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ABSTRACT As high performance computing technology continues to develop rapidly, graphics processing
units (GPUs) are more widely used for daily computing tasks. However, some applications, such as weather
forecasting, require large-scale computation. Thus, due to the computationally intensive characteristics of
the rapid radiative transfer model for general circulation models (RRTMG) in the Earth system model, this
study uses GPU-related technology to accelerate computation of the model. First, two kinds of algorithms
using GPU technology to accelerate the RRTMG shortwave radiation scheme (RRTMG_SW) are proposed.
Then, an optimization method for data transmission between host and device is proposed. Finally, after using
CUDA Fortran and CUDA C to implement these algorithms, two GPU versions of RRTMG_SW, namely
CF-RRTMG_SW (CUDA Fortran version) and CC-RRTMG_SW (CUDA C version), were developed.
The experimental results demonstrate that the proposed acceleration algorithms are effective. Without I/O
transfer, running CC-RRTMG_SW on a NVIDIA GeForce Titan V GPU achieved a 38.88× speedup when
compared to a single Intel Xeon E5-2680 CPU core.

INDEX TERMS High performance computing, graphics processing unit, compute unified device architec-
ture, shortwave radiative transfer.

I. INTRODUCTION
The Earth’s weather and climate conditions are determined
by the amount of solar radiation and its distribution.Modeling
the radiative transfer process, one of the most crucial physi-
cal atmospheric processes, requires a high level of comput-
ing accuracy. The rapid radiative transfer model for general
circulation models (RRTMG) is a radiation model used to
calculate longwave and shortwave atmospheric radiant fluxes
and heating rates. Moreover, the model utilizes the correlated
k-distribution method to perform highly accurate radiation
calculations [1]. RRTMG is compute-intensive, so it is nec-
essary to use parallel computing technologies to improve its
computing performance [2], [3].

Parallel computing technology based on graphics process-
ing units (GPUs) has the characteristics of high parallelism,
multi-threaded and multi-core processors, and high memory

The associate editor coordinating the review of this manuscript and

approving it for publication was Weipeng Jing .

bandwidth. Due to its excellent performance, GPU technol-
ogy is being applied in a growing number of fields [4]–[8].
As the computer unified device architecture (CUDA) [9]
introduced by NVIDIA advances rapidly, GPU technology is
more broadly utilized in applications with high computational
density. Thus, GPU-based computing is currently a research
hotspot.

Some studies have focused on using GPUs to acceler-
ate computation in shortwave radiationmodels. J.Mielikainen,
et al. used the C language to rewrite the original For-
tran code of the RRTMG shortwave radiation scheme
(RRTMG_SW). The CUDA C version of RRTMG_SW has
a performance improvement of 202× on NVIDIA Tesla
K40 compared to its single-threaded Fortran version running
on Intel Xeon E5-2603 [10]. Similarly, two GPU-based
acceleration algorithms of RRTMG_SW are proposed in
this paper. Remarkably different from the previous work,
the first acceleration algorithm is implemented by adopt-
ing CUDA Fortran [11] to build CF-RRTMG_SW. In the
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Chinese Academy of Sciences–Earth System Model (CAS–
ESM) [12]–[15], the Institute of Atmospheric Physics of
CAS Atmospheric General Circulation Model Version 4.0
(IAP AGCM4.0) [16], [17] is its atmospheric component
model and uses RRTMG as its radiative parameterization
scheme. The CUDA C version of RRTMG_SW (known as
CC-RRTMG_SW) is developed to enable CAS-ESM to run
on a supercomputer with AMD GPUs. The experimental
results demonstrate that the CC-RRTMG_SW without I/O
transfer achieved a 38.88× speedup on a NVIDIA GeForce
Titan V GPU. In this paper, the two algorithms are described
and discussed.

The main contributions of this study are as follows:
(1) A GPU-based acceleration algorithm implemented in

CUDA Fortran for RRTMG_SW is proposed. The algo-
rithm can improve the computing efficiency of CAS–ESM
RRTMG_SW.

(2) A GPU-based acceleration algorithm implemented in
CUDAC for RRTMG_SW is also proposed. CC-RRTMG_SW
has better computing performance than CF-RRTMG_SW.

(3) An optimization method for data transmission between
the host and device is proposed. The method can significantly
improve the performance of CC-RRTMG_SW.

(4) This work skillfully combines several concepts,
approaches, techniques and components, such as high per-
formance computing, many-core GPU, CUDA, acceleration
technique, shortwave radiation scheme, and earth system
model.

In summary, this work supports large-scale and real-time
computing for CAS-ESM. The remainder of this paper
is organized as follows. Section II introduces the related
work on accelerating radiative transfer models. Section III
describes the RRTMG_SW model and experimental plat-
forms and then presents a detailed parallelization analysis of
the model. Section IV details the two RRTMG_SW accelera-
tion algorithms based onCUDAFortran andCUDAC, aswell
as their implementations. Section V details the optimization
method for data transfer between CPU and GPU. Section VI
evaluates the two algorithms and discusses some problems
encountered in the experiment. The final section summarizes
the paper and makes suggestions for future work.

II. RELATED WORK
In recent years, researchers around the world have invested
considerable effort into using GPU technology to accelerate
physical parameterization schemes. GPU-based acceleration
technologies, including single GPU acceleration, multi-GPU
acceleration, and CPU/GPU cluster-based acceleration, have
been proposed.
F. Lu, et al. accelerated RRTM_LW on three different

GPU platforms (GTX470, GTX480, and C2050). Its speedup
on the three GPUs was 23.2×, 27.6×, and 18.2×, respec-
tively [18]. Subsequently, anMPI+OpenMP/CUDA parallel
programming model on large GPU clusters was proposed.
By testing the CPU/GPU version of RRTM_LW on a
Tianhe-1A supercomputer, the final measured time is

much shorter than that of the CPU counterpart [19].
E. Price, et al. implemented a GPU-compatible version
of RRTMG. Their RRTMG longwave radiation scheme
(RRTMG_LW) achieves an acceleration speed of 69× when
implemented on a NVIDIA GTX 680 GPU [20] and 127×
on a single K40 GPU [21]. Y. Wang, et al. developed a GPU
version of RRTMG_LW that was implemented in CUDA
Fortran and integrated into CAS–ESM [22]–[24].
J. Mielikainen, et al. implemented a GPU version of the

WRF Goddard shortwave radiative scheme in CUDA C.
Their GPU-based Goddard shortwave radiative scheme with
data I/O increased performance by 116× on two NVIDIA
GTX 590s, and without I/O, the speedup was 141× [25].
J. Mielikainen, et al. also implemented a GPU version of
RRTMG_SW in CUDA C. When running on a K40 GPU,
their RRTMG_SW achieved 202× acceleration compared
to the one-threaded Fortran version running on an Intel
Xeon E5-2603 CPU [10]. However, the GPU version of
RRTMG_SW has not been integrated into weather/climate
models.

In other fields, the advantages of acceleration techniques
onmany-core GPU are particularly outstanding.N.Hou, et al.
proposed an efficient GPU-based parallel tabu search algo-
rithm for hardware/software partitioning. Moreover, an opti-
mized transfer strategy was also proposed to minimize the
transfer overhead between CPU and GPU [26]. Y. Zhou, et al.
proposed a new parallel ant colony optimization (ACO) algo-
rithm on GPUs and obtained an outstanding speedup in the
traveling salesman problem [27].

Despite the considerable amount of previous research on
this topic, no published studies have focused on accelerat-
ing RRTMG_SW using CUDA Fortran and optimizing data
transfer between CPU and GPU. In GPU-based accelera-
tion computing, one of the most important challenges is to
minimize the data transfer between CPU and GPU. In this
paper, a method for accelerating RRTMG_SW using CUDA
Fortran is presented and compared with its CUDA C version
and a performance optimization method for the data transfer
of RRTMG_SW is introduced. Finally, its GPU version is
integrated into CAS-ESM.

III. MODEL DESCRIPTION AND EXPERIMENT PLATFORM
A. RRTMG_SW MODEL
RRTMG, developed by the Atmospheric and Environmental
Research (AER) organization, has high computing accuracy
and low computing cost. It has been widely used in weather
and climate models, such as ECWMF, GRAPES, NCAR–
CESM, and CAS–ESM. The correlation K method is used
in the RRTMG model, which can effectively and accurately
calculate radiation fluxes and heating rates. RRTMG_LWhas
16 spectral bands, which have a total of 140 quadrature points
(g points). In RRTMG_SW, the total number of g points is
112 for 14 spectral bands; for further details, refer to [21],
[22], [28], [29].

The code structure of RRTMG_SW is shown in Fig. 1.
The overall code is encapsulated in the rrtmg_sw and
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FIGURE 1. The code structure of RRTMG_SW in CAS–ESM.

mcica_subcol_sw subroutines. The mcica_subcol_sw sub-
routine is used to create Monte Carlo independent column
approximation (McICA) stochastic arrays for the physical or
optical properties of clouds. The rrtmg_sw subroutine is the
driver for RRTMG_SW. It (a) calls the subroutine inatm_sw
to read the atmospheric profile from the general circulation
model (GCM), (b) calls the subroutine cldprmc_sw to set
the cloud optical depth based on the input cloud properties,
(c) calls the subroutine setcoef_sw to calculate various quan-
tities needed for the radiative transfer algorithm, (d) calls the
subroutine spcvmc_sw to call the two-stream model, which,
in turn, calls the subroutine taumol_sw to calculate gaseous
optical depths for each of the 14 spectral bands and to per-
form radiative transfer, and (e) passes the calculated fluxes
and cooling rates back to the GCM. In this study, we will
parallelize the four subroutines encapsulated in rrtmg_sw.

B. EXPERIMENT PLATFORM
The experiments in this article are conducted on three GPU
clusters: K20, P100, and Titan. The three clusters are located
in the computer network information center of CAS, and
their specific configurations are shown in Table 1. The serial
rrtmg_sw is run on an Intel Xeon E5-2680 v2 processor on a
K20 cluster, and the GPU-based rrtmg_sw is run on all three
clusters.

IV. GPU-BASED ACCELERATION ALGORITHMS
A. PARALLEL STRATEGY
In RRTMG_SW, the atmosphere is described in the form of
three-dimensional (3D) cells. The three dimensions repre-
sent longitude, latitude, and the model layers in the vertical
direction. To simplify the code, the longitude and latitude
dimensions are combined into one dimension in the original
Fortran code. Therefore, the first dimension of 3D arrays
in CAS–ESM RRTMG_SW code represents the number of
horizontal columns, the second dimension represents the
number of model layers, and the third dimension represents
the number of g intervals. In CAS–ESM, IAP AGCM4.0 has
a 1.4◦ × 1.4◦ horizontal resolution and 51 model layers,
so RRTMG_SW has nx×ny=256×128 horizontal columns.
Thus, the first dimension of arrays in RRTMG_SW has
256× 128 elements at most.
Algorithm 1 shows the calculation process of the orig-

inal rrtmg_sw. Every time rrtmg_sw is called, inatm_sw,
cldprmc_sw, setcoef_sw, and spcvmc_sw are called for ncol
times to finish the computations on all the horizontal

FIGURE 2. Schematic diagram of accelerating RRTMG_SW on GPU.

columns. The term ncol refers to the number of horizon-
tal columns. The calculations in the horizontal direction of
RRTMG_SW are independent of each other, so the parallel
strategy is to utilize ncol CUDA threads (or CUDA cores)
to execute rrtmg_sw simultaneously. Thus, each CUDA
thread is assigned the computation of one horizontal col-
umn. Fig. 2 illustrates the GPU-based acceleration algorithm
of RRTMG_SW with the one-dimensional (1D) domain
decomposition.

Algorithm 1 Computing Procedure of the Original rrtmg_sw
subroutine rrtmg_sw(parameters)
1. do i=1, ncol
2. call inatm_sw(parameters)
3. call cldprmc_sw(parameters)
4. call setcoef_sw(parameters)
5. if (iaer .eq. 0) then
6. ztaua(nlay+1, nbndsw)=0._r8
7. else
8. ztaua(i, ib)=taua(i, ib)
9. end if
10. call spcvmc_sw(parameters)
11. {
12. call taumol_sw(parameters)
13. call reftra_sw(parameters)
14. call reftra1_sw(parameters)
15. call vrtqdr_sw(parameters)
16. call vrtqdr1_sw(parameters)
17. }
18. Transfer fluxes and heating rate to output arrays
19.end do
end subroutine

During GPU-based accelerated computing, many CUDA
threads execute specific calculation processes in parallel. The
usual computing processes are as follows.

(1) Define and initialize the required data on CPU.
(2) The GPU allocates appropriate memory space to store

calculation parameters and results.
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TABLE 1. Configurations of GPU clusters.

(3) Copy the calculation parameters from the host memory
to the GPU’s global memory.

(4) Start CUDA threads and call kernel functions to per-
form parallel computing.

(5) Pass the computing results from the GPU’s memory to
the host memory.

(6) Release the GPU’s memory.

B. CUDA FORTRAN-BASED ACCELERATION ALGORITHM
Algorithm 2 demonstrates the CUDA Fortran-based accel-
eration algorithm for RRTMG_SW. Here, n is the block
size, which is the number of threads per thread block; m =
d(real)ncol/ne refers to each kernel block used in the grid.
In Algorithm 1, inatm_sw, cldprmc_sw, setcoef _sw, and
spcvmc_sw are all called iteratively ncol times. Because
ncol CUDA threads are started, they are only called once in
Algorithm 2. In theory, their computational efficiency will be
improved ncol times.

Algorithm 2 CUDA Fortran-Based Acceleration Algo-
rithm of RRTMG_SW With 1D Domain Decomposition and
the Implementation of CF-RRTMG_SW
subroutine rrtmg_sw_d(parameters)
1. Copy input data to GPU device

//Call the kernel inatm_sw_d
2. call inatm_sw_d≪ m, n≫(parameters)

//Call the kernel cldprmc_sw_d
3. call cldprmc_sw_d≪ m, n≫(parameters)

//Call the kernel setcoef_sw_d
4. call setcoef_sw_d≪ m, n≫(parameters)

//Call the kernel spcvmc_sw_d
5. call spcvmc_sw_d≪ m, n≫(parameters)
6. Copy results to host

//Judge whether atmospheric horizontal profile data is
completed
7. if it is not completed goto 1
end subroutine

Fig. 3 shows a comparison of the Fortran and CUDA
Fortran codes in spcvmc_sw. The right panel of Fig. 3
illustrates the acceleration implementation in CUDA For-
tran. Here, iplon is both the index of the horizontal column
and the ID of the global thread in CUDA; threadIdx%x
is the index of the thread in the thread block; blockIdx%x
is the index of thread blocks within the kernel grid; and
blockDim%x represents the block size (i.e., the thread count)

within a thread block. According to this design, the kernel
spcvmc_sw_d will be executed by ncol threads concurrently.
The CUDA Fortran-based algorithms and implementations
of the inatm_sw_d, cldprmc_sw_d, and setcoef_sw_d kernels
are not dissimilar to spcvmc_sw_d, so no further description
is given here.

C. CUDA C-BASED ACCELERATION ALGORITHM
Algorithm 3 demonstrates the acceleration algorithm of
RRTMG_SW based on CUDA C. The specific algo-
rithm implementations of the four kernels inatm_sw_d,
cldprmc_sw_d, setcoef_sw_d, and spcvmc_sw_d based on
CUDA C are shown in Algorithms 4–7 of A.

Algorithm 3 CUDA C-Based Acceleration Algorithm of
RRTMG_SW With 1D Domain Decomposition and the
Implementation of CC-RRTMG_SW
global void rrtmg_sw_d(parameters){

1. Copy input data to GPU device
//Call the kernel inatm_sw_d

2. inatm_sw_d≪ m, n≫(parameters);
//Call the kernel cldprmc_sw_d

3. cldprmc_sw_d≪ m, n≫(parameters);
//Call the kernel setcoef_sw_d

4. setcoef_sw_d≪ m, n≫(parameters);
//Call the kernel spcvmc_sw_d

5. spcvmc_sw_d≪ m, n≫(parameters);
6. Copy results to host

//Judge whether atmospheric horizontal profile data is
completed
7. if it is not completed goto 1
}

V. OPTIMIZATION METHOD FOR DATA TRANSFER
A well-known problem is that data transmission between
CPU (host) and GPU (device) is a fundamental performance
bottleneck in GPU-based accelerated computing. For CF-
RRTMG_SW or CC-RRTMG_SW, data transfer is quite
time-consuming, so it is necessary to optimize it. When
allocating memory space for variables on the host, pageable
memory is used by default. As illustrated in Fig. 4, when
transferring data between the host and device, the operating
system will first allocate a temporary pinned host buffer,
then copy data from pageable memory to a temporary pinned
buffer, and finally transfer data to the device. A pinned buffer
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FIGURE 3. Comparison of Fortran and CUDA Fortran codes of spcvmc_sw.

FIGURE 4. Illustration for host-to-device data transfer from pageable
memory (left) and pinned memory (right).

may be smaller than pageable memory holding host data,
in which case copying data occurs in multiple stages. Data
transfer from the device to the host is similar. If pinned
memory is used, the systemwill ensure that the data in pinned
memory always resides in random access memory and is not
allocated to a hard drive. When adopting pinned memory
technology to transfer data between a host and device, the cost
of data transfer between paging and pinned host arrays can
be avoided by allocating the host array directly in the pinned
memory [30]. Thus, data transfer overhead between the host
and device will be reduced.

Fig. 5 describes the computing flowchart of CC-
RRTMG_SW by adopting pinned memory technology. Here,
the application program interface (API) cudaMallocHost
provided by CUDA allocates page-locked memory on the

FIGURE 5. Computing flowchart of CC-RRTMG_SW by adopting the
pinned memory technology.

host; theAPI cudaMalloc allocatesmemory on the device; the
API cudaMemcpy copies data between the host and device;
the API cudaFree frees memory on the device; and the API
cudaFreeHost frees page-locked memory.

VI. RESULTS AND DISCUSSION
To comprehensively study the proposed acceleration algo-
rithms, an ideal climate simulation experiment was carried
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FIGURE 6. Runtime (s) of CF-RRTMG_SW on one K20 GPU.

FIGURE 7. Runtime (s) of CC-RRTMG_SW on one K20 GPU.

out on a model day. In this experiment, the time increment of
RRTMG_SW was 1 h.

A. INFLUENCE OF BLOCK SIZE
Due to GPUs’ limited hardware resources, the block size
in CUDA has a significant impact on the performance of
acceleration algorithms. The running time of rrtmg_sw is
obtained by using the following formula in the case of no data
transfer:

Trrtmg_sw = Tinatm_sw+Tcldprmc_sw+Tsetcoef _sw + Tspcvmc_sw

Fig. 6 portrays the running time of CF-RRTMG_SW on
one K20 GPU. When the block size is 128, CF-RRTMG_SW
achieves the best performance. Similarly, when the block size
is 128, CC-RRTMG_SW on one K20 GPU also achieves the
best performance, as shown in Fig. 7. Usually, moderately
increasing the block size can hide the latency of memory
access and helps improve the computing performance of
CUDA code. However, if the block size is larger, each thread
will have fewer hardware resources. Therefore, when the
block size is 1024, CF-RRTMG_SW or CC-RRTMG_SW
does not achieve the best performance. Moreover, compar-
ing the results shown in Figs. 6 and 7, reveals that CC-
RRTMG_SW achieves better computing performance than
CF-RRTMG_SW.

B. INFLUENCE OF NCOL
When the block size is fixed, the size of ncol also has a
significant impact on the performance of CC-RRTMG_SW.
RRTMG_SW has 128 × 256 = 32,768 horizontal columns.
Because global memory is limited in GPUs, a single
K20 GPU can only compute 2048 horizontal columns of
RRTMG_SW, which means that the maximum value of
ncol is 2048. During each integration for RRTMG_SW,
CC-RRTMG_SW will be invoked 32,768/2048=16 times if
ncol=2048. In this simulation of one model day, integration
computations are performed 24 times. This means that CC-
RRTMG_SW will be invoked repeatedly 16 × 24 = 384
times. Likewise, if ncol=1024, it will be invoked repeatedly
768 times. As shown in Table 2, when ncol=2048, CC-
RRTMG_SW has shorter runtimes. Some conclusions can be
drawn.

(1) One K20 GPU has 2496 cores, so there are enough
cores to compute CC-RRTMG_SW when ncol=2048.
If ncol=1024, these cores will be not fully utilized.

(2) When ncol=2048, there are fewer invoking times for
CC-RRTMG_SW.

TABLE 2. Runtime (s) of CC-RRTMG_SW on one K20 GPU, where the block
size = 128.

C. EVALUATIONS PERFORMED ON DIFFERENT GPUs
Table 3 shows the runtime and speedup values when running
CC-RRTMG_SWonK20, P100, and Titan GPUs.When ncol
is 2048, in the condition without I/O transfer, the speedups
when CC-RRTMG_SW running on the three kinds of GPUs
are 5.36×, 8.39×, and 13.73×, respectively. The speedups
of CC-RRTMG_SW running on P100 and Titan GPUs are
shown in Table 4 and Table 5 when ncol is 4096 and 8192.
From the results presented in Tables 3-5, the following con-
clusions can be drawn.

(1) CC-RRTMG_SW produces faster speeds on a Titan
GPU than on K20 and P100 GPUs because a Titan GPU has
more CUDA cores, as shown in Table 1.
(2) As ncol increases, the speed of CC-RRTMG_SW on

K20, P100, and Titan GPUs also increases.
(3) Without I/O transfer, CC-RRTMG_SW on one Titan

GPU has a speedup of 38.88× when ncol is 8192.

D. I/O TRANSFER
Asmentioned above, if ncol=1024, CC-RRTMG_SWwill be
invoked 768 times, whichmeans therewill be 1536 data trans-
fers between CPU and GPU. Thus, to improve performance
when frequently transferring data between CPU and GPU,
the pinned memory technology described in Section V was
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TABLE 3. Runtime (s) and speedup of CC-RRTMG_SW on different GPUs,
where the block size = 128 and ncol = 2048.

TABLE 4. Runtime (s) and speedup of CC-RRTMG_SW on different GPUs,
where the block size = 128 and ncol = 4096.

TABLE 5. Runtime (s) and speedup of CC-RRTMG_SW on different GPUs,
where the block size = 128 and ncol = 8192.

adopted. Table 6 shows the computing performance of CC-
RRTMG_SW with and without pinned memory technology
on one K20 GPU. With this technology, transferring data
between CPU and GPU is sped up by approximately 86%.
When the total performance of CC-RRTMG_SW on one
K20 GPU is analyzed, there is a 44% improvement.

Table 7 and Table 8 show the elapsed time and accelera-
tion of CC-RRTMG_SW for I/O transfers on GPUs. Some
conclusions can be drawn from these results, as follows.

TABLE 6. Runtime (s) of CC-RRTMG_SW with and without the pinned
memory technology on one K20 GPU, where the block size = 128 and
ncol = 2048. CUDA memcpy DtoH is the time of transferring data from
GPU to CPU; CUDA memcpy HtoD is the one from CPU to GPU.

TABLE 7. Runtime (s) and speedup of CC-RRTMG_SW with I/O transfer on
GPUs, where the block size = 128 and ncol = 2048.

TABLE 8. Runtime (s) and speedup of CC-RRTMG_SW with I/O transfer on
GPUs, where the block size = 128 and ncol = 8192.

FIGURE 8. Radiant flux simulated by CAS–ESM RRTMG_SW on CPU.

(1) CC-RRTMG_SWwith I/O transfer on a Titan GPU still
has the best performance, with a speedup of 7.41×when ncol
is 8192.

(2) A P100 GPU has a higher memory bandwidth than
K20 and Titan GPUs, so its I/O time is the shortest.

(3) Despite adopting pinned memory technology, data
transmission between CPU and GPU is still a significant
bottleneck at higher speeds with CC-RRTMG_SW. Thus,
further optimizing data transfer remains an urgent problem.

E. ERROR ANALYSIS
When accelerating RRTMG_SW on a GPU, it is necessary
to ensure that errors are minimized. In an experiment for
one model day, Fig. 8 shows the net solar flux at the top
of the model in a clear sky, which is the result of run-
ning CAS–ESM RRTMG_SW on CPU. The global averaged
difference between the two simulations running CAS–ESM
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Algorithm4 Implementation of inatm_swBased onCUDAC
global void inatm_sw_d(parameters){

1. iplon=blockDim.x * blockIdx.x + threadIdx.x;
2. if ((iplon>=0&& iplon<ncol){

/* Initializes all the data needed for calculation.*/
3. for (j=0; j<nlayers; j++){
4. do some corresponding work;
5. }
6. for (j=0; j<ngptsw; j++){
7. do some corresponding work;
8. }
9. }
}

Algorithm 5 Implementation of cldprmc_sw Based on
CUDA C
global void cldprmc_sw_d(parameters){

1. iplon=blockDim.x * blockIdx.x + threadIdx.x;
2. if ((iplon>=0&& iplon<ncol){
3. //Main g-point interval loop.
4. for (lay=0; lay<nlayers; lay++){
5. for (ig=0; ig<ngptsw; ig++){
6. do some corresponding work;
7. }
8. }
9. }
}

RRTMG_SWonly on CPU and running it on one K20GPU is
-0.000455583 W/m2. The bias is minor and acceptable. The
reasons for the deviation are as follows: (1)When run on CPU
and GPU, CAS-ESM RRTMG_SW has different language
implementations (Fortran and CUDA C); (2) the round-off
error on CPU and GPU is inevitable.

VII. CONCLUSION AND FUTURE WORK
The accelerated calculation of radiation physics based
on a GPU is quite challenging. This paper introduces
RRTMG_SW acceleration algorithms on GPU. Two
GPU versions RRTMG SW (i.e., CF-RRTMG_LW and
CC-RRTMG_SW) were built. In CC-RRTMG_SW, data
transfer between the host and device was optimized by adopt-
ing pinned memory technology. The experimental results
indicate that running CC-RRTMG_SW on a GPU produces
satisfactory speedup rates.

However, the current work does have some shortcom-
ings. To address them, future work will include the follow-
ing. First, CC-RRTMG_SW will be further accelerated on
the model layer and g intervals dimensions. A GPU-based
acceleration algorithm for RRTMG_SW with a 3D domain
decomposition method will be proposed. Second, utilizing
an MPI+CUDA hybrid paradigm to accelerate RRTMG_SW
on multiple GPUs will also be considered. Third, accel-
erating RRTMG_SW based on AMD GPUs will also be

Algorithm 6 Implementation of setcoef _sw Based on
CUDA C
global void setcoef_sw_d(parameters){

1. iplon=blockDim.x * blockIdx.x + threadIdx.x;
2. if ((iplon>=0&& iplon<ncol){

/*Find the two reference pressures on either side of the
layer pressure.*/
3. for (lay=0; lay<nlayers; lay++){
4. if (plog<=4.56){
5. do some corresponding work;
6. }
7. else{
8. do some corresponding work;
9. }
10. do some corresponding work;
11. }
12.}
}

Algorithm 7 Implementation of spcvmc_sw Based on
CUDA C
global void spcvmc_sw_d(parameters){

1. iplon=blockDim.x * blockIdx.x + threadIdx.x;
2. if ((iplon>=0&& iplon<ncol){
3. taumol_sw_d(parameters);
4. for (jb=ib1−1; jb<ib2; jb++){
5. ibm=jb−15;
6. igt=ngc[ibm];
7. if(iout>0 && ibm>=1) iw=ngs[ibm-1]−1;
8. for(jg=0; jg<igt; jg++){
9. do some corresponding work;
10. reftra_sw_d(parameters);
11. reftra1_sw_d(parameters);
12. do some corresponding work;
13. vrtqdr_sw_d(parameters);
14. vrtqdr1_sw_d(parameters);
15. for(jk=0; jk<klev+1; jk++){
16. do some corresponding work;
17. }
18. }
19. }
20.}
}

studied. However, implementing the algorithms under a
heterogeneous-compute interface for portability (HIP) frame-
work will be a significant challenge. Undoubtedly, the future
work will be helpful in improving the computational perfor-
mance of RRTMG_SW.

APPENDIX
A. IMPLEMENTATION OF THE KERNELS BASED ON
CUDA C
See Algorithms 4–7.
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