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ABSTRACT We are currently witnessing an immense proliferation of natural language processing (NLP)
applications. Natural language generation (NLG) has emerged from NLP and is now commonly utilized
in various applications, including chatting applications. The objective of this paper is to propose a deep
learning-based language generation model that simplifies the process of writing medical recommendations
for doctors in an Arabic context, to improve service satisfaction and patient-doctor interactions. The
developed language generation model is a predictive text system intended for next word prediction in
a telemedicine service. Altibbi—a digital platform for telemedicine and teleconsultations services in the
Middle East and the North Africa (MENA) region—was utilized as a case study for the textual prediction
process. The proposed model was trained using data obtained from Altibbi databases related to medical
recommendations, particularly gynecology, dermatology, psychiatric diseases, urology, and internist dis-
eases. Variants of deep learning models were implemented and optimized for next word prediction, based
on the unidirectional and bidirectional long short-term memory (LSTM and BiLSTM), the one-dimensional
convolutional neural network (CONV1D), and a combination of LSTM and CONV1D (LSTM-CONV1D).
The algorithms were trained using two versions of the datasets (i.e., 3-gram and 4-gram representations) and
evaluated in terms of their training accuracy and loss, validation accuracy and loss, and testing accuracy per
their matching scores. The proposed models’ performances were comparable. CONV1D produced the most
promising matching score.

INDEX TERMS Altibbi, natural language processing, deep learning, telemedicine, Arabic, predictive text.

I. INTRODUCTION
NLG is a sub-field of NLP that combines computational
linguistics and artificial intelligence to generate texts auto-
matically. These texts are intended to exhibit the character-
istics and intuition of natural texts—that is, they should be
syntactically and semantically correct, as well as coherent.
NLG techniques are broadly applied in various domains,
such as in the media, education, and finance. One of the
earliest applications was presented in 1966 in the form of
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‘‘Eliza,’’ a conversational bot and psychotherapist that chat-
ted with users. However, early NLG approaches are rule-
based and data-driven. Thus, they are not scalable and cannot
handle large, complex datasets. Meanwhile, contemporary
NLG techniques inspired by artificial intelligence and deep
learning methods have demonstrated a remarkable propensity
to handle a massive amount of data and extract informative
features. NLG has numerous sub-applications, such as gener-
ating text in conversational chatbots [1], translating text from
one language to another [2], generating stories [3], creating
abstractive summaries of texts [4], providing automatic image
captions [5], paraphrasing texts [6], and others [7].
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Automatically predicting the next word is a specific text-
generation subset of NLG in which the most likely next
character, word, or phrase is determined as the user is typing.
The automatic suggestions have several advantages, includ-
ing reducing the keystroke rate, preventing misspellings, and
saving time spent typing. However, it is challenging to con-
sistently predict words that fit the context [8].

Text generation in the medical domain has various appli-
cations, including medical image captioning, conversational
therapists and dialogue generation, medical report genera-
tion, and summarization. Next word prediction in medical
reports is of particular interest in this paper, which examines
Arabic text generation and prediction for medical recom-
mendations while doctors are typing. Specifically, this paper
investigates Altibbi,1 a digital health platform that provides
telemedicine services for the MENA region. Altibbi’s pri-
mary service is to make telemedicine consultations accessible
throughout the MENA region by connecting people with
doctors from anywhere at any time. One of Altibbi’s objec-
tives is to help doctors produce medical recommendations
by suggesting the possible next word as they type. These
medical recommendations reveal the doctor’s notes and the
medications and treatments they prescribe for the patients.
Typing such information can consume a significant amount
of a doctor’s time that could be spent consulting with patients.
Therefore, this paper proposes a predictive text model for
predicting and generating text for doctors’ recommenda-
tions. This model is intended to improve service satisfaction,
improve patient-doctor interactions, and save doctors’ time.
The proposed model requires a massive amount of data from
Atibbi’s databases, which contains more than two million
documented consultations. Considering that the availability
of such medical data in the Arabic context is scarce and
rarely found.

Text generation in the Arabic language in the medical
domain is crucial, yet it faces several serious challenges. Very
few studies have been devoted to advancing text generation
techniques in Arabic due to a lack of in-domain datasets and
specialized processing tools. Moreover, Arabic is a highly
complex and rich language that consists of 28 characters
that differ morphologically and phonologically. For example,
some characters have one or two dots below them, and some
have one, two, or three above them, with each iteration having
a different sound. The processing of Arabic scripts is also
difficult because writing styles differ from one country to
another and even from one city to another within the same
country, depending on the dialect. Therefore, scripts often
show different spellings and perhaps misspellings, which
can influence the semantics. In this paper, a deep neural
model has been developed based on Arabic recommenda-
tions collected from Altibbi. The proposed model undergoes
several stages: data preprocessing, training data generation,
model training and tuning, and, lastly, model evaluation.
Different neural models have been constructed and trained

1https://www.altibbi.com/

based on convolutional and sequence-to-sequence models
by utilizing convolutional neural networks (CNNs), LSTM,
BiLSTM, and combinations of these. LSTM and BiLSTM
are sequence-neural models for processing fixed and vari-
able length of sequential data. They are popular methods for
handling textual sequences since they can preserve relation-
ships over long sequences. On the other hand, convolution
networks extract features from texts, with each filter serving
as a one-dimensional filter that generates a unique feature.
The four deep learning models utilized in this work are
LSTM, BiLSTM, CONV1D, and LSTM-CONV1D, which
were investigated at three different embedding dimensions.
These models were developed individually for the most com-
mon five medical specialties: gynecology, dermatology, psy-
chiatry, urology, and internist diseases. Two versions of the
training datasets were constructed per specialty based on
a varying n-gram data model, including the 3-grams and
4-grams.

Evaluating NLG tasks is an open research direction, and
there is no one standard way to measure the performance.
Therefore, this paper compares the models by considering
the training and validation of accuracy and loss, as well as
testing accuracy, in terms of matching scores. Specifically,
matching scores are used to evaluate the models by assessing
what percentage of matching (1-gram overlapping) between
the generated text (i.e., word) and the ground-truth text. The
matching score metric only shows how much the models can
find the exactly matched word with the ground-truth regard-
less of whether the generated word is correct and relevant to
the context.Meanwhile, the aim is to generate five predictions
that are all relevant to the respective context.

The rest of this paper is organized as follows. Section II
provides an overview of recent related literature on text
generation, particularly in the medical domain. Section III
describes the methodology of the proposed approach, includ-
ing a description of the dataset, the system architecture, and
the evaluation criteria. Section IV presents the experimental
details, and discusses the results. Finally, Section V offers
conclusions regarding the methodology and results.

II. RELATED WORKS
This section describes related papers for NLG, including
papers on general text generation andmedical text generation.

A. TEXT GENERATION
Before the advent of NLG, text generation models were pri-
marily based on recurrent sequence-to-sequence models that
eventually evolved into convolution, reinforcement learning,
and transformer-based models. This subsection discusses text
generation approaches employed over various applications in
recent studies.

Li et al. [9] developed a deep reinforcement approach
for paraphrase generation. This approach consists of a
neural generator and evaluator that is responsible for pro-
viding a reward. The proposed model was evaluated based
on two datasets and relying on ROUGE, BLEU, and
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METEOR scores, and the model outperformed previously
used approaches. The model also exhibited reasonable flu-
ency and relevance of generated texts. Semeniuta et al. [10]
created a variational autoencoder framework to generate text
at the character level and over long sequences. Their model
utilized a convolutional encoder and deconvolutional decoder
with recurrent neural layers. However, the authors did not
evaluate the model’s performance on real downstream NLP
tasks. Meanwhile, Marcheggiani and Perez-Beltrachini [11]
proposed graph convolution encoders to generate text from
structured figures. Their model was trained on WebNLG and
SR11Deep and was evaluated based on BLEU, METEOR,
and TER. The authors noticed that deep graph convolutions
were more capable of generating texts than sequence models
were. However, experiments with abstract figure types are
more critical. In another study, Li et al. [12] proposed a
neural text generation model for fitting various categories
that was also suitable for supervised learning tasks. The
proposed model integrates generative adversarial networks
(GANs), the recurrent neural network (RNN), and reinforce-
ment learning. It was evaluated based on its performance
in a sentiment analysis task, on which it achieved an accu-
racy of almost 82%. Fan et al. [13] created a hierarchical
neural model for story generation. The model fused a con-
volutional sequence-to-sequence model and a self-attention
mechanism, and it was trained on a human-collected dataset
of 303,358 stories. The model’s evaluation was based on
its perplexity and comparisons with human evaluations. The
text generated by the model exhibited improved fluency and
coherence. Further, Lee and Hsiang [14] designed a neural-
based language model for textual patent claim generation.
The designed model was built based on OpenAI’s GPT-2
language model and was tested based on 90 samples that
were coherent and free of obvious syntactical or semantics
errors. However, the model was producing long, hard-to-read
sentences.

Other authors [15] used BART and T5 models to eval-
uate two neural language models that generated text based
on graphs. The models were trained on three benchmark
datasets (i.e., LDC2017T10, WebNLG, and AGENDA), and
the models were evaluated based on the BLEU scores.
Even though the models obtained outstanding results on the
used benchmarks, the authors explained that experimenting
with richer graph structural bias has a significant impact.
Liu et al. [16] discussed the potential benefits and limitations
of procedural content generation in video games depending
on deep learning methods. However, further investigations
are required for events, goals, and character generations.
Meanwhile, Yamshchikov and Tikhonov [17] proposed a
variational recurrent autoencoder for music generation. Their
approach showed diverse pleasing melodies, which were
assessed by human evaluators. In [18], the authors con-
structed a deep learning approach for summarizing articles
in the Arabic language. They utilized an encoder-decoder
recurrent neural network with attention and coverage mecha-
nisms trained on 300,000 articles collected from an Arabic

website, ‘‘mawdoo3.’’ Based on the ROUGE-1 scale of
recall, precision, and f1-score, the model showed very
favorable results (ROUGE-1(precision) = 62%). Moreover,
Luu et al. [19] proposed a language model based on GPT-2
for citation generation trained on a large-scale dataset of
scientific articles. The proposed model was assessed based
on both human and automatic evaluations according to BLEU
and ROUGE scores. Meanwhile, 71% of the generated text
was correct. Although few research studies are devoted to
text generation in the Arabic context, in one study [20],
the authors developed a Transformer-based language model
for Arabic language generation based on GPT-2. The authors
created four versions (base, medium, large, and mega). The
model was called ARAGPT2, and it was trained on a large
corpus of Arabic articles and news stories. Further, the model
was evaluated based on its perplexity, and it showed coherent
grammatically correct results.

B. MEDICAL TEXT GENERATION
This subsection overviews recent research studies on text gen-
eration applications in the medical domain across different
language contexts.

Jing et al. [21] constructed a deep learning approach to gen-
erate images for medical textual reports. Specifically, the pro-
posed model used a hierarchical, attention-based LSTM to
generate images to accompany written radiology and pathol-
ogy reports. The model showed promising results according
to BLEU, METEOR, ROUGE, and CIDER scores. Other
authors in [22] developed a deep learning model for gen-
erating chest X-ray imaging reports. The model relied on
a multi-attention and bidirectional LSTM to encode images
and generate sentences. It showed excellent results according
to various evaluation metrics. Other researchers [23] created
a model for automatically completing texts entered into the
Electronic Health Records (EHRs) database, focusing on
records regarding colonoscopy, transesophageal echocardio-
gram, and anterior-cervical-decompression. The developed
model was based on the Markov-chain statistical modeling
and achieved outstanding results in terms of recall, preci-
sion, and time spent typing. Ginn and Unviersity [24] con-
structed ‘‘Smart Vet,’’ an auto-complete system that helps
veterinarians take medical notes. The proposed model was
trained using two deep learning approaches: a sequence-to-
sequence translation model and the OpenAI’s GPT-2 model.
The latter, yielded a better BLEU score of 1.19. Further,
Van et al. [25] proposed ‘‘AutoMeTS,’’ an auto-complete
model designed to simplify medical texts. The proposed
system was an ensemble of four language models (BERT,
RoBERTa, XLNet, and GPT-2) and was trained using the
English version of Wikipedia. The model achieved a predic-
tive accuracy of 64.5%.

Moreover, Gopinath et al. [26] proposed a contextual auto-
complete model intended to help medical doctors take notes.
The authors applied a hierarchical inference language model
to predict texts, which reduced the keystroke rate by 67%.
Hoogi et al. [27] proposed an RNN model for generating
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TABLE 1. Summary of related works.

of mammography reports. The proposed ‘‘LSTM-RNN’’
yielded promising results when assessed based on the area
under the curve (AUC). In [28], the authors proposed an
auxiliary-signal encoder-decoder approach for generating
radiology medical reports. The model was inspired by the
generative pre-training (GPT) model and was trained on the
CX-CHR and COVID-19 CT datasets. Evaluations based on
the BLEU, AUC, and other scores revealed that the proposed
model exhibited a highly favorable hit rate based on human
evaluations. Zhang et al. [29] proposed a graph convolution-
based on attention method for generating radiology reports.
The proposed model was assessed based on BLEU, the Med-
ical Image Report Quality Index (MIRQI) of recall, preci-
sion, and f1-score. The proposed model produced promising
results when compared to models developed in other recent
papers. Further, Yang et al. [30] adopted the transformer,
DialoGPT, and BERT-GPT to generate dialogue to be used
in consultations for COVID-19 diagnoses. The model was
tested on English and Chinese versions of a medical dialog
dataset and evaluated according to various metrics such as
BLEU, METEOR, and perplexity. Han et al. [31] proposed
a neural-symbolic approach for generating spinal medical
reports. The constructed model achieved efficient capability
in recognizing the spinal structures, even that the authors did
not provide any evaluation metrics for assessing the gener-
ated texts. However, they reported the accuracy, specificity,
and sensitivity of the radiological classification and semantic

segmentation processes. In [32], the authors constructed a
neural language model for generating text for chest radiogra-
phy in the Japanese language. The designed encoder-decoder
model utilized the CNN with LSTM and self-attention mech-
anism. The model provided favorable results based on BLEU
scores. Moreover, Mishra and Banerjee [33] developed an
automatic captioning model (a CNN accompanied by a self-
trained bidirectional LSTM) for retinal images. The model
was trained on the STARE database and evaluated using the
BLEU score. The highest score of 87% was achieved for
the BLEU-1. Meanwhile, Ive et al. [34] created a model for
generating mental EHRs using the neural transformer model.
The model was evaluated intrinsically based on perplex-
ity, ROUGE-L, BLEU, and TER (the minimum number of
edits), and extrinsically based on text classification. Overall,
the model performed well.

Given that text summarization is a sub-field of text gen-
eration, Kieuvongngam et al. [35] developed an automatic
text summarization model for medical research articles, using
COVID-19 as a use case. The model is a neural language
model based on BERT and OpenAI GPT-2 and was assessed
based on its ROUGE score and a visual examination. Finally,
Moradi et al. [36] proposed a deep learning-based sum-
marizer of biomedical texts. The model utilized contextual
BERT embeddings and a hierarchical clustering method for
summarizing medical texts. Assessments based on ROUGE
scores revealed promising results. However, evaluating such
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FIGURE 1. An abstract overview of the proposed methodology.

FIGURE 2. A presentation of the Arabic characters’ scripts, transliteration, and IPA signs.

approaches lacks standard datasets and frameworks. Table 1
presents a summary of related papers.

III. METHODOLOGY
A. OVERVIEW
This section presents the proposed methodology dissected
into three aspects: the data preparation, the system archi-
tecture, and the evaluation criteria. Figure 1 describes these
aspects in details, where first it starts by collecting and
retrieving the data, then the system architecture, which
includes the preparation of the n-gram representation of data,
constructing the embeddings (i.e., the Keras embeddings and
Aravec embeddings), and then building variants of recurrent
and convolutional deep learning models. Finally, the perfor-
mance evaluation criteria are discussed.

B. DATASETS
The employed Arabic-language datasets were obtained from
Altibbi. The Arabic language is a Semitic language and the
mother tongue of more than 200 million speakers worldwide.
It is so common because it is the language of Islam and the
means of communication in daily Arabian life. Arabic has
two standard forms: Classical Arabic and Modern Standard
Arabic. However, among the Arabic countries, the most com-
monly spoken form of the language is Dialectical Arabic,
which differs from one country to another. The Arabic
language’s 28 characters, along with their Arabic scripts,
transliteration, and International Phonetic Alphabet (IPA)
signs, are presented in Figure 2.

The datasets were obtained from doctors’ recommen-
dations. However, several cleaning steps were required.
These steps included removing single characters, English
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FIGURE 3. Phases of data preparation.

FIGURE 4. Description of n-gram dataset: a) an example of a medical recommendation translated into English and b) the
recommendation in Arabic. The green tokens represent 3-gram training examples, while blue tokens represent the
4-gram training examples.

characters, recommendations written in English; eliminating
punctuation marks, symbols, and Latin symbols; removing
blanks and duplicate records, removing regular expressions
and emojis. Furthermore, most of the numbers needed to
be translated into textual representations. The recommenda-
tion information was stored based on the specialty type in
the database. As such, five datasets were created, one for
each of the most active specialties: gynecology, dermatol-
ogy, psychology, urology, and internist diseases. Preparing
the data for deep learning models requires transforming text
sequences into tokens. In the present study, tokens were
created using Keras [37] tokenizer to split the sequences
based on the space delimiter, where each word is a token.
Subsequently, all unique tokens in the corpus were indexed
to adapt to the required shape of the learning algorithms.
Figure 3 depicts the stages of data preparation. As can be
seen, two versions of the datasets were created based on an
n-gram formulation.

Language models, such as statistical or neural language
models, provide probabilities for words or text sequences.
The n-gram model is a sparse representation of text used to
build language models. Accordingly, a sequence of n words
represents an n-gram model. For example, if the sequence
contains two words, then the corresponding n-gram is called
a bigram ‘‘2-gram’’ model. If the sequence contains three
words, then it is a trigram ‘‘3-gram’’ language model. In this

regard, for each specialty-based dataset, two new datasets
were created (i.e., a trigram and a quadgram (4-gram)). The
trigram sequence considers two words from the history to
predict the third word, whereas the quadgram considers the
previous three words.

Figure 4 shows two examples of the created datasets,
including the 3-gram and the 4-gram.

C. SYSTEM ARCHITECTURE
Several variants of deep learning models are implemented to
process two different versions of the n-gram datasets of the
five specialties. As shown in Figure 5, 3-gram and 4-gram
datasets were constructed from a corpus of data related to
psychiatric diseases, gynecology, dermatology, urology, and
internist diseases. The eight versions of datasets were fed into
LSTM, BiLSTM, CONV1D, and a combination of LSTM
and CONV1D. They were then evaluated quantitatively and
qualitatively. This section introduces the networks used and
the details of their implementation.

1) EMBEDDINGS
Embeddings are dense, low-dimensional representations
of words, documents, or pieces of text that are pre-
sented as real-valued vectors. Embedding models are clas-
sified into frequency-based and predictive-based models.
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FIGURE 5. An illustration of the methodology.

The frequency-based models are better suited to capture the
syntactical and statistical features hidden in text (such a
model is the term frequency-inverse document frequency).
Whereas, the predictive models are evolved from neural net-
work models such as theWord2Vec, where they can represent
the semantics hidden in texts. Aravec [38] is a pre-trained
embedding model for the Arabic language. It is developed
on data collected from Twitter and Wikipedia with a total
number of vocabularies is 3 billion. The developed models
were based on the Word2Vec model and based on two types
of word embeddings models: the skip-gram (SG) and contin-
uous bag-of-words (CBOW).

2) LSTM AND BILSTM
LSTM [39] is a type of recurrent neural network (RNN) capa-
ble of learning the long-term dependencies of data. It solves
the problem of vanishing gradients, which is typically expe-
rienced by RNNs, by replacing each hidden unit with a
memory cell and neural gates to maintain and control its
different states. An LSTM network is a chain of connected
units as shown in Figure 6-(a). In the figure, xt is the input
at time t , ht is the hidden state at time t , and yt is the
output at time t . Each LSTM unit consists of three gates as
shown in Figure 6-(b). The purple arrow represents the cell
state (i.e., the long-term memory). The cell is responsible
for storing (remembering) the information provided during
the previous interval, and the three gates are responsible for
regulating the flow of information by adding or removing
(forgetting) information from the cell state. The three gates
are the forget, input, and output gates, which are described
below the figure.

• Forget Gate: A sigmoid function picks the values of
the previous hidden state (h(t−1)) and the input (xt ) to
generate an output value between 0 and 1. When the
output of the sigmoid function is 0, the previous cell state
(Ct−1) is forgotten during the multiplication operation;
when it is 1, the previous cell state is remembered.

• Input Gate: A sigmoid function takes the values of the
previous hidden state (h(t−1)) and the input (xt ) to decide
which values should be used to update the cell state.
The output of the sigmoid function is a value between
0 and 1. Values close to 0 indicate that the information
is not important, whereas values close to 1 mean the
data is important and should be retained. Then, a tanh
function (which is the input modulator) holds the values
of the previous hidden state and the input to generate
an output vector value between −1 and 1. The data is
either written on the cell state or forgotten based on this
value. The output of multiplication operation the outputs
of the sigmoid and tanh functions were multiplied and
added to the output of the forget gate to update the cell
state.

• Output Gate: It determines the next hidden state. The
previous hidden state (h(t−1)) and the input (xt ) are
fed into a sigmoid function, whereas the modified cell
state (Ct ) is fed into a tanh function. The multiplication
of the outputs of the sigmoid and tanh functions forms
the new hidden state (h(t+1)), which is the output of the
LSTM unit.

On the other hand, the BiLSTM includes two distinct
LSTM networks. The first one moves from the left to the
right, forms a forward layer, and considers the historical
data in the context of a left-to-right language. The other one
flows from the right to the left, forms a backward layer,
and considers future data. This allows the network to pre-
serve information from previous and subsequent states, thus
improving the understanding of the context.

LSTM and BiLSTM are suitable for processing sequences
of data, as they recognize the dependency of a sequence
based on the order in which the information is presented.
Hence, they apply to the textual auto-completion (prediction)
of medical recommendations.

3) CNN NETWORK
The convolutional neural network (CNN) was proposed
by [40] to predict and classify different kinds of high-
dimensional data presented mainly in a grid format
(e.g., images, texts, audio, and video files). CNN networks
have an input layer and an output layer, as well as a large
number of hidden layers. However, they are different from
traditional neural networks, as they incorporate a convolution
operation in one or more of their hidden layers (called con-
volution layers). The convolution operation is a mathemat-
ical operation used to identify and extract features, though
it is different conceptually from the convolution operation
used in other fields (i.e., engineering, and pure mathematics).
Generally, a CNN consists of three layers: the convolution,
activation, and pooling layers (the pooling operation is not
mandatory). The convolution operation convolves two func-
tions of real input values, performing a weighted averaging
process at each time step t as shown in Equation 1. The
asterisk in the equation refers to the convolution operation,
the x is the input data, the k is the kernel (filter), and the
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FIGURE 6. LSTM and BiLSTM networks; (a) LSTM network, (b) LSTM cell, and (c) BiLSTM.

FIGURE 7. The convolution operation for an NLP task. Fh is the height of the filter, Fw is the width of the filter, and
n is the number of the filters.

output f is the ‘‘feature map.’’

f (t) = (x ∗ k)(t) =
∫
x(a)k(t − a)da (1)

In practice, the real data is multidimensional (tensors),
not continuous. Therefore, a discrete convolution operation
(as defined in Equation 2) is usually used. This operation
considers the input x as 2-dimensional data, as well as the
kernel k . The kernel convolves over the input by performing
different operations, including the strides and padding.

f (t) = (x ∗ k)(i, j) =
∑
n

∑
m

x(n,m)k(i− n)(j− m) (2)

Convolution is employed to improve computational effi-
ciency and memory utilization, especially when extremely

large multidimensional data are involved. This is achieved by
using filters that can transform sparse input data into more
compact feature sets. Also, the filters reduce the number
of weight parameters needed and handle variable lengths of
the input data [41]. The activation part of the convolution
maintains the positive generated features, which are used to
proceed further in the learning process, while negative values
are discarded. Meanwhile, at the pooling layer, a downsam-
pling technique is performed to shrink the feature maps by
summarizing the statistical properties of the nearby points.
Figure 7 describes the convolution and pooling operations of
the CNN network.

This convolution, activation, and pooling process is
repeated many times throughout all convolutional layers to
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FIGURE 8. Description of the implemented structures of a) LSTM, b) BiLSTM, c) CONV1D, and d)
LSTM-CONV1D.

produce a highly robust representation of features. The gen-
erated feature maps are flattened to vectors and then entered
into a fully connected neural network layer for classification
and prediction. The combination of convolution and sequence
models can also be considered for processing textual data
sequences. The consolidated features generated from a con-
volutional model are considered spatial features that serve as
the input for the following sequence model. The sequence
model is designed to handle the produced features from
the convolution as sequences and subsequently extract new
chronological features of the text.

4) MODELS TUNING AND SELECTION
The variants of deep learning models (i.e., LSTM, BiLSTM,
CONV1D, and LSTM-CONV1D) used in this work were
initially implemented to process sequences of data like textual
data. Hence, the implemented methodology used altered ver-
sions of LSTM, BiLSTM, CONV1D, and LSTM-CONV1D
for next word prediction. At first, the four models were
tested at roughly 10 epochs to determine which model is
most suitable for next word prediction. For this purpose,
all models were configured at a learning rate of 0.001. The
batch size was 128, the activation function was the rectified
linear unit (ReLU), the optimizer wasAdam (derived from the
adaptive moment estimation method), and the filter size was
either 3 or 2 depending on which n-gram model was utilized.
Moreover, the models were tested at three different dimen-
sions of embeddings (100, 200, and 300), at different number
of epochs, and at two embedding types (i.e., Keras embed-
ding, and Aravec embedding). Besides, evaluated based on
the training and validation of accuracy and loss. The Keras
embedding is offered by the Keras library, in which the Keras
embedding layer is initialized by random weights and then
tuned during the training process.

The best-obtained model of each LSTM, BiLSTM,
CONV1D, and LSTM-CONV1D was further tuned

and optimized. However, optimizing the models included
adding regularization and dropout parameters, batch normal-
ization to ensure that the output of each layer is correctly
normalized and scaled. This provided more stable networks
and sped up the learning process. Furthermore, the models
were implemented at increased number of epochs (30 epochs)
to expand the capacity of the algorithms to improve the
convergence over a large number of epochs. These enhanced
models were evaluated based on the training and validation
accuracy and loss, as well as the accuracy of their matching
scores at testing.

The optimized models are shown in Figure 8. The struc-
tures of LSTM, BiLSTM, CONV1D, and LSTM-CONV1D
are presented in sub-figures (a) and (b). The structure of
LSTM comprises two stacked LSTM layers. First, it takes
the embedding layer as input with three main parameters
(i.e., the vocab size; the embedding dimension; the weights,
and the input length, which is themaximum sequence length).
The two stacked layers of LSTM consist first of 512 units
and then 256 units, which then followed by a dense layer
of 128 neurons. The LSTM layers and the dense layers are
separated by two layers of batch normalization and dropout
with a percentage of 40%. The number of neurons in the
final dense layer represents the number of classes. As the
problem of interest is the next word prediction, the number
of classes in this case is the number of unique vocabularies
in the dataset. Meanwhile, its form of activation is Soft-
max activation. The softmax layer is responsible for com-
puting the probabilities of the output classes according to
Equation 3, where z represents the weighted sum of the
input at layer l, j is the number of neurons at the cur-
rent layer, and k is the number of neurons in the previous
layer.

alj =
ez

l
j∑

k e
zlk

(3)
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The structure of the BiLSTM network is similar (as shown
in Figure 8-(b)), it consists of an embedding layer, two
stacked BiLSTM layers (of 512 and 256 units), a dense
layer of 128 neurons, and a fully connected layer of the
vocabulary size. It also contains the separating layers of batch
normalization and dropout. The structure implemented for
the CONV1D network is described in Figure 8-(c). This
network includes an embedding layer, a convolution layer
of one dimension (capable of processing textual data with
256 filters), and a flattening layer in which the output is
shaped into an acceptable format so that it can enter the
next dense layer of 128 neurons. A batch normalization
layer, a dropout layer, and the last fully connected dense
layer are also part of this network. The structure of the
LSTM-CONV1D is illustrated in Figure 8-(c), where the out-
put of a convolution layer of 256 filters is fed into an LSTM
network with 128 units before entering a dense layer with a
size of 128. As with the other networks, the LSTM-CONV1D
network adopts batch normalization and dropout layers,
as well as an embedding layer and the final fully connected
layer.

The models described above were trained on two versions
of datasets (i.e., the 4-gram, and 3-gram) for each of the five
specialties. They were then evaluated quantitatively based on
the matching scores (discussed in subsequent sections).

D. EVALUATION CRITERIA
Themodels were evaluated based on the testing accuracy, for-
mulated in terms of the matching score. The matching score
compares the actual labels y of the testing part of the dataset
with the highest five likelihood predictions of the developed
learning model. To illustrate, for each class, the learning
model produces a probability that any given word will be
the next word. Hence, each testing sample in the dataset
has five possible predictions as in Equation 4, which are
the highest probabilities. Consequently, any match between
the five predictions and the truth label is substituted by
a value (1). This is described by Equations 5, where the
x variable presents the truth value, and ŷ is the predicted
value. All predictions that match the truth labels across the
testing dataset are summed and averaged to form a matching
score (as in Equation 6 denoted by Accuracyms). In which,
m is the number of samples in the testing set. However,
matching is done syntactically. Therefore, any prediction that
is slightly different from the truth label in terms of syntax due
to normalization is considered a non-match.

Ŷ = {ŷ1, ŷ2, ŷ3, ŷ4, ŷ5} (4)

f (x) =

{
1 if ŷ = x ∧ ∃(ŷ ∈ Ŷ )
0 otherwise

(5)

Accuracyms =
1
m

m∑
i

f (xi) (6)

For instance, considering a dataset of three sen-
tences (m = 3), which are the ‘‘The best treatment is’’,

TABLE 2. The parameters settings for implementing deep learning
models.

‘‘Do a sonar on’’, and ‘‘Wash with warm water’’. And the
proposed model predicted the potential next word for the
first sentence as {‘‘The peel’’, ‘‘The laser’’, ‘‘With’’, ‘‘If’’,
and ‘‘Sessions’’}. For the second sentence: {‘‘The belly’’,
‘‘The testicles’’, ‘‘The testis’’, ‘‘The prostate’’, and ‘‘The
pelvis’’}. And for the third sentence, they are {‘‘Calming
down’’, ‘‘And take a lot of’’, ‘‘Or’’, ‘‘On’’, and ‘‘Use’’}.
If the truth value of the first sentence is ‘‘The laser’’, and
for the second is ‘‘The chest’’, and for the third is ‘‘Calming
down’’. Thus, as the first and third sentences match, then the
Accuracyms = (1 + 0 + 1)/3 = 67%.

IV. EXPERIMENTS AND RESULTS
This section presents the details of the experiments set up,
and discusses the results in regard to three different analyses:
the first subsection studies the influence of the embedding
dimension, the second interprets the effect of the number of
epochs, and the third investigates the embedding type.

A. EXPERIMENTAL DETAILS
Regarding the hardware settings of the experiments,
the development platform was Google Colaboratory (Colab).
Regarding the Colab, the processor was Intel(R) Xeon(R)
CPU @ 2.00GHz, and the memory was 27 GB. Regard-
ing the cloud server, the Python version 3.7.3 was used
on Ubuntu-1804-bionic-64 cloud server, the memory was
64 GB, and the processor was an Intel(R) Core(TM) i7-7700
with a speed of 3.6 GHz. Meanwhile, the used GPU was
GeForce GTX 1080 (8 GB). Furthermore, the utilized deep
learning framework was Keras [37], which was built on
top of Tensorflow [42]. Table 2 describes the parameters
according to the settings of the deep learning models. In the
table, l1 and l2 are the penalties of the regularizers. Besides,
the utilized embedding models are the Keras embedding, and
the Aravec-Twitter-CBOW at dimension 300.

B. EFFECT OF EMBEDDING DIMENSION
This subsection presents a discussion of the performance
of LSTM, BiLSTM, CONV1D, and LSTM-CONV1D based
on their training accuracy (T. Accuracy), validation accu-
racy (V. Accuracy), training loss (T. Loss), and validation
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TABLE 3. A comparison of training and validation accuracy and loss based on the 3-gram datasets of gynecology, dermatology, psychology, urology, and
internist diseases. (E.D.) is the embedding dimension.

loss (V. Loss) for gynecology, dermatology, psychology, urol-
ogy, and internist diseases at 4-grams and 3-grams. A sensi-
tivity analysis was also conducted based on the embedding
dimension for the four models over the five specialties.

Table 3 presents data regarding the performance of LSTM,
BiLSTM, CONV1D, and LSTM-CONV1D based on the
3-grams formulations of the datasets. Regarding gynecology,
the training accuracy was showing an increasing relationship
with the increasing number of the embedding dimension. This
was found even for the CONV1D at the same dimensions

of 100 and 300 with a value of (36.5%). Meanwhile,
the LSTM attained the lowest training accuracy of 34.4%.
In terms of validation accuracy, both LSTM and LSTM-
CONV1D were increasing with the embedding dimension,
presenting close maximum accuracy values of 25.1% and
25%, respectively. BiLSTM and CONV1D did not perform at
the same level. BiLSTM achieved the best at dimension 200
(52.3%), while CONV1D performed the best at dimension
100 (25%). Similar behavior was noticed for the training
loss, as the best score obtained by CONV1D (loss = 3.209).
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Regarding validation loss, the best scores of LSTM,BiLSTM,
and LSTM-CONV1Dwere achieved at dimension 100, while
CONV1D produced its best score at dimension 200. All mod-
els obtained relatively close loss values, with the best value
of 7.382 achieved by BiLSTM. Meanwhile, CONV1D out-
performed the other models in terms of training accuracy,
training loss, and validation accuracy (36.5%, 3.209, and
25.5%, respectively) at embedding dimension 100.

For the dermatology specialty, training accuracy increased
as the embedding dimension increased. The maximum
accuracy of 53.7% was achieved by CONV1D at dimen-
sion 300. Regarding validation accuracy, each model attained
its best performance at dimension 300. CONV1D performed
the best, as it yielded a validation accuracy of 27.2%.
LSTM, with an accuracy of 25.3%, was the worst model
in this regard. Each model achieved its lowest training loss
score at dimension 300. CONV1D obtained the best train-
ing loss of 2.085. For validation loss, LSTM-CONV1D
achieved the lowest minimal loss of 9.038 at dimension 100,
while LSTM-CONV1D produced the highest validation loss
of 10.188 at dimension 200. Among all models, CONV1D
performed the best in terms of training accuracy, training loss,
and validation accuracy.

For the psychiatric dataset, the models performed
similarly as for the dermatology dataset. Specifically,
the models’ training accuracy increased alongside the embed-
ding dimension. LSTM achieved a lower training accu-
racy (42.64%) than LSTM-CONV1D (43.3%) and BiLSTM
(44.39%), while CONV1D had the highest accuracy of all
(62.4%). Considering validation accuracy, LSTM, BiLSTM,
and LSTM-CONV1D achieved accuracies around 24%.
CONV1D outperformed the other models, achieving a valida-
tion accuracy of 26.3% at dimension 300. In terms of training
loss, all models presented their best scores at embedding
dimension 300. At this dimension, LSTM-CONV1D attained
a score of 3.021, LSTM attained a score of 2.936, BiLSTM
attained a score of 2.772, and CONV1D presented the best
score of 1.665. All four models obtained their best validation
loss performance at embedding dimension 100. In this case,
CONV1D performed the worst, with a score of 11.988.
LSTM and BiLSTM did slightly better of (11.011, and
11.018, respectively), whereas, LSTM-CONV1D obtained
the best score of 10.292.

Regarding the urology dataset, the training accuracy and
loss increased when the embedding size was maximized.
CONV1D achieved the best accuracy and loss of 63.4%,
and 1.566, respectively, when the embedding dimen-
sion was 300. Considering validation accuracy, CONV1D,
LSTM-CONV1D, and LSTM achieved their best perfor-
mances (34.3%, 33%, and 32.3%, respectively) at dimen-
sion 300. Meanwhile, the BiLSTM model achieved its
best validation accuracy of 33% at dimension 200. LSTM-
CONV1D achieved its best validation loss score of 8.486 at
dimension 100, and the LSTM and BiLSTM models yielded
similar scores. CONV1D performed the worst, producing
a validation loss score of 9.379. For the internist diseases

dataset, training accuracy and loss increased as the embed-
ding dimension number increased, and all models pre-
sented their best performance at embedding dimension 300.
LSTM, BiLSTM, and LSTM-CONV1D achieved similar
training accuracies of 65.6%, 66.7%, and 67.6%, respec-
tively. CONV1D performed the best, yielding an accuracy
of 74.3%. CONV1D also produced the best training loss
score of 1.095. BiLSTM, LSTM-CONV1D, and CONV1D
obtained their highest validation accuracy scores (59.6%,
60%, and 60.4%, respectively) at embedding dimension 300.
Meanwhile, LSTM performed the best at dimension 200,
presenting an accuracy of 59.4%. Regarding validation loss,
LSTM, BiLSTM, and CONV1D produced their best results
at dimension 100, with LSTM providing the best score
of 4.408. LSTM-CONV1D achieved its best loss (4.665) at
dimension 300.

Table 4 shows the performance of the four deep learning
models based on the 4-gram representation and over the
five specialties. Regarding the gynecology dataset and the
LSTM model, the best training accuracy and loss results
were achieved at embedding dimension 300. However, this
model presented its best validation accuracy at embedding
dimension 200 and its highest validation loss at embedding
dimension 100. The model clearly exhibited overfitting, yet
its training accuracy increased when the dimension number
increased. Similar outcomes were found for BiLSTM, with
the best training results observed at dimension 300 and the
best validation results found at dimension 200. Nevertheless,
the training accuracy and loss performances increased as the
value of embedding increased. The CONV1D model pre-
sented its best training accuracy, training loss, and validation
accuracy results at dimension 200, while it achieved its best
validation loss at dimension 300. No clear relationship was
detected between this model’s performance and the embed-
ding dimension, as it peaked at dimension 200 before drop-
ping at dimension 300. Meanwhile, the LSTM-CONV1D
model produced its best training accuracy and loss scores
at embedding dimension 200 and its best validation perfor-
mance at dimension 300. The maximum validation accu-
racy score obtained by LSTM, BiLSTM, and CONV1D
was 25.3%, and the minimum validation loss (7.163) was
achieved by CONV1D.

Regarding dermatology, increasing the embedding dimen-
sion improved training accuracy, training loss, and validation
accuracy for all four tested models. Differently, validation
loss is the best at embedding dimension 100. The best results
for LSTM, BiLSTM, and LSTM-CONV1D in terms of train-
ing accuracy, training loss, and validation accuracy were
observed at dimension 300. Meanwhile, CONV1D’s perfor-
mance fluctuated across the dimensions. Among all models,
the best training and validation accuracies (66.3% and 27%,
respectively) were obtained by CONV1D. This model also
produced the best training loss score of 1.493. The best vali-
dation loss score (9.95) was achieved by LSTM-CONV1D.
The same behavior was exhibited for the psychiatric dis-
eases dataset, as scores for all four metrics increased when
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TABLE 4. A comparison of training and validation accuracy and loss based on the 4-gram datasets of gynecology, dermatology, psychology, urology, and
internist diseases.

the value of the embedding dimension increased. CONV1D
performed the best in terms of training and validation accu-
racy (72.7% and 26%, respectively), as well as training loss
(1.233). LSTM-CONV1D achieved the minimum validation
loss score (11.732).

For the urology dataset, the training accuracy, training
loss, and validation accuracy performances of BiLSTM
and LSTM-CONV1D gradually improved. While LSTM-
CONV1D produces the best scores for training accuracy,
training loss, and validation accuracy, BiLSTM produced the

best validation loss score (9.421). LSTM and CONV1D did
not exhibit a uniform trend regarding the relationship between
the evaluation metrics with the value of the embedding
dimension. CONV1D performed the best in terms of train-
ing accuracy, training loss, and validation accuracy (76.8%,
35%, and 1.000, respectively). The models behaved similarly
for the internist diseases dataset as they did for the derma-
tology and psychiatric diseases datasets. Specifically, their
performances tended to improve as the value of the embed-
ding dimension increased. CONV1D achieved the maximum
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TABLE 5. A comparison of the best models based on the training and validation accuracy and loss for five specialties based on Keras embeddings.

training accuracy of 77.3%, the maximum validation accu-
racy of 62.7%, and the best training loss score of 1.032.
Meanwhile, BiLSTMoutperformed the other models in terms
of validation loss, achieving a minimum score of 4.401.

In conclusion, comparing the performances of the mod-
els, both at 3-grams and 4-grams, revealed that all models
performed better in the 4-gram representation of the datasets
than the 3-gram representation. Therefore, the best of the
4-grams models for each of the five specialties were used
for further optimization to maximize their performance. This
optimization process is discussed in the following subsection.

C. EFFECT OF NUMBER OF EPOCHS
This subsection discusses the performance of themodels after
optimization. The best model (between LSTM, BiLSTM,
CONV1D, and LSTM-CONV1D) for each specialty was
optimized based on its structure and then implemented at
an increased number of epochs (30). Table 5 represents the
models’ performances in terms of the training accuracy and
loss, and validation accuracy and loss (the 4-gram model
was considered in all cases). Regarding the gynecology
dataset, CONV1D achieved superior results in terms of train-
ing accuracy, training loss, and validation accuracy (45.5%,
3.172, and 26.3%, respectively), at embedding dimension
200. Meanwhile, LSTM-CONV1D achieved the lowest val-
idation loss score of 6.230. For the dermatology dataset,
CONV1D again performed the best in terms of training accu-
racy, training loss, and validation accuracy (62.2%, 2.131,
and 27.9%, respectively) at dimension 300. LSTM-CONV1D
performed the best in terms of validation loss, with a score
of 7.510. CONV1D also produced the best training accuracy,
training loss, and validation accuracy scores, both for the
psychology dataset (70.7%, 1.688, and 27.9%, respectively)

and the internist diseases dataset (78%, 1.308, and 63.2%,
respectively). LSTM-CONV1D once again achieved the best
validation loss scores for these datasets (8.768 for psychology
and 3.467 for internist diseases). Finally, for the urology
dataset, LSTM performed the best in terms of training accu-
racy, training loss, and validation accuracy at dimension 300
(74.3%, 1.435, and 36.3%, respectively). CONV1D achieved
the best validation loss score (2.582).

Figure 9 shows Bar chart visualization of the training and
validation accuracies for gynecology, dermatology, psychol-
ogy, urology, and internist diseases.

Figure 10 presents the convergence curves based on the
training and validation accuracies of the best models for each
of the five specialties. The convergence curves illustrate the
models’ performances in terms of accuracy over 30 epochs.
The figure clearly shows that, for all datasets, the mod-
els’ training accuracies increased smoothly over the epochs.
CONV1D produced the best results for the gynecology, der-
matology, psychology, and internist diseases datasets, while
LSTM was the best performer for the urology dataset. Also,
themaximum accuracywas achieved for the internist diseases
dataset (approximately 80%), while the gynecology dataset
exhibited the worst performance (approximately half of the
internist dataset). Moreover, inspecting the convergence of
the validation accuracy shows that for the gynecology, der-
matology, psychology, and urology datasets, amaximum con-
vergence of nearly 30% on average was achieved. In contrast,
the best convergence of validation accuracy of the internist
diseases dataset was roughly 60%. Table 6 displays examples
of the predictions generated by the best models (i.e., LSTM,
BiLSTM, and CONV1D) for the gynecology, dermatol-
ogy, psychiatric diseases, urology, and internist diseases
datasets. The table presents the testing samples, their English
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FIGURE 9. Bar chart depiction of the validation and training accuracy for five medical specialties; a) gynecology, b) dermatology,
c) psychology, d) urology, and e) internist diseases.

translations, and their predictions (both in Arabic and
English). Quantitatively, the best-performing model for the
internist diseases dataset was the CONV1Dmodel. However,
the BiLSTM model generated more relevant predictions than
the CONV1D model.

Furthermore, comparing the performance of the best-
obtained models in terms of their matching scores is pre-
sented in Table 7. The table shows the testing accuracies of
the best models, in terms of the matching scores, for each
of the five specialties. It can be seen that the best matching

score for the gynecology dataset was obtained by CONV1D
(44.9%). This score means that the model can predict the
exact words as provided in the ground-truth nearly half the
time. For the dermatology dataset, the LSTM, BiLSTM,
CONV1D, and LSTM-CONV1D models performed simi-
larly, with the CONV1D achieving the best of a matching
score of 26.8%. Similar findings were revealed for the psy-
chology dataset, as the best matching score of 26.8% was
achieved by CONV1D. For the urology dataset, the four
models presented very similar results, but the CONV1D
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FIGURE 10. Comparison of the validation and training accuracy for five medical specialties; a) gynecology, b) dermatology, c)
psychology, d) urology, and e) internist diseases.

once again provided the best result, with a value of 39%.
Regarding the internist diseases dataset, LSTM, CONV1D,
and LSTM-CONV1D achieved matching scores of 29.7%,
29.5%, and 29.7%, respectively. The BiLSTM model outper-
formed others, attaining a matching score of 30.3%.

D. EFFECT OF EMBEDDING TYPE
This subsection presents the effect of the embedding type
on the performance results. The Aravec embedding was

implemented to study its influence on the models’ perfor-
mance over the Keras embedding. Table 8 shows the results
of the developed deep learning models based on the Aravec
embedding and regarding the training accuracy and loss, and
validation accuracy and loss, when the embedding dimension
is 300, the n-gram representation is 4, and the epochs are 30.

For gynecology, the best training and validation accura-
cies were obtained by the BiLSTM model (19.5%, 21.1%,
respectively). Whereas, the best training and validation
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TABLE 6. Examples of predictions of the best-obtained models for the five specialties.

TABLE 7. A comparison of the models’ accuracies based on the matching score of the best-obtained models for five specialties based on Keras
embedding.

TABLE 8. A comparison of the best models based on the training and
validation accuracy and loss for five specialties based on Aravec
embeddings.

loss values were attained by the CONV1D model by hav-
ing 5.526 and 6.310, respectively. Regarding dermatology,
the best training accuracy and loss gained by the CONV1D
model by having 23.8% and 4.977, respectively. Also,
the best validation accuracy obtained by the BiLSTM model

was 23.3%, while the best validation loss was 6.890. For
psychology, the CONV1D model obtained the best training
accuracy of 28.7% and loss of 4.573. Also, the BiLSTM
model obtained the highest validation accuracy of 23.5%,
while the LSTM-CONV1D gained the lowest validation loss
of 7.777. Besides, for the urology and internist diseases,
the BiLSTM achieved the best training and validation accu-
racies by having 36.4%, 31.9%, and 57.8%, 59.3%, respec-
tively. Furthermore, the CONV1D model performed the best
in terms of the training loss for urology and internist diseases.
The LSTM-CONV1D achieved the best in terms of the val-
idation loss for the urology (6.519), while for the internist
diseases, the CONV1D did the best of 3.541.

To sum up, regarding the validation accuracy, when the
embedding is Aravec, the BiLSTM performed the best.
Whereas, at the Keras embedding, the CONV1D achieved the
best over the five specialties. Generally, the Keras embedding
presented in Table 5 performed better than the Aravec embed-
ding in terms of training accuracy and loss and validation
accuracy and loss.

Table 9 shows the accuracy based on the matching score
when the used embedding is Aravec. It can be seen from the
table that the BiLSTM model performed the best over the
five specialties. The gynecology had (40.6%), the dermatol-
ogy attained 26.5%, the psychology achieved 26%, the urol-
ogy obtained 38%, and the internist diseases achieved 29%.
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TABLE 9. A comparison of the models’ accuracies based on the matching score of the best-obtained models for five specialties based on Aravec
embeddings.

This is slightly was less performing than the matching score
presented in Table 7, which was depending on the Keras
embedding.

V. CONCLUSION
Recently, NLG has been adopted for various applica-
tions, but it is insufficiently studied in the Arabic context.
An NLG-based model is proposed in this paper and applied
as a one-time, one-word, predictive text model for Arabic
medical recommendations. The objectives are to save doc-
tors’ time, improve service satisfaction, and improve patient-
doctor interactions. Variants of deep learning models were
utilized to predict the next word of text-based medical rec-
ommendations across various specialties. Hence, 3-gram and
4-gram representations of different datasets were incorpo-
rated. The implemented deep learning models in this study
were the LSTM, BiLSTM, CONV1D, and LSTM-CONV1D
models, where they were trained for the most common con-
sultation types in Altibbi (i.e., gynecology, dermatology,
psychiatric, urology, and internist diseases). A sensitivity
analysis was conducted based on the embedding dimension,
epochs, and embedding type to boost the models’ perfor-
mances. The best-obtained models were developed in this
analysis and compared based on their training accuracy,
training loss, validation accuracy, validation loss, and testing
accuracy (measured as a matching score). All deep learning
models achieved encouraging results, as they produced rel-
evant suggestions for the next word approximately half the
time.

This work can be extended further to not just predict the
next consequent word, but also to predict a phrase or a longer
sequence of words. Furthermore, enhancing the quality of the
developed models can be achieved by training the models
on more large-scale datasets. Besides, implementing state-
of-the-art models such as attention and transformers models
plays a significant role in promoting the performance of such
predictive text models.
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