples of KDE1 and
KDE2 methods are much more than the real-dataset because
of the unwanted small peaks present in the data. The number
of extreme points in the artificial samples of the proposed
method is equal to that of the real-data because the sam-
ple is smooth. Histograms in Fig. 13 summarize the num-
ber of extreme points resulting from all real and artificial
samples. The histograms indicate that the real-dataset and
the proposed method have almost equal number of extreme
points, whereas KDE1 and KDE2 have a high number of
extreme points. Table 4 numerically summarizes the number
of extremes points results. The table also indicates that the
number of extreme points in the artificial samples of the
proposed method is quite close to that in real-data, whereas
the artificial samples of the KDE1 and KDE2 have a high
number of extreme points.
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FIGURE 13. Histograms of the number of extrema in the CSI samples of
(a) B3, (b) B4.

TABLE 4. Number of extreme points in the CSI samples.

The results of analyzing the samples using the Kendall
coefficient and the number of extrema indicate that the arti-
ficial samples generated by the proposed method are similar
in shape to the real samples, and also free from outliers. The
artificial samples of the KDE1 and KDE2 methods are not
similar to the real CSI samples, and have outliers.

V. CONCLUSION AND FUTURE WORK
This article presented a fast and simple method to synthesize
artificial CSI data of mmWave networks. The CSI data in
mmWave networks can only be obtained through physical
experimentation and expensive simulations. The proposed
work enables the users to extend the given datasets with
real-like artificial samples. The proposed method consists
of data clustering, several data transformations, data sam-
pling, and prediction using anMLP-based regressionmethod.

We compared the proposed method with two variants of
the KDE-method. The results indicate that the artificial CSI
samples generated by the proposed method have much higher
similarity with the real CSI samples compared to the KDE-
based methods. Recently, dense MMW networks also started
to gain attention. They have a dense deployment of SBSs
to minimize the effects of path loss, shadowing, and block-
ages [19]. Although the abundance of SBSs enables more
users to have strong and/or line-of-sight (LOS) channels with
the SBSs, it introduces severe interference. The interference
in dense mmWave networks can be mitigated by imple-
menting cooperation among the SBS [19]–[21]. In case of
cooperating SBSs, the CSI of the SBSs no longer remain
independent from each other. The correlation amongst the
CSI of different SBSs must be captured and considered in
the synthesis of artificial data. The representation of the
correlated CSI data of multiple SBSs results in very high
dimensional data. The proposed method incorporates data
clustering and dimensionality reduction that can be extended
further to synthesize CSI data in the presence of cooperation
among the SBSs to mitigate the interference problem in dense
mmWave networks.
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