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ABSTRACT Subspace clustering aims to find clusters in the low-dimensional subspaces for
high-dimensional data. Subspace clustering with Block Diagonal Representation (BDR) maintains the
number of connected components of the graph by Laplacian rank constraint, and the learned affinity matrix
shows a block diagonal structure, which will achieve a good segmentation for the dataset by spectral
clustering. However, the subspaces of real data may overlap and the learned affinity matrix may be imprecise.
In this work, we propose an Active learning framework for BDR(ABDR) to acquire and incorporate prior
knowledge to improve the subspace clustering performance. An active selection strategy is designed to
acquire labels of the informative data points from both the skeleton of clusters and the boundaries of clusters,
and then the labeled data are converted into pairwise constraints, which are incorporated into BDR. The
optimization of the new objective function is given and the convergence of ABDR is discussed. Experimental
results on three images datasets(MNIST, ORL and COIL-20) and one UCI dataset(ISOLET) demonstrate
the effectiveness of ABDR on complex clustering tasks and show that ABDR is superior to multiple state-
of-the-art active clustering and learning techniques.

INDEX TERMS Active learning, subspace clustering, block diagonal representation, pairwise constraints,
self-expressiveness, convergence.

I. INTRODUCTION
As a preliminary task in the field of data mining and machine
learning, data clustering detects the underlying structures of
a given dataset and divides it into a number of clusters.
However, traditional clustering technologies often perform
poorly in real applications, especially for high-dimensional
data, such as text data clustering [1], image segmenta-
tion [2] and face recognition [3]. One of the reasons is that
high-dimensional data often lie in low-dimensional subspaces
instead of being uniformly distributed across the ambient
space [4]. Subspace clustering or subspace segmentation aims
to segment data samples into different clusters, where each
cluster is related to a subspace [5]. In the past decade, lots
of researches focus on constructing a block-diagonal affinity
matrix because of the strong self-expressiveness property as
well as robustness to the outliers. For example, Sparse Sub-
space Clustering (SSC) [4] presents a sparse representation to
select a few points from the same subspace. SSC can handle
noise and outliers by incorporating the model of the data into
the sparse optimization program. Lu et al. [6] showed that the
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l1-minimization in SSC makes not only the between-cluster
connections sparse, but also the inner-cluster connections
sparse, thus the clustering results obtained by spectral cluster-
ing may not be correct. Low-Rank Representation (LRR) [7],
[8] enforces low-rank constraint on the affinity matrix to
achieve block-diagonal property and encouraging perfor-
mance. However, low-rank constraint cannot always generate
block-diagonal representation matrix so that it might fail to
uncover the intrinsic multiple subspace structure within the
data [5], [6]. Recently, BlockDiagonal Representation (BDR)
for subspace clustering algorithm has been widely concerned
due to its good clustering performance [6], [9]. The BDR
algorithm explores the subspace representation and adds
Laplacian rank constraints to the objective function to main-
tain the number of connected components of the graph. Ide-
ally, the affinity matrix has a k-block diagonal structure, each
of which is a self-expressive coefficient sub-matrix between
data points within the same subspace. In this case, spectral
clustering on the affinity matrix will segment the data into
reasonable clusters. BDR, as well as most of subspace clus-
tering algorithms, assumes that subspaces are independent
of each other and the data are noise free [10]. However,
for complex clustering tasks, the subspaces of real data may
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be highly overlapped and corrupted by noise and (or) out-
liers, and it is difficult to get a subspace-preserving affinity
matrix [10]. In this case, the clustering results of BDR are
inconsistent with the expected clusters, thus cause high clus-
tering errors [11].

In order to improve the subspace clustering performance,
semi-supervised methods may be used to guide the clustering
process by allowing the user to provide external semantic
knowledge, generally in the form of data labels [12]–[14]
or pairwise constraints on elements in the data [15]–[17].
The pairwise constraints include must-links (two samples
are known to be in the same cluster) and cannot-links (two
samples are known to be in different clusters) [18], [19].
These efforts on semi-supervised clustering have shown that,
when the constraints are selected well, incorporating pair-
wise constraints can significantly improve the clustering
results.

In this paper, we propose an Active learning framework
for BDR (ABDR) to challenge complex datasets by incor-
porating additional information into BDR. ABDR has three
advantages over previous active subspace clustering and
semi-supervised subspace clustering.

Firstly, the baseline is promising. As a novel algorithm,
BDR has outperformed most other subspace clustering algo-
rithms, such as SSC and LRR, whichmotivates us to use BDR
as a baseline for semi-supervised learning.

Secondly, the active selection strategy is novel and
efficient. We select informative data points instead of pair-
wise constraints and use their labels to provide more infor-
mation for constrained clustering. Specifically, we select data
points from both the skeleton of clusters and the boundaries
of clusters. The constraints that provide information about
the skeleton of clusters can be very useful since they allow
clustering algorithms to better discover complex-shaped clus-
ters [20]. We define the skeleton of clusters as certain
points and the boundaries of clusters as uncertain points
via l1-norm of each cluster, and provide a chance for each
cluster to query its own certain and uncertain points. The
selected informative points are locally-based, which take a
closer look at the structure of the dataset. Experiments show
that our strategy outperforms the compared state-of-the-art
active strategies on test datasets with different subspace
structures.

Finally, the proposed constrained subspace clustering
incorporates the semi-supervised information into the clus-
tering process in a new way. First of all, we convert the
known data labels into pairwise constraints, and then use
the cannot-links to zero the corresponding entries in the
representation matrix, leaving the entries of must-links to
be determined by ABDR. ABDR optimizes simultaneously
the constrained representation matrix and the objective func-
tion that concerns the reconstructed error and the Lapla-
cian rank. Our semi-supervised learning method can be used
in other constrained subspace clustering algorithms, such
as constrained SSC [21], to incorporate the cannot-links
by zeroing the entries of the sparse coefficient matrix to

break the connections between points from different clusters,
other than directly adjust the affinity matrix for spectral
clustering. The effectiveness of our strategy is verified by
comparing it against other strategies on complex clustering
tasks.

The main contributions of this paper are as follows:
• We propose an Active learning framework for BDR,
ABDR, which combines an active selection strategy and
a constrained BDR clustering algorithm. The proposed
selection strategy acquires valuable data labels in batch
and converts them into pairwise constraints for con-
strained clustering.

• We propose a constrained BDR algorithm, whose objec-
tive function is constrained by cannot-link constraints.
Must-links are used to enhance the affinity matrix for
final spectral clustering.

• We compare ABDR against baselines and state-of-the
art active clustering techniques on three image datasets
(MNIST [22], ORL [23] and COIL-20 [24]), and one
UCI machine learning dataset ISOLET [25]. Our results
(see Section IV) show that given the same number of
labels queried, our method performs significantly better
than existing state-of-the-art techniques.

The rest of this paper is organized as follows: The block
diagonal representation-based subspace clustering algorithm
is reviewed in Section II. ABDR is proposed in Section III.
The proposed algorithm is evaluated experimentally in
Section IV and discussed in Section V. Conclusions are given
in Section VI.

II. RELATED WORK
A. BDR
BDR adds Laplacian rank constraint, named the k-block diag-
onal regularizer, to the objective function to maintain the
number of connected components of the graph for a block
diagonal affinity matrix [6], [9].

min
Z ,B

1
2
‖ X − XZ‖2F +

β

2
‖Z − B‖2F + γ ‖B‖k ,

s.t. diag (B) = 0, B ≥ 0, B = BT, (1)

where, Z is the representation matrix, X = [x1, x2, . . . , xn] is
the dataset with each column as an object, and k is the cluster
number.

For any matrix B, the k-block diagonal regularizer is
defined as the sum of the first k smallest eigenvalues of LB,
i.e.,

‖B‖k =
n∑

i=n−k+1

λi (LB) , (2)

where, LB = Diag(B1) − B is the Laplacian matrix of B,
and λi, i = 1, . . . , n, are the eigenvalues of LB in descend-
ing order. The multiplicity k of eigenvalue 0 of LB equals
the number of connected components of the spectral graph
of B [26]. When ‖B‖k = 0, the matrix B shows a k-block
diagonal structure. In view of subspaces, when the subspaces
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of the data are independent of each other and the data are
noise free, the affinity matrix B obtained by BDR has the
k-block diagonal structure, i.e.,

B =

B1 · · · 0
...

. . .
...

0 · · · Bk

 .
BDR-Z [6] is the BDR algorithm, in which spec-

tral clustering is conducted on the affinity matrix W ,
W =

(
|Z | +

∣∣ZT
∣∣) /2.

To enhance the block diagonal structure, some studies
focus on global constraints by adding regularization terms to
the objective functions to optimize the representation matrix
as well as the regularization terms. Li et al. [27] proposed
Structured Sparse Subspace Clustering (S3C) for learning
both the affinity and the segmentation matrix. The regular-
ization term in the objective function is the structure induced
by a norm that depends on the segmentation matrix. Both
the structured sparse representation and the segmentation
can be found simultaneously by optimizing the objective
function via a combination of ADMM (an Alternating Direc-
tion Method of Multipliers) with spectral clustering [27].
Similarly, Liu et al. [28] proposed SBDR (Structured Block
Diagonal Representation) subspace clustering by adding the
same structure as the regularization term to the objective
function, and using the structure matrix obtained by the
spectral clustering to facilitate a better initialization for the
representation matrix. Based on SBDR, Xie and Wang [29]
proposed a constrained SBDR subspace clustering algo-
rithm. The objective function of SBDR is re-optimized
under an additional semi-supervised constraint, in which
the representative coefficients between both must-linked and
cannot-linked nodes are set to 0 to clean the noise in the
representation matrix. Wang et al. [11] proposed a Robust
Block Diagonal Representation learning (RBDR) for sub-
space clustering. They used a penalty matrix to adaptively
weight the reconstruction error and directly constrained the
affinity matrix in the objective function. Thus, RBDR can
handle noise without prior knowledge. Xu et al. [30] pro-
posed a latent BDR (LBDR) model to perform the sub-
space clustering on a nonlinear structure, which jointly
learns an autoencoder and a BDR matrix. The autoencoder
learns features from the nonlinear samples and then uses the
learned features as a new dictionary for a linear model with
block-diagonal regularization to ensure good performance for
spectral clustering. Additionally, Guo et al. [31] proposed a
block diagonal representation for multi-view subspace clus-
tering (MSCBDR). This model concerns a block diagonal
regularizer with the complementarity of multi-view informa-
tion, which is different from our main concern. Generally,
the clustering performance is corrupted by a small number
of ‘‘hard’’ data points, whose local structures in the affinity
matrix cannot be correctly fixed by global constraints. There-
fore, some researchers explore the applications of constrained
subspace clustering.

B. CONSTRAINED SUBSPACE CLUSTERING
Constrained clustering is a semi-supervised learning method
which focuses on enhancing the quality of the partition by
utilizing pairwise constraints [32]. To improve the clustering
performance, prior knowledge or constraints are incorporated
into the clustering process to optimize the local structure of
the affinity matrix. Compared with the global regularization,
the local constraints can improve the clustering performance
pointedly. Pairwise constraints, as local side information, are
popularly used in constrained clustering algorithms. As a step
of BDR, spectral clustering is employed to obtain the seg-
mentation of the dataset. Some efforts on constrained spectral
clustering incorporate must-links and cannot-links provided
by the user or obtained by the active learning into the affin-
ity matrix before spectral clustering [32]–[38]. Specifically,
the affinity matrix entries of the must-linked pairs are set to
1 while the entries of cannot-linked ones are set to−1 [38] or
0 [39]. However, experiments show that constrained cluster-
ing with random constraint selection may degrade the cluster-
ing performance of the basic k−means algorithm [40], [41],
and the performance of spectral clustering depends heavily
on the quality and quantity of constraints [20], [39].

As for constrained subspace clustering, more efforts pay
attention to the constrained (semi-supervised) LRR [17],
[42], [43] than constrained SSC [21]. Fang et al. [42] pro-
posed a robust semi-supervised subspace clustering method
based on non-negative LRR (NNLRR). The supervision
information, such as the label information, is explicitly incor-
porated in an optimization problem to guide the affinity
matrix construction and subspace clustering.Wang et al. [17]
proposed a constrained low-rank representation (CLRR)
for robust semi-supervised subspace clustering based on
a novel constraint matrix constructed. CLRR incorporates
supervision information as hard constraints for enhancing
the discriminating power of optimal low-rank representation
of data. Fang et al. [43] proposed a symmetry constrained
latent low rank representation with converted nuclear norm
(SLLRRC) algorithm for robust subspace clustering.
SLLRRC both enhances the sparsity of the coefficient
matrix and guarantees weight consistency for each pair of
data samples when seeking the low rank representation.
Huang et al. [21] proposed a unified framework for hyper-
spectral image (HSI) clustering, which incorporates spatial
information and label information in a SSC model for a more
precise similarity matrix. The spatial information is included
through a joint sparsity constraint on the coefficient matrix
of each local region and the available label information is
incorporated by zeroing the entries of the sparse coefficient
matrix corresponding to the data points from different classes.
To the best of our knowledge, our previous work [29] is
the first one on constrained BDR. Specifically, this work
incorporates pairwise constraints into the structured subspace
clustering with block diagonal representation (SBDR). In this
paper, we incorporate pairwise constraints into the subspace
clustering with BDR, and explore the constrained BDR with-
out the help of structure regularizer in the SBDR.
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C. ACTIVE CONSTRAINT LEARNING
It is widely accepted that not all pairwise constraints are
equally important. Good constraints can greatly improve
clustering performance, while bad constraints will likely
result in very little improvement, or even degrade clustering
performance [16], [44]. Querying high quality constraints for
clustering is a difficult task due to the lack of an appropriate
criterion for measuring the quality of constraints. Abin [44]
proposed a method to track the quality of candidate con-
straints in embedding spaces instead of the input data space,
and the proposed method outperforms existing algorithms
for constraint selection when used in conjunction with two
well-known clustering methods.

Active learning, which aims at searching and utilizing
supervised information to guide the clustering, is used for
constraint selection. The efforts on active constraint learning
can be mainly grouped into two categories: pairwise con-
straint learning and node label learning. In the spectral graph
theory, each node in the graph represents a data point, thus,
we use nodes and data points alternatively in the following
sections.

(1) Pairwise constraint learning. Due to the difficulty of
providing category labels for large multi-class problems,
many works used pairwise constraints to improve the clus-
tering performance. The work of Klein et al. [45] may be
the first work to show the benefit of carefully chosen con-
straints for constrained clustering [20]. Farthest First Query
Selection (FFQS) [46] was proposed for constraints col-
lection based on the min-max method, which includes two
steps: Explore and Consolidate. A set of cannot-link con-
straints is identified to form a skeleton of the clusters and
the farthest data point from existing skeleton is chosen to
query in Explore steps. Consolidate step randomly picks
a point outside the skeleton and queries it against each
point in the skeleton, until the user stops querying the con-
straints. Liu et al. [16] used entropy to measure uncertainty,
and selected the most uncertain data point based on the
intermediate clustering results, then exploited the pairwise
constraints of the selected points to guide SSC (Sparse Sub-
space Clustering). References [33] and [35] combined cluster
assignment vectors with the ground-truth labels and picked
the pair of nodes with the maximal expected error reduc-
tion. In 2011, Biswas and Jacobs [34] optimized the active
strategy by taking into account the size and distance of the
cluster where the data pairs are located, avoiding the selection
of extreme constraints. In 2014, Biswas and Jacobs [36]
used Jaccard’s coefficient (JCC) as a measure of similarity
between two clustering results, and selected the pair of nodes
which produced the maximal expected change in the clus-
tering. Xie and Wang [29] proposed an active learning strat-
egy for block diagonal subspace clustering, which iteratively
selects a point inside each block as a representative point of
the block and a point outside the block as a suspected missing
one to form a pairwise constraint. Besides, Abin and Wu [20]
proposed a method, we call it DQIC (Density-based approach
for Querying Informative Constraints), to estimate density

and impurity of data points on different adjacency distances
and calculate centrality for each data point by applying a den-
sity tracking approach on the obtained densities. The obtained
information is then used to select a set of high-quality con-
straints. In summary, the active strategies above maximally
reduce the uncertainty of the whole dataset by querying on
pairwise constraints.

(2) Node label learning. Xiong et al. [37] proposed local
and global nonparametric structure models based on node
rather than pair uncertainty. One of the reasons is that, if an
uncertain pair contains two uncertain nodes, a constraint
between these nodes will not extrapolate well beyond these
two nodes. The other one is that pair selection has an inher-
ently higher complexity and limited scalability due to the
presence of n2 constraints for every n nodes [37], [38]. Aim-
ing at reducing the misclassification of boundary points in
dichotomy, Xu et al. [47] defined nodes far away from the
cluster boundary as definite points and the ones near the
cluster boundary as uncertain points, respectively, which are
obtained by analyzing spectral eigenvectors. Xiong et al. [38]
proposed an uncertainty reduction model URASC (Uncer-
tainty Reducing Active Spectral Clustering) for informative
sample selection, and estimated the uncertainty reduction
potential of each sample in the dataset. The pairwise with
respect to only the best candidate sample are queried and the
constraints are used to modify the similarity matrix and then
the spectral clustering is employed to give the segmentation
of the dataset. Liu et al. [48] defined a constraint strategy
called Partition Level Side information to directly obtain the
ground-truth labels of a small proportion of data, expecting
to uncover the data distribution structure from these known
data.

Following [37], we propose an active node label learning
strategy for BDR. We pay attention to node label learning for
another reason, i.e., the node labels contain more information
than that of pairwise constraints, as shown in Figure 1. The
queries on node labels usually deduce more constraints than
the same number of pairwise queries.

FIGURE 1. 5 queries on node labels and pairwise constraints.

III. THE PROPOSED ABDR
A. ALGORITHM FRAMEWORK
We propose an active constrained subspace clustering based
on BDR to incorporate the acquired pairwise constraints into
the clustering process. The real-world data usually contain
noise and (or) outliers, and the data subspaces are overlapped.
Due to the sensitivity of the clustering performance to the
constraints, it is challenging to find valuable data nodes and
use them efficiently (e.g., convert into pairwise constraints in
this paper) to improve the clustering performance.
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FIGURE 2. The framework of ABDR.

First of all, we run BDR-Z on the unlabeled data
(e.g., Image set) to initialize the affinity matrix W , which is
used to segment the data into k-clusters by spectral cluster-
ing. Based on the segmentation, we use the proposed active
selection strategy to select some nodes from each cluster and
query their labels, and then add these new labeled data to the
set of known data, and convert them into pairwise constraints.

Next, as shown in Figure 2, we input the dataset and
cannot-links into our ABDR, and enhance the learned affinity
matrixW bymust-links, and then employ the spectral cluster-
ing onW to generate the segmentation. Now, we can stop the
program and output the segmentation as the clustering result.
If we want to refine the clustering result further, we continue
to select new nodes based on the segmentation and query their
labels and then update pairwise constraints again. We will
explain the proposed framework in the following sections.

B. THE OBJECTIVE FUNCTION OF ABDR
The objective function of ABDR is as follows:

min J (Z ,B) =
1
2
‖X − XZ‖2F +

β

2
‖Z − B‖2F + γ ‖B‖k ,

s.t. diag (B) = 0, B ≥ 0, B = BT, ZC = 0, (3)

where, C is the set of cannot-links, and ZC = 0 requires the
entries of cannot-linked nodes in the representation matrix Z
to be 0, i.e.,

Zij = 0,
(
xi, xj

)
∈ C .

The constraint ZC = 0 is designed to reduce the noise in the
representation matrix Z , since the representation coefficient
of xi and xj must be zero by the self-expressiveness property
of subspaces if xi and xj are cannot-linked [10]. Meanwhile,
the representation coefficients of must-linked nodes are cal-
culated by the optimization process. We use must-links to

enhance the affinity matrixW as follows, and thenW is input
into spectral clustering to obtain the clustering result.

A =
(
|Z | +

∣∣∣ZT
∣∣∣) /2,

W =

{
max

(
v0,Aij

) (
xi, xj

)
∈ M ,

Aij otherwize,
(4)

where, v0 is a constant, andM is the set of must-links.
Pairwise constraints are usually used to adjust the affin-

ity matrix for spectral clustering, however, we use the
cannot-links to clean the corresponding entries in the rep-
resentation matrix Z in the iterations of ABDR, leaving the
entries of must-links in Z to be determined by ABDR, and
then employ the must-links to enhance the affinity matrix W
for spectral clustering. Since the matrix Z of the dataset X
is a representation of X , the clearer and more accurate the
block diagonal structure of Z is, the easier the spectral clus-
tering finds a correct segmentation matrix for X . On one
hand, we zero the representation coefficients of cannot-linked
points to prevent them to be clustered in the same cluster;
on the other hand, the connections of must-linked points are
enhanced in the affinity matrix to make it easy to cluster them
together by the spectral clustering.

C. OPTIMIZATION OF THE OBJECTIVE FUNCTION
We rewrite ‖B‖k as a convex optimization problem [6],

‖B‖k = min
V
〈LB,V 〉

s.t. 0 � V � I , tr (V ) = k.

Then, the objective function can be rewritten as

min
Z ,B

1
2
‖X − XZ‖2F +

β

2
‖Z − B‖2F

+ γ 〈Diag (B1− B,V )〉 ,
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s.t. diag (B) = 0, B ≥ 0, B = BT, ZC = 0,

0 � V � I , tr (V ) = k. (5)

ADMM is adopted to solve V , Z and B as follows:
Step 1: Update V with fixed Z and B. V is updated as

V t+1
= argmin

V
〈Diag (B1) ,V 〉

s.t. 0 � V � I , tr (V ) = k.

The solution of V is given as follows [6]:

V t+1
= UUT, (6)

where, U ∈ Rn∗k consists of the k eigenvectors associated
with the k smallest eigenvalues of LB.

Step 2: Update B with fixed Z and V [6].

Bt+1 =
[(
Â+ ÂT

)
/2
]
+

, (7)

where,
[
A
]
+
= max (A, 0) ,A = Z − γ

β

(
diag (V ) 1T

− V
)
,

Â = A− Diag (diag (A)) .
Step 3: Update Z with fixed B and V .
We partition Z into ZC and ZC , Z = ZC + ZC .

ZC (i, j) =

{
Zi,j

(
xi, xj

)
∈ C,

0 otherwize.

ZC (i, j) =

{
0

(
xi, xj

)
∈ C,

Zi,j otherwize.
(8)

According to the Augmented Lagrangian Method
(ALM) [49], Z can be updated by solving the following
problem:

f
(
ZC ,ZC

)
=

1
2
‖X − XZ‖2F +

β

2
‖Z − B‖2F

+
µ

2

∥∥∥∥ZC + 1
µ
3

∥∥∥∥2
F
. (9)

Following [29], [49], (9) can be rewritten as

f (ZC ,ZC )

=
1
2
tr((X-XZC-XZC )

T(X-XZC-XZC ))

+
β

2
tr((ZC − BC )T(ZC − BC ))

+
β

2
tr((ZC − BC )

T(ZC − BC ))

+
µ

2
tr((ZC +

1
µ
3)T(ZC +

1
µ
3)).

Take the derivative of ZC and set it to 0, we derive

ZC = (XXT
+ (β + µ)I )−1(−XTXZC + L), (10)

where, L = XXT
+ βBC −3, and I is the identity matrix.

Similarly, we have

ZC = (XXT
+ βI )−1(−XTXZC + D), (11)

where, D = βBC + XX
T.

Substitute (11) into (10), then we derive

ZC = Y−1R, (12)

where, Y = βXTX (XTX + βI )−1 + (β + µ)I and R = L −
XTX (XTX + βI )−1D.
Consequently, we get ZC by substituting (12) into (11),

then Z = ZC + ZC .
According to the ALM, Z can be obtained by iteratively

updating µ and 3. In this paper, we set the number of itera-
tions (MAXno) to 100, ρ = 1.8 and µ = 1.5 for ALM. See
Algorithm 1 for details of updating Z , and Algorithm 2 for
ABDR.

The convergence condition of ABDR is

max{
∥∥∥Z t+1 − Z t∥∥∥

∞

,

∥∥∥Bt+1 − Bt∥∥∥
∞

} ≤ ε.

As suggested, ε = 10−3 [6]. We set the number of itera-
tions S = 1 for ABDR in the following experiments.

D. THE PROPOSED ACTIVE SELECTION STRATEGY
Most of the methods in the field of constraint learning
select constraints from the boundaries of clusters, however,

Algorithm 1 Update Z

Input: X ∈ Rd∗n,C, β.
Output: Z ∈ Rn∗n.
1: Initialization: 1 < ρ < 2, µ > 0,3 = 0n∗n.
2: for t = 1:MAXno do
3: Update ZC by (12);
4: Update ZC by (11);
5: 3← 3+ µZC ;
6: µ← µρ;
7: end for
8: Z = ZC + ZC .
9: return Z .

Algorithm 2 ABDR

Input: X ∈ Rd∗n, γ > 0, β > 0, ε > 0.
Output: the segmentation of X .
1: Initialization: t = 0,V t

= 0n∗n,Bt = 0n∗n,Z t =
0n∗n,M = ∅,C = ∅.

2: Run BDR-Z to initializeW and the segmentation;
3: for s = 1 : S do
4: Update M and C by active selection;
5: while not converged do
6: Update V t+1 by (6);
7: Update Bt+1 by (7);
8: Update Z t+1 by Algorithm 1;
9: t = t + 1;

10: end while
11: EnhanceW by (4);
12: Input enhancedW to spectral clustering for segmenta-

tion.
13: end for
14: return the segmentation.
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the constraints that provide information about the skeleton of
clusters can also be very useful since they allow clustering
algorithms to better discover complex-shaped clusters [20].
In this paper, we select data points from both the skeleton of
clusters and the boundaries of clusters. The points from the
skeleton of clusters are concerned as certain points, while the
ones from the boundaries of clusters are uncertain.

Firstly, we sort the rows and columns of the affin-
ity matrix W according to the data segmentation. Ideally,
the sorted W has a block diagonal structure and each block
is a self-expressive coefficient matrix of data points from the
same subspace.

Formally, assume thatW1 is a block on the diagonal ofW ,
and the data subset in the corresponding block(cluster) is X1,
then we define the Representative Strength (RS) of xi ∈ X1 as
the l1 -norm of the corresponding column vector inW1,

RS(xi) =
∑
xj∈X1

|wji|.

Secondly, we calculate the RS values for all points in X1
and sort them in ascending order. As shown in Figure 3, let
〈x1, x2, . . . , xn1〉 be the sorted queue of X1.

FIGURE 3. The proposed selection strategy.

Specifically,

x1 = argmin
xi∈X1

RS(xi),

x2 = argmin
xi∈X1,xi 6=x1

RS(xi),

xn1 = argmax
xi∈X1

RS(xi),

xn1−1 = argmax
xi∈X1,xi 6=xn−1

RS(xi). (13)

The point with the highest RS value, i.e., xn1 , is most
closely connected with the points in cluster X1, and can be
regarded as the certain point of cluster X1. On the other hand,
the point x1 that loosely connects with the points in cluster X1
is the uncertain one.

Thirdly, following the concept of p-partition level side
information [48], we select a small proportion p ∈ (0, 1)
of unlabeled data in X . We pick up required number of data
points from two ends of the sorted l1-queue of each block.
For example, we pick xn1 and xn1−1 with the first two highest
RS values as the skeleton of clusters and the equal number
of points with the lowest RS, i.e., x1 and x2, as boundaries of
clusters, and then query their labels.

Next, we convert the labeled data to pairwise constraints
in the trivial way, i.e., xi and xj are must-linked ((xi, xj) ∈ M )

if they have the same label, and cannot-linked ((xi, xj) ∈ C)
otherwise.

(xi, xj) ∈ M if label(xi) = label(xj),

(xi, xj) ∈ C if label(xi) 6= label(xj).

Finally, the pairwise constraints are incorporated into
ABDR to get the final clustering result. Generally, ABDR
with the updated constraints runs iteratively. For simplifica-
tion, we select and query the unlabeled data in batch, and the
program stops after only one iteration in the following experi-
ments. The overall flow of ABDR is summarized in Figure 4.

FIGURE 4. The flow chart of ABDR.

E. OVERVIEW OF THE PROPOSED METHOD
We give the overview of the proposed ABDR from seven
perspectives of interactive clustering [50].

1) ON WHAT LEVEL IS THE INTERACTION HAPPENING
ABDR presents preliminary BDR clustering results to the
user and then gives them the freedom to guide the subsequent
interactive process. ABDR asks the users for true labels of
the selected informative data using ideas from active learning,
and then uses these labels to generate must-link/cannot-link
constraints, which works as a constraint. ABDR does not
query must-link/cannot-link constraints directly.

2) WHICH INTERACTIVE OPERATIONS ARE INVOLVED
It is the ABDR program that makes corrections of the pre-
liminary BDR clusters by adding constraints. Specifically,
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active learning finds some informative data and queries the
user for the labels, and then uses these labels to generate
must-link/cannot-link constraints to adjust the representation
matrix Z . The iteration of ABDR by adding these constraints
in its objective function will correct some error clusters and
lead to a better clustering result.

3) HOW USER FEEDBACK IS INCORPORATED
The interactive clustering process continuously communi-
cates information to users and takes feedback from them,
and the interactive process requires a mechanism to incorpo-
rate the user’s feedback [50]. In ABDR, the user’s feedback
consists of answering the query with labels of informative
data that are suggested by active learning strategy. ABDR is
a constrained BDR in which user’s feedback constrains the
clustering by adjusting the representation matrix Z .

4) HOW INTERACTIVE CLUSTERING IS EVALUATED
We use both accuracy and normalized mutual informa-
tion (NMI) as evaluation metrics.

5) WHICH DATA
We evaluate the proposed ABDR on four real datasets,
i.e., MNIST, ORL, COIL-20 and ISOLET.

6) WHICH CLUSTERING METHODS HAVE BEEN USED
ABDR is a subspace clustering algorithm focused on cluster-
ing high-dimensional data, simultaneously, it is a constrained
method as mentioned above.

7) WHAT OUTLINED CHALLENGES THERE ARE
a: TECHNICAL IMPROVEMENTS
ABDR needs to improve computational efficiency on large
datasets. This challenge is inherited from BDR and the time
cost for updating the representation matrix Z decreases the
computational efficiency further. As a step of ABDR, spectral
clustering is of crucial importance to the segmentationmatrix,
however, the spectral clustering is time-consuming [51] and
unstable [52] for complex clustering tasks. We observe that
when the cluster number is larger than 10, the spectral clus-
teringmay give a bad clustering result even the affinity matrix
is good. Efforts on scalability and robustness of spectral
clustering for large-scale datasets with limited resources [53]
will be helpful for the improvement of ABDR.

b: METHODOLOGY DEVELOPMENT
The proposed ABDR needs to compare against other active
constrained clustering algorithms, with the same active learn-
ing strategy and different clustering algorithms, or dif-
ferent active learning strategies and the same constrained
BDR. We compare ABDR against four active learning
strategies with the same constrained BDR, and compare
the proposed active learning strategy against URASC [38]
with the same spectral clustering, see the experiments for
details.

IV. EXPERIMENTS
A. DATASETS
Three image datasets MNIST [22], ORL [23], COIL-20 [24]
and one UCI dataset ISOLET [25] are selected to evaluate
the proposed algorithm. The sample images from the image
datasets are shown in Figure 5, and the details of 12 test
datasets are summarized in Table 1.

TABLE 1. Details of 12 test datasets.

1) MNIST
MNIST contains grey handwritten images of 10 digits from 0
to 9 and each image is of size 28*28.We randomly select 6, 8,
and 10 digits with 100 images for each digit to form the test
datasets Dig6, Dig8 and Dig10, respectively. Each original
image is vectorized as a vector of length 784, and then the
vector is normalized to have a unit length as suggested [6].
In the following experiments, each test dataset has 20 versions
to be used in 20 runs, which is the same with another three
datasets, and we useMNIST related datasets to refer to Dig6,
Dig8 and Dig10 simultaneously.

2) ORL
ORL contains 400 face images of 40 subjects with 10 images
each subject. To test the clustering performance of ABDR
on ORL, three datasets ORL20, ORL30 and ORL40 are
constructed. ORL20 andORL30 consist of randomly selected
20 and 30 subjects with 10 images each subject, respectively,
and ORL40 contains 40 subjects and 400 images. The face
images are resized into 32*32, then vectorized as a vector and
normalized to have a unit length.

3) COIL-20
COIL-20 is composed of 20 objects with 72 images per
object. For each object, a camera takes an image by every
5 degrees when rotated through 360 degrees. Each original
image with 128*128 pixels is resized to 32*32 and then
turned into a unit vector. COIL5, COIL10 and COIL15 are
generated, each of which contains all the images of randomly
selected 5, 10, and 15 objects, respectively.
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FIGURE 5. Sample images from three image datasets.

4) ISOLET
ISOLET dataset consists of speech samples of 26 English
letters, which were collected from 150 speakers who had
spoken the name of the alphabet twice, and each of sam-
ples has 617 dimensions. We only use speech samples from
30 speakers, so we have 26 categories of samples, 60 of which
are in each category. We pick k ∈ {6, 12, 18} categories
to randomly generate ISOLET6, ISOLET12 and ISOLET18,
respectively.

It is challenging to conduct the subspace clustering on
these complex high-dimensional datasets, especially for large
multi-class problems.

B. EVALUATION METRIC
The accuracy (ACC) and Normalized Mutual Informa-
tion (NMI) are used to evaluate the clustering results of
ABDR and other algorithms.

Let P = [p1, p2, . . . , pn],Q = [q1, q2, . . . , qn] represent
the real labels and output labels of all data, respectively. ACC
is defined as follows [6]:

ACC(P,Q) =
1
n

n∑
i=1

δ(pi,map(qi)),

where, pi and qi represent the real label and the output label
of the ith data point, respectively, δ(x, y) = 1 if x = y, and
δ(x, y) = 0 otherwise. map() function matches the real labels
with the output labels of the algorithm.

The higher ACC, the better clustering performance.
NMI is also a commonly used evaluation metric in cluster-

ing analysis [11],

NMI (P,Q) =
I (P,Q)

[S(P)+ S(Q)]/2
,

where, I (P,Q) represents the interaction between P and Q,
and S stands for entropy,

I (P,Q) =
R∑
i=1

T∑
j=1

P(pi ∩ qj)log
P(pi ∩ qj)
P(pi)P(qj)

,

S(P) = −
R∑
i=1

P(pi)logP(pi).

P(c) is the probability that the data points belong to the
cluster c. R and T represent the number of real labels and
output labels of data, respectively.

The value range of NMI is [0, 1], and the higher the NMI,
the better the performance.

C. BASELINES AND STATE-OF-THE-ART METHODS
To evaluate our ABDR framework and proposed active learn-
ing strategy, we test the following set of methods, including
two baselines and multiple state-of-the-art active clustering
and learning techniques.
• BDR-Z [6]: A baseline algorithm.
• SBDR [28]: Structured subspace clustering with block
diagonal representation, as another baseline without
active learning.

• Rand: Randomly sample given number of unlabelled
data points.

• URASC [38]: An active spectral clustering algorithm
based on uncertainty reduction.

• URASC + AL: Unlabeled data points are selected by
our active learning method and the deduced constraints
are fed to the spectral clustering algorithm of URASC.

• ABDR + UR: Unlabeled data points are selected by
URASC and the deduced constraints are fed to ABDR.

• DQIC [20]: A density-based approach for querying
informative constraints.

• LNSM [37]: An active learning framework which
computes node uncertainty by local and nonparametric
structure models.

D. EXPERIMENTAL SETUP
We take BDR-Z [6] and SBDR [28] as baselines to highlight
the improvement of the constrained clustering. In addition,
we evaluate the performance of the proposed active selection
strategy as well as that of state-of-the-art selection strategies.
To do so, we arm ABDR with another four selection strate-
gies based on points, i.e., the uncertainty reduction model
(ABDR + UR) [38], the random strategy (Rand), the
local nonparametric structure model (LNSM) [37] and the
approach based on density(DQIC) [20]. The five strategies
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TABLE 2. W/T/L, average ranks and p-values for different metrics. Best results are high-lighted in bold, and the second-best ones are shown in italics.

are evaluated on the test datasets in Section IV.A. To allow
a fair comparison of the techniques, all evaluations use the
same experimental protocol, i.e., the same random datasets,
the same number of queried nodes as well as the same
parameters in Table 4. The tuning of parameters β, γ , and δ
are given in section V.B, and the sampling proportion p is
selected for four datasets based on the idea of ensuring that
each cluster has data points to be queried, and the queries
are as few as possible. In addition, the constrained clustering
algorithms based on ABDR (ABDR + UR, Rand, LNSM,
DQIC and ABDR) are compared against URASC based ones
(URASC and URASC + AL).

E. EXPERIMENTAL RESULTS
For each pair <dataset, algorithm> with a given sampling
proportion p, the averaged ACCs and NMIs over 20 runs are
shown in Tables 5-6 in the Appendix, respectively. The best
value in each case is shown in bold. As expected, the best
values of constrained clustering in most cases (59/60 for
ACC, and 42/60 for NMI) are better than that of baselines.

1) W/T/L
W/T/L (Wins/Ties/Losses) records the number of times that
the algorithm achieves the best value /equals the best value
/is not the best value. From Table 2, we observe that, in view
of W/T/L, ABDR performs significantly better than other
methods on the test datasets. Specifically, ABDR wins on
28 and 36 test cases in terms of ACC and NMI, respec-
tively, which are higher than that of other algorithms. Hence,
ABDR is more advantageous in getting the best performance.
In addition, the results of constrained clustering based on
ABDR, i.e., ABDR + UR, Rand, LNSM, DQIC and ABDR,
outperform the clustering results based on spectral clustering
used by URASC, even if the points are selected by our active
learning strategy in URASC + AL.

2) FRIEDMAN TEST AND NEMENYI MULTIPLE COMPARISON
TEST
We use Friedman rank test [54] for the statistical comparison
of these techniques over the 12 test datasets. Table 2 presents
the average Friedman ranks summarized from Tables 5-6.
Lower ranks are better, and the best performing algorithm
is the one presenting the lowest average rank. ABDR is the
algorithm with the lowest average ranks in terms of ACC
and NMI (average rank = 2.000 and 1.850, respectively),
and DQIC and LNSM are the second lowest ones (average

rank = 2.650 and 2.533, respectively ) in terms of ACC and
NMI, respectively. In terms of average rank, we observe that
our proposed ABDR is better than the others.

To compare the seven algorithms (i.e., URASC, URASC+
AL,ABDR+UR,Rand, LNSM,DQIC andABDR), we eval-
uate the following hypothesis H0 using Friedman test.
Null Hypothesis H0: The seven algorithms do not show

any significant difference when used for clustering on the
datasets.

We calculate p-value for each test, and the hypothesis is
checked at α = 0.05 significance level, as shown in Table 2.

In terms of both ACC and NMI, Friedman test results are
significant at α = 0.05. Thus, we reject Null hypothesis H0.
Namely, the seven algorithms perform significantly different
from each other at the test datasets.

In addition, we conduct pairwise comparisons using
Nemenyi multiple comparison test [55] for ACC and NMI.
We calculate p-value for each test, and the hypothesis is
checked at α = 0.05 significance level, as shown in Table 3.

From Table 3, we observe that ABDR is significantly
different from all compared algorithms except DQIC in
terms of ACC, and significantly different from all compared
algorithms except LNSM in terms of NMI. Moreover, four
constrained clustering algorithms based on ABDR (Rand,
LNSM, DQIC and ABDR) are all significantly different from
URASC based ones (URASC andURASC+AL). In terms of
W/T/L and statistical tests, we can draw a conclusion that the
proposed framework of ABDR is better than that of URASC.

F. PERFORMANCE FOR THE NOISY LABEL CASE
In the proposed active learning strategy, we query the oracle
for the ground truth labels of selected informative points.
In practice, however, the human experts may provide wrong
labels for the queried data points [36]. We test the robustness
of ABDR by adding 5%, 10% and 15% noise to the queried
labels, and compare the performance of ABDR against base-
lines. We employ Dig10 with 6% sampling proportion as a
representative of MNIST, since more instances and larger
test sampling proportion will capture more wrong labels than
the other cases for MNIST. Similarly, ORL40 with 30%,
COIL15 with 6% and ISOLET18 with 25% sampling pro-
portion are chosen to test ABDR. The averaged performance
over 20 runs on the four test datasets is shown in Figure 6,
where ABDR(0%) denotes the ABDR without label noise.
We observe that ABDR performs consistently in the presence
of label noise over the datasets. As the fraction of mislabelled
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TABLE 3. p-values of using Nemenyi multiple comparison test for ACC and NMI.

FIGURE 6. Performance for the noisy label case.

data points increased, the performance of ABDR decreases
over the datasets. In terms of ACC, ABDR is shown to be
significantly better or at least as good as the baselines for
datasets, even with 15% class label noise. However, NMI is
more sensitive to the label noise, and ABDR with 15% label
noise performsworse onDig10 and COIL15 than the baseline
SBDR.

V. DISCUSSIONS
A. COMPUTATIONAL COMPLEXITY OF ABDR
As shown in Algorithm 2, ABDR consists of two parts,
i.e., BDR-Z in line 2 and S iterations to refine the cluster-
ing results in lines 3-13. Due to the spectral clustering for
data segmentation and the eigenvalue decomposition in its
iterations for getting matrices Z and B, the time complexity
of BDR-Z is O(tn3), where t is the iterative times and n is
the number of points. Besides, S iterations in lines 3-13 are
composed of three main parts, i.e., active learning, iterations
for updating matrices V ,B and Z , and the spectral clustering

in line 12. The complexity for active learning is O(nP), where
P is the number of points to be selected. If the updating
process needs K iterations to converge, the computational
complexity of this step is O(KMn3), where M is the iteration
number MAXno in Algorithm 1. For spectral clustering,
the computational complexity is O(n3). In summary, the total
computational complexity of ABDR is O((t + SKM )n3).
Spectral clustering is the main reason of high time complex-
ity, which needs to be investigated in the future work.

B. PARAMETER ANALYSIS
In this section, we tune the parameters used in the exper-
iments. The comparison algorithms URASC, LNSM and
DQIC use the parameters suggested by their authors.

1) THE PARAMETER TUNING FOR BDR-Z AND SBDR
As suggested [6], [28], we conduct BDR-Z and SBDR on
the datasets related to MNIST and ORL with parameters
β = 70, γ = 10−1, which have achieved outstanding
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FIGURE 7. The averaged ACCs of BDR-Z on datasets COIL-20 and ISOLET.

FIGURE 8. The averaged NMIs of BDR-Z on datasets COIL-20 and ISOLET.

clustering results. Besides, the parameter δ in SBDR is sug-
gested to take the value 10−1 and 10−5 on MNIST and
ORL, respectively [28]. To tune the parameters β and γ for
datasets COIL-20 and ISOLET, we conduct BDR-Z on the
test datasets COIL10 and ISOLET12 by searching the interval
[10−5, 105], the averaged ACCs and NMIs over 20 runs
are shown in Figures 7 and 8, respectively. We observe that
BDR-Z performs well when β is relatively large, so we set
β = 105, γ = 105 and β = 105, γ = 1 for BDR-Z and
SBDR for COIL-20 and ISOLET related datasets, respec-
tively.

With fixed β and γ , we run SBDR on COIL10 and
ISOLET12 with δ ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 1.0,
102, 150, 103, 1500}. Figure 9 shows that, when δ is equal
to 150, the averaged ACCs of SBDR are highest.

Since BDR-Z is the initial step of the proposed ABDR and
the foundation of the new objective function, we use the same
parameter values of BDR-Z in ABDR. The parameters are
summarized in Table 4.

2) THE EFFECT OF v0
The parameter v0 is used to enhance the affinity between data
points with must-links. Some works set v0 to 1 [16], [56],
[57], or 0.001 for text clustering [46]. Excessive enhancement

TABLE 4. Parameter values.

FIGURE 9. The averaged ACCs of SBDR on datasets COIL-20 and ISOLET.

of affinity will have effects, but not necessarily a good effect,
especially for complex clustering tasks.

We record the averaged ACCs of ABDR on four test
datasets with β and γ set as Table 4 and v0 set in the interval
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FIGURE 10. The clustering accuracy of ABDR with different proportion p (e.g., 2%, 4%, and 6% data are actively learned for Dig10).

[0.01, 1.0], as shown in Figure 10. We choose the suitable v0
for each dataset and show it in Table 4.

C. CONVERGENCE OF ABDR
Wang et al. proposed the convergence property of a con-
strained spectral clustering algorithm as follows [35]:

As the constraint matrix Q(t) at time t approaches the
ground truth (complete) constraint matrix Q∗, the output of
the constrained clustering algorithm u(t) will converge to the
ground truth cluster assignment u∗:

lim
Q(t)→Q∗

u(t) = u∗.

This property ensures that the active learning framework
will converge to the ground truth cluster assignment as more
constraints are revealed by the oracle [35]. For ABDR,
the cluster assignment is obtained by spectral clustering on
the affinity matrix, however, spectral clustering is unsta-
ble [52] and may give a bad clustering result even the affinity
matrix is good for complex clustering tasks. As a weak prop-
erty, we concern the convergence of the affinity matrix, since
a correct affinity matrix is the premise of the correct cluster
assignment.

We define the convergence property of the affinity matrix
as follows:

As the constraint matrix Q(t) at time t approaches the
ground truth (complete) constraint matrix Q∗, the affinity
matrixW (t) of the constrained clustering algorithm will con-
verge to the ground truth affinity matrixW ∗:

lim
Q(t)→Q∗

W (t) = W ∗.

As for ABDR, the objective function in Section III.B is
under the constraint ZC = 0, which zeros the representative
coefficients between the known cannot-linked nodes, thus the
part of representative matrix Z outside the diagonal blocks is
cleanedwith the increase of the cannot-links. Asmore labeled
data are revealed by the oracle, the affinity matrix W shows
a clear block diagonal. Figure 11 shows the convergence
of ABDR on Dig6. Following [16], the affinity matrix W
used here is obtained by calculating the Euclidean distance
between feature vectors of spectral clustering.

FIGURE 11. Visualization of affinity matrix W on Dig6.

D. DISCUSSION ON CONSTRAINT METHODS
In this section, we discuss three methods for incorporating
pairwise constraints.

1) ZM = v0, ZC = 0
Set appropriate fixed value v0 at the must-linked entries,
and 0 at the cannot-linked entries of Z to replace the rep-
resentative coefficients generated by BDR. This method
can enhance the connections between must-linked points,
however, it may destroy the natural affinity between data
points without pairwise constraints. For an instance, let X =
[x1, x2, . . . , xn], we can get the representation matrix Zn∗n,
such that, X = XZ . Assume that an instance x1 = Xz1, where,
z1 = [0, z21, z31 . . . zn1] is the self-expressive vector of x1,
and there is a must-link constraint between data instances x1
and x2, hence z21 is set to v0. Generally, v0 is different from the
true affinity between x1 and x2, and the values of z31, . . . , zn1
are distorted to be adapted to the value of z21, then the
biased affinity matrix may lead to the decline of clustering
quality. Therefore, this incorporating method has a very high
requirement for the quality and quantity of constraints and the
setting of v0.
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TABLE 5. ACC of different algorithms and strategies.
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TABLE 6. NMI of different algorithms and strategies.
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2) ZM∪C = 0 [16], [29]
Set 0 at all constrained entries in the representation matrix,
and then reconstruct the affinity matrix W for the spectral
clustering, i.e.,Wij is set to v0, if xi and xj are must-linked, and
0 if they are cannot-linked. This method reduces the noise in
the representation matrix, however, setting v0 among all the
same class data will inevitably cause a large reconstruction
error.

3) ZC = 0 (THE PROPOSED ONE)
Similar to but different from the secondmethod, ABDR sets 0
at the cannot-linked entries of representation matrix Z , and
leaves the representative coefficients between must-linked
points to be calculated by the algorithm, which is more
consistent with the natural subspace structure. The must-link
constraints are used to enhance the affinity between the cor-
responding pairwise points if the natural affinity values are
too small, as shown in (4).

The test dataset Dig6 is used to compare three incorporat-
ing methods. The labeled data are acquired by the proposed
active learning strategy, and the sampling proportion varied
from 0% to 100%. Specifically, v0 is set at 0.2, and the results
are shown in Figure 12. Figure 12(a) shows that the second
method is approximately equal to ours in terms of ACC, and
the first one is worst performed.We calculate the logarithm of
the objective function values of ABDR armed with the three
methods, as shown in Figure 12(b). As expected, the first
method produces the largest objective function value, and
ours is the lowest and the best one.

FIGURE 12. Comparison of incorporating methods on Dig6.

VI. CONCLUSION
Combination of active learning and constrained clustering is
a trivial way of incorporating knowledge into the clustering
process. In this paper, we constrain the subspace clustering
algorithm BDR-Z with pairwise constraints, which are con-
verted from the labeled data revealed by the oracle. We opti-
mize the objective function of the proposed ABDR, and
discuss its convergence. Furthermore, the three incorporating
methods are compared and evaluated on the test datasets.
Experimental results validate the effectiveness of ABDR on
complex clustering tasks. In terms of W/T/L and statisti-
cal tests, our proposed constrained framework ABDR and
active selection strategy outperform the compared state-of-art
algorithms.

In future research, we plan to improve and explore ABDR
in the following aspects.
• Add regularization terms into the objective function of
ABDR for better recovery of subspace structures from
noisy data, and explore novel incorporating methods to
increase the utilization of limited human resources.

• Alleviate the time cost by approximating the affinity
matrix with carefully selected representatives [51], [53].
Since spectral clustering is the main reason of high
computational complexity, the efforts on scalability and
robustness of spectral clustering are beneficial to our
work, especially for large scale clustering problems.

• Investigate the ensemble clustering of ABDR to improve
the robustness of clustering results further [58].

APPENDIX
See Tables 5 and 6.
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