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ABSTRACT The optimal power flow (OPF) problem is a widely studied subject in the literature that has
been solved through classical and metaheuristic optimization techniques. Nowadays, significant advances in
computational resources and commercial optimization solvers allow solving complex optimization problems
by combining the best of both worlds in approaches that are known as matheuristics, however, in order
to solve the OPF problem, matheuristic approaches have been little explored. In this regard, this paper
presents a novel Variable Neighborhood Descent (VND) matheuristic approach to solve the OPF problem
for large-scale systems. The proposed algorithm combines the classic OPF model and the VND heuristic
algorithm. The OPF problem is formulated as a mixed-integer nonlinear programming (MINLP) model,
in which the objective function aims to minimize the fuel generation costs, subject to the physical and
operational constraints of the power system. The integer variables of this MINLP model represent the
control of taps positions of the on-load tap changers and the reactive shunt compensation equipment.
To validate the proposed methodology, 17 power systems of specialized literature were tested with sizes from
14 to 4661 buses, and the obtained solutions are compared with the solutions provided by the commercial
optimization solver Knitro. Results show the superiority of the proposed matheuristic algorithm compared
with Knitro to solve the MINLP-OPF model for large-scale systems.

INDEX TERMS Matheuristic optimization, mixed-integer nonlinear programming, optimal power flow,

variable neighborhood search.
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Active power demand of node i

Pgl‘,”‘ Maximum active power generation capacity of
generation unit i

P’gi” Minimum active power generation capacity of
generation unit i

Op; Reactive power demand of node i

Q5+ Maximum reactive power generation capacity of
generation unit {

Q’gi” Minimum reactive power generation capacity of

generation unit i

rij Maximum voltage regulation ratio of the OLTC
at line ij

Si’;‘a" Maximum apparent power flow of line ij

v Maximum voltage magnitude of node i

min

: Minimum voltage magnitude of node i

Discrete Variables:

nf Position of the reactive control of the shunt com-

pensator at node i
nj;  Tap position of the OLTC at line ij

Continuous Variables:

03 Voltage angle difference

PG, Slack variable for active power at node i

QCG,- Slack variable for capacitive reactive power at
node i

QiG,- Slack variable for inductive reactive power at
node i

ajj Transformation ratio of the OLTC installed at
line ij

Pg, Active power generated by the generation unit
at node i

p;;, P Active power flows of line ij

0g,; Reactive power generated by the generation unit
at node i

qu q; Reactive power flows of line ij

Vi Voltage magnitude at node i

wi Auxiliary variable that determines the percent-
age capacity of the shunt compensator installed
at bus i (value between 0 and 1)

I. INTRODUCTION

The electric power systems (EPS) must supply energy to the
consumers with quality, safety, and economy. Therefore,
the EPS must operate with safely and good performance,
through the appropriate adjustment of control variables,
to supply energy at minimum cost and maximum profit.
The most common way to determine an economic static
operating state of the EPS is by solving the optimal power
flow (OPF) problem, which is a computational simulation
tool, essential in solving problems in the planning and oper-
ation of EPS. It includes a set of optimization problems that
aim to obtain the adjustments of the control variables, for the
operating states of the EPS (dispatch of active and reactive
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powers, reduction of operating costs, voltage stability criteria,
among others), addressing a set of physical and operational
constraints for different devices and the transmission net-
work. The OPF problem addresses the optimization of the
EPS operational state [1]. The control variables that are
determined by the solution of the OPF problem define an
operating state to attend the power load while the physical
and operational limits of the system are satisfied [2].

A. LITERATURE REVIEW

In the literature can be found several optimization models for
the OPF problem, adopting different modeling approaches,
single- and multi-objective views, constraints, and decision
variables [3]-[8]. In this regard, several solution techniques
for the OPF problem have been proposed, among which stand
out are mixed-integer programming (MIP) models, convex
models, specialized mathematical algorithms, methods based
on heuristics, and metaheuristics.

In [9], a distributed nonlinear control-based algorithm is
used to determine the optimal power dispatch in power sys-
tems considering the control of reactive power generation.
In [10], a nonlinear programming (NLP) model is proposed
for the OPF problem, the optimization model is represented
in rectangular coordinates, and a primal-dual interior-point
method (IPM) is used to solve it. The objective function
is to minimize the loss of active power in the transmission
system, considering the physical and operational constraints
of the network. The tests were performed on systems known
from the literature such as IEEE- 30, 57, 118, and 300 bus
systems. The results obtained allow us to conclude that the
IPM can efficiently solve the nonlinear OPF problem, and
that computational performance is equally efficient, both in
the space of the rectangular and polar variables. In [11],
the OPF problem is solved via successive linear approxima-
tions of the power flow equations using the polar formulation
of the problem. The development of convex models have
been addressed in [12]-[16], however, in many cases, these
approaches consider several approximations and the global
optimal solution for the problem cannot be reached, also,
the integrality of the control variables is not addressed in these
works.

Metaheuristic techniques have a large background in solv-
ing the OPF problem, in this regard, some examples of
metaheuristic techniques that have been used are Simulated
Annealing in [17], [18], Tabu Search [19], Genetic Algo-
rithms [2], [20], Evolutionary Programming [21] Particle
Swarm Optimization (PSO) [22], Differential Evolution (DE)
Algorithm [23], Cuckoo search algorithm [24], Teaching-
Learning-based optimization algorithm [25], League Cham-
pionship algorithm [26], black-hole-based optimization
approach [27], monarch butterfly optimization [28], and
Gravitational search algorithm [29]. Hybrid metaheuristic
approaches can also be found in the literature. In [30],
the authors propose a Hybridized Algorithm with DE algo-
rithm and Invasive Weed Optimization (IWO) to handle both
continuous and discrete control variables of the OPF problem.
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In [31] a hybrid Enhanced Genetic Algorithm (EGA) with an
incremental power flow model was proposed. A hybrid EGA
with a boundary method to handle higher and lower viola-
tions was proposed in [32]. In [33], a Simulated Annealing
algorithm was hybridized with a PSO algorithm to solve the
OPF problem. One of the main advantages of metaheuristic
optimization includes its capability of handling the nonlin-
earities that characterize a realistic formulation as well as
non-continuous variables in an efficient manner, without lin-
earization of the OPF formulation. Moreover, metaheuristic
algorithms can be applied so solve the OPF problem with
multi-objective approaches such as environmental objectives
immune algorithm [34], PSO [35], and Flower Pollination
Algorithm [36].

Recent works have used new metaheuristics techniques to
solve the OPF problem considering different objective func-
tions, tap control of the on-load tap changers (OLTC), and
shunt compensation control [30], [37]-[42]. In [30], a hybrid
DE and IWO algorithm minimizes the fuel cost and real
power losses considering tap control of the OLTCs and shun
compensation control. In [37] a moth swarm algorithm is
used to solve the problem, the formulation also considers the
optimization of the tap charger ratios and shunt compensator.
A similar OPF problem considering tap control of OLTCs
and shunt compensators is solved in [43] through a grey wolf
optimizer algorithm. In [38], a modified grasshopper opti-
mization algorithm is proposed to solve the OPF problem
considering single and multi-objective functions. In [39],
a modified Sine-Cosine algorithm with Levy flight is pro-
posed to solve the OPF problem. In [40], an optimization
algorithm based on metaheuristic Colliding Bodies Optimiza-
tion (CBO) is proposed to solve the OPF problem. This
metaheuristic is inspired by nature, based on the law of
collision between two bodies. To validate the methodology,
an algorithm based on the Social Spider Optimization (SSO)
metaheuristic is used in [41] to solve the OPF problem, this
SSO algorithm is based on simulation of cooperative behavior
of social-spiders. In the formulation, several objectives are
considered independently, namely: generation cost, losses of
active power, emission of polluting gases, voltage deviation,
and an index of voltage stability. In [42] a hybrid algorithm is
presented that combines Differential Evolution and Harmony
Search to solve the OPF problem. The objective function of
the model contemplates the generation costs, losses of active
power in transmission lines, and voltage stability index. The
constraints are active and reactive power balance, prohibited
operating zones, and valve point loading effects of genera-
tors. In the formulation, discrete controls of the taps of the
OLTCs and reactive power compensation equipment are also
considered. In the above works, the most common systems
are IEEE30, IEEES7, and IEEE118, while large-scale power
systems are not considered to validate the algorithms.

B. RESEARCH GAP AND NOVEL CONTRIBUTIONS
Matheuristic optimization techniques are approaches that
combine metaheuristic algorithms with mathematical
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optimization models to solve complex optimization prob-
lems, however, these techniques have not gotten much atten-
tion when it comes to solving power systems optimization
problems. Thus, motivated by the above literature review,
where there is not any matheuristic approach to solve the OPF
problem, in this work, it is proposed a novel algorithm based
on a matheuristic optimization methodology to solve it.

In this paper, the OPF problem is formulated as
a mixed-integer nonlinear-programming (MINLP) model
where the integer variables determine the OLTCs’ tap
positions and the shunt reactive compensators operation.
Commercial optimization solvers can be used to find local
optimal solutions of this model in small- medium-scale
power systems, however they fail to solve the problem
in large-scale power systems. To tackle this issue, it is
proposed an innovative matheuristic algorithm (MA) that
comprises the MINLP-OPF model and the Variable Neigh-
borhood Descent (VND) heuristic method.

According to the presented state of the art, the contribu-
tions of this paper are the follows:

1) Proposing a new VND-matheuristic algorithm
(VND-MA) to solve the OPF problem in large-scale
power systems. In this approach, the MINLP-OPF
model is decomposed into a subproblem with real
variables that are solved using nonlinear programming
techniques and another subproblem that controls the
discrete variables of the MINLP-OPF model using the
variable neighborhood heuristic method.

2) Proposing a new set of neighborhood structures for the
OPF problem that are based on the optimization of
NLP models. These structures are a novel view for the
optimization of power systems that can be applied to
other problems of electrical power system planning.

3) The approach is able to solve with precision and relia-
bility the OPF problem for large-scale power systems
with thousands of buses on an adequate computational
time to solve the OPF problem for planning the opera-
tion of electrical power systems.

The remainder of this paper is organized as follows:
Section II presents the MINLP formulation of the OPF prob-
lem. Section III presents the proposed matheuristic approach
that uses the MINLP model for the OPF problem and a VND
metaheuristic algorithm to determine the optimal value of the
decision variables of the problem. Section IV and V, respec-
tively, present the results and discussions of the simulations.
Finally, relevant conclusions are drawn in Section VI.

Il. MATHEMATICAL MODEL

The OPF model considered in this work is an MINLP model
in which the objective function represents the minimization
of the generation costs, subject to a set of physical and
operational constraints of the power system. The control
variables of the problem are the tap position of the OLTCs and
the position of the shunt compensators. On the other hand,
the state variables are the active and reactive power injected
by generating units, the voltage magnitude at nodes, voltage

VOLUME 9, 2021



J. M. Home-Ortiz et al.: OPF Problem Solution Through Matheuristic Approach

IEEE Access

phase at nodes, and power flow through the transmission
lines. The OPF problem is formulated in (1)-(17) [4].

min f(Pg,) = Y _ aiPg, + biPg, + ci. (1)
iel'g

subject to

—g"™i =Y pj— Y pi=Pn @)

lJEFL ijEFL

QG —b{"viwi— Y a; — Y qf = O, 3)

jely ijelry
V(i € 'p)
p; = (a,'jvi)2 gij — (a;jvi)vj(gijcos(0;)) + bjjsen(9;)), (4)

P;,-r = VJZ gij — (a;jvi)vj(gijcos(0;)) — bjjsen(8;)), (5)

ol
q; = —(a,:/vi)z (b,:/ + %) + (a,-jvi)Vj(b,;,cos(G,;,'))

— gijsen(6;)), (6)
psh
g = —v; (bz:/ + %) + (ajjvi)vj(bijcos(6;))
+ gijsen(6j)), @)
V(@jeTlL)
ns
i = (W) V(i € Tep). ®)
i
nyri )
ajj = 1+ —Z.max V(ij € I'r), ©)
n;;
VI <y < VMYV e Tp), (10)
PE" < PG, < PG V(i € Tg), (11
U™ < Qg; < Q™ V(i € Tg), (12)
(py)* +(qz)° < Sp'™  V(j e Tw), (13)
W) + (@) < Sp™ VjeTy), (14)
9?(”" <0 <O V(iely), (15)
0<ni<n ma V(i € Tcp), (16)
0<nl < n’ X (i e T'r). (17)

ij =
ni,nijeZ

The objective function f(Pg,) shown (1), minimizes the
total fuel cost of the power generation units according to the
active power generated using its positive costs coefficients a;,
b;, and c;, which are the most used in the literature.

Equations (2) and (3) represent the active and reactive
power balance of the system. Equations (4)-(7) determine
the active and reactive power flow through lines ij using
the polar format which is one of the most accurate ways
to represent the power flow in transmission systems [10],
[44], [45]. Equation (8) determine the percentages of reactive
power injection capacity of the shunt compensators where the
integer variable n{ determines the number of the operating
shunt compensators at the bus i. For the OLTC installed at
line ij, equation (9) determines the voltage transformation
ratio a;;, where the integer variable an determines the tap
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position, and parameter r;; defines the maximum voltage reg-
ulation ratio. Constraint (10) represents the operational limits
of the magnitude of voltage on the system. Constraints (11)
and (12) represent the active and reactive power generation,
respectively. The quadratic constraints (13) and (14) model
the thermal limit of the transmission lines. Constraint (15)
represents the limits of the voltage angular drop between the
buses. Constraint (16) represents the range operating limit of
the shunt compensators, while constraint (17) specifies the
range operating limit of the OLTCs’ taps.

Modern optimization solvers for MINLP problems can
be used to solve the OPF model (1)-(17) in small- and
medium-scale systems, however, for large-scale systems, this
strategy can lead to high computational times or conver-
gence issues. In this way, this paper proposes a matheuris-
tic approach that combines the functionalities of the VND
heuristic algorithm and nonlinear programming models to
solve the MINLP-OPF model (1)-(17). This technique can
handle the nonlinearities and non-convexity that characterize
this problem, discrete and continuous variables, as well as all
the constraints in an efficient way.

Ill. SOLUTION TECHNIQUE

This section presents the optimization concepts used to
develop the proposed matheuristic algorithm. Besides, fun-
damentals of the VND heuristic algorithm and its adaptation
to solve the OPF problem are presented.

A. MATHEURISTIC OPTIMIZATION TECHNIQUES
The matheuristic optimization techniques are algorithms that
combine heuristics and well-defined mathematical models to
solve complex optimization problems. An important aspect
of these algorithms is that they explore the characteristics of
the mathematical model of the problem under analysis [46].
In general, matheuristic optimization techniques aim to take
advantage of the optimality of the exact mathematical solu-
tion method and the efficiency of a metaheuristic algorithm.
In this paper, the proposed matheuristic algorithm (MA)
to solve the OPF model (1)-(17) is composed of a Variable
Neighborhood Search (VNS) heuristic algorithm and NLP
models derived from the MINLP model (1)-(17). In this
approach, the exploration of the neighborhood structures is
performed using the solution of these NLP models, in this
regard, there is an implicit decomposition of the problem
where the VNS algorithm operates at a higher level coordi-
nating the interaction between neighborhood structures and
controlling the executions of the NLP subproblems that are at
the lower level. This strategy allows for obtaining an optimal
globally or a local solution for each neighborhood structure.

B. VARIABLE NEIGHBORHOOD SEARCH

The VNS is a heuristic optimization technique based on local
search, where the space of solutions is explored through
systematic changes in the neighborhood structures [47].
The philosophy of the VNS algorithm is based on diver-
sifying the search process, alternating the neighborhood
whenever a certain neighborhood stops evolving towards
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quality solutions. The algorithm explores the neighborhood
search space of the current solution gradually and intensifies
the search in the region of the domain of the problem for a
new solution, only executing explorations in this region to
generate better solutions.

The VND is the most simplified version of the
VNS algorithms. In a general way, the VND heuristic algo-
rithm consists of a deterministic process, which starts from
an initial solution x and finds a more pronounced descent
direction from it, within a neighborhood N (x). In this way,
it moves along the direction of maximum decrease of the
objective function f(x), and if there is no direction of descent,
then the heuristic is interrupted, and another neighboring
structure is explored [47].

C. VND DEDICATED TO OPF SOLUTION

The proposed MA to solve the MINLP-OPF model (1)-(17)
consists of the VND heuristic philosophy together with the
solution of NLP models via commercial solvers. The pro-
posed approach consists of the following steps:

1) Representation of a solution for the discrete variables.
2) Modified OPF model.

3) Initial solution.

4) Neighborhood structures.

5) Stopping criterion.

1) REPRESENTATION OF A SOLUTION FOR THE DISCRETE
VARIABLES

According to (18) and (19), the discrete variables of the
problem are represented by two vectors, n’ and n*, for taps
of the OLTCs and shunt compensators, respectively.

n =@, ...,n) VY(@ijeT7r), (18)

ij?
n' = (nl,....np) V(i€ Tcp). (19)

The vector n’, has dimension /, where [ is the number
of lines of the system that have an OLTC. The vector n®
has dimension b, where b corresponds to the number of a
bus with shunt compensation. In this paper, the tap posi-
tions of the OLTCs must belong to the discrete set nf €
{—16,—15,...,0,..., 15, 16} and, the variables that repre-
sent the control switches of the reactive shunt compensators
belong to the set nf e {0,1,2,3,4}, that correspond to
the discrete percentage values (0, 25, 50, 75, and 100)% of
reactive power being injected into the system bus.

2) MODIFIED OPF MODEL

One of the characteristics of metaheuristic optimization
techniques is allowing infeasible solutions to improve the
exploration of the search space. Thus, minor changes to the
OPF model formulation (1)-(17) are necessary.

To avoid an infeasible solution due to a lack of power
generation, an additional power generation is considered at
each node of the system. In this regard, the slack variables
i)G,-, Qa, and Q‘Gl are included in the power flow balance
formulation. The modified power balance constraints are
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presented in (20) and (21).

Pg,+Pg, —g"vi— Y p;— D pp=Pp.  (0)
ijel'r jel'y
Qc, + 0%, — 0, —b"Viwi— > q; — > qf =0,
ijel'y ijel'r
@1

P, 0, Ol = 0.
V(i € I'p)

These slack variables must be penalized in the objective
function of the problem according to (22).

SN =0 Y (Pl + @6’ +©@6?). 22
iel'p
Finally, the modified MINLP OPF model is presented in
the following formulation:

min F = f(Pg,) +f™
Subject to :
@) — (17), (20), (21). (23)

The objective function F, shown in (23), simultaneously
minimizes the total fuel cost of the power generation units
and the penalty function £V . Note that, for feasible solutions,
the slack variables 13(;,., 0 f;l_, and Q’G’ are equal to zero, thus
in the feasible search space, this formulation is equivalent to
the original formulation (1)-(17).

3) INITIAL SOLUTION

The initial solution for the algorithm is obtained by solving
arelaxed OPF problem, i.e., solving the formulation (1)-(17)
considering all the integer variables (n; and n?) as continuous
variables. Then, the obtained relaxed solution is rounded to
the nearest discrete value determining the vectors n’ and n’.
Knowing the values for the integer variables, the objective
function value F is calculated by the solution of the modified
OPF model (4)-(17), (20)-(23). The obtained integer solution
could be unfeasible from the point of view of the original
FPO problem (1)-(17), however, in the modified model the
slack variables PG,«, Q”G’_, and QlG, guarantee that the problem
is always feasible. It is worth mentioning that, if the solution
of the relaxed model (1)-(17) leads to an infeasible solution,
then the MINLP has no integer solution.

4) NEIGHBORHOOD STRUCTURES

The neighborhood structures aim to determine the better-
quality neighbor solution around the current solution of
the algorithm. In this work, the neighborhood structures
are NLP models obtained from the modified MINLP
OPF model (4)-(17), (20)-(23).

All the proposed neighborhood structures in this work
have the scheme presented in Fig. 1, where fzjj and 7} are
input parameters that determine the current tap position of
the OLTC at line ij and the current position of the shunt
compensator at bus i. The first step of each neighborhood
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Solve the NLP model
to obtain a relaxed
solution for nf; and nf

Round nf; and nf to
a discrete value
according to each
neighborhood
structure criterion

Integer values
for nf; and n}

1
1

1

1

1 From the modified MINLP
: OPF model determine a

1 new relaxed NLP model

1

1

1

FIGURE 1. Proposed neighborhood structure scheme.

structures is setting the integer parameters fzﬁ. and 7} at the
current values of nﬁi and nf, respectively. Afterward, consid-
ering the current solution of the algorithm and the modified
MINLP OPF model (4)-(17) and (20)-(23), relax the inte-
grality constraint of all the integer variables of the problem
and define a NLP model. Details of the NLP models are
presented later as neighborhood structures Ny, Ny and N3.
Then, for each neighborhood structure, the solution of its
corresponding NLP model provides a relaxed value for the
variables nij and nj . Afterward, these relaxed solutions are
rounded to a discrete value according to a specific criterion.
Finally, the output of each neighborhood structure are integer
values for variables n; and n;.

Similar to section III-C3, the integer solutions obtained
with each neighborhood structure are fixed into the modified
OPF model (4)-(17) and (20)-(23) to calculate the objective
function value F.

Three neighborhood structures are proposed in this paper
and they are described in detail as follows:

a: NEIGHBORHOOD STRUCTURE N, - INCREASE/DECREASE
THE TAP POSITIONS OF ALL THE OLTCS AND SHUNT
COMPENSATORS SIMULTANEOUSLY
The neighborhood structure N; allows increasing or decrease
the current tap position of all the OLTCs and the position of
all the shunt compensators. In this structure, an NLP model is
obtained by relaxing the integrality of the integer variables of
the problem and including the constraints (24) and (25) into
the modified OPF model.

n‘/—kt <n,]§n —kt
n— ki <nj < _kis

V(i € I'r), (24)
V(ij € Icp). (25)
Constraint (24) allows the tap change of the OLTC at line ij

up to :I:kfj steps, while constraint (25) allows the modification
of the shunt compensator at bus i up to k;’ steps.

AS

b: NEIGHBORHOOD STRUCTURE N, - INCREASE THE TAP
POSITION OF THE OLTCS AND SHUNT COMPENSATORS
In the neighborhood structure Ny, the integer variables of the
problem are relaxed and the constraints (26)-(29) are included
into the modified OPF model. This neighborhood structure
analyzes the entire system allowing to increase the current tap
position of a single OLTC and a single shunt compensator up
to kfj and k7 steps, respectively.

ity < niy < A+ kG

g YijeTr). (6
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A< Y nl< S ALk @7
ijel'r ijeFr jel'r

Ay < nj <hj+kl VGeTcp), (28)
S Y= Nate o
ieTcp i€lcp ielcp

Constraints (26) and (27) determine the tap positions of
the OLTCs, while constraints (28) and (29) determine the
positions of the shunt compensators. Constraint (26) allows
increasing the tap position of the OLTC at line ij up to
kl.’j steps, while constraint (27) restricts the entire system to
increase up to k' steps the sum of all the tap positions of the
OLTCs of the system. Constraint (28) allows increasing the
shunt compensator at bus i up to k7 steps, while (29) restricts
the entire system to increase up to k* the sum of all the shunt
compensators connected to the system. Note that, the solution
of this model can increase all the OLTCs’ taps and all the
shunt compensators simultaneously, then, these solutions are
ranked and the n!; and n! with the greatest increment are
selected to increase their current values.

¢: NEIGHBORHOOD STRUCTURE N+ - REDUCE THE TAP

POSITION OF THE OLTCS AND SHUNT COMPENSATORS

In the neighborhood structure N3, the integer variables n!;
and nj are relaxed and the constraints (30)-(33) are included
into the modified OPF model. This neighborhood structure
allows reducing the current tap position of a single OLTC and
a single shunt compensator up to k’ and k; steps, respectively.

ity — ki < nj < V(j € Tr), (30)
Sk Y=Y H o
ijel'r ijel’'r jel'r

il — ki <ni <nl V(eTcp), (32)
DEELED DEED NN
i€lcp ielcp ielcp

Constraints (30) and (31) determine the tap positions of
the OLTCs, while constraints (32) and (33) determine the
positions of the shunt compensators. Constraint (30) allows
the tap reduction of the OLTC at line ij up to kitj steps, while
constraint (31) limits the entire system to reduce up to k” steps
the sum of all the tap positions of the OLTCs of the system.
Constraint (32) allows the reduction of the shunt compensator
at bus i up to k7 steps, while (33) restrict the entire system to
reduce up to k° the sum of all the shunt compensators con-
nected to the system. Similarly, to neighborhood structure N,
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all the nfj and nf can reduce their values, then, these solutions
are ranked and the nfj and n} with the greatest reduction are
selected to reduce their current values.

It is worth mentioning that these neighborhood structures
do not force updating the taps of the OLTCs and shunt com-
pensators when it is not necessary. In this work, kl.’j = 2 and
ki = 1 were used in all the tests.

5) STOPPING CRITERION

The execution of the algorithm is completed when the search
process explores all the neighborhood structures, and no
improvement of the incumbent solution is obtained.

D. STRUCTURE OF THE PROPOSED ALGORITHM

The proposed matheuristic structure to solve the MINLP-OPF
model is illustrated in the flowchart of Fig. 2, where X,
represents the current value of all discrete variables of the
problem (OLTC’s tap positions and shunt compensators),
F(X) represents the value of the objective function for X,
T represents a candidate solution for the problem (discrete
values and objective function), X represents the neighbor
solution of X, m is a counter to determine the neighborhood
structure to be analyzed, and M is the number of considered
neighborhood structures.

The first step to solve the MINLP-OPF model is to obtain
an integer initial solution X using the proposed approach pre-
sented in III-C3, afterward, determine the objective function
value F'(X), set the current solution of the algorithm Y as
{X, F(X)}, and start the counter m at 1 to analyze the first
neighborhood structure.

Considering the current solution of the algorithm Y, use
the neighborhood structure N, to determine a neighbor
integer solution X’, with its respective objective function
value F(X'). If the objective function value of the neighbor
solution is better than the objective function of the current
solution of the algorithm, then, update the current solution of
the algorithm Y as {X’, F(X’)} and set the counter m at 1 to
continue the optimization process with the first neighborhood
structure. Otherwise, if the objective function value of the
neighbor solution is worse than the objective function of the
current solution of the algorithm, then, update the counter m
at m + 1 to continue the optimization process with the next
neighborhood structure. The optimization process ends when
the counter m is greater than M indicating that all the neigh-
borhood structures have been explored with no improvements
in the current solution of the algorithm.

In order to efficiently explore the search space, the neigh-
borhood structure with the greatest impact on the value of
the objective function is analyzed at the beginning of the
algorithm, thus, note that the analysis of neighborhood struc-
tures follows the following order: N1, N, e N3. This sequence
was determined based on the performance of the numerical
experiments.

IV. TESTS AND RESULTS
The robustness, efficiency, and scalability of the pro-
posed VND matheuristic algorithm (VND-MA) were
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FIGURE 2. Proposed VND matheuristic algorithm.

verified by solving 17 test systems with sizes from 14 to
4661 buses. The test systems simulated in this work are
open access data and are available in the PGLib-OPF
v19.05 library [48]. Table 1 presents the dimensions of the
systems with the names corresponding to the file available
in the PGLib-OPF library. Relevant information about the
test system pglib_opf_case89_pegase can be found in [49].
For all the test systems the OLTCs have the ability to regulate
+10% of input voltage with 16 positions for the taps. Fur-
thermore, the solutions obtained by the proposed VND-MA
are compared with the three following approaches:

1) The MINLP model (1)-(17) is solved directly using the
commercial optimization solver Knitro 12.0.0.

2) Rounding the solution obtained by the optimiza-
tion of the relaxed model (RR-SOL). This approach
equates to the initial solution of the proposed algo-
rithm described in section III-C3. Integer solutions
found by this approach are validated in the original
FPO model (1)-(17).

3) The OPF model and solution technique of
Matpower [50] is used. Note that, this software only
considers the dispatch of active power generation,
while keeping fixed the variables concerning the taps
of the OLTCs and the injections of shunts reactive
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TABLE 1. Dimensions of the test systems.

System Lines with  Buses with  Total of
OLTC CB devices
pglib_opf_casel4_ieee 3 1 4
pglib_opf_case24_ieee_rts 5 1 6
pglib_opf_case30_ieee 7 2 9
pglib_opf_case39_epri 11 0 11
pglib_opf_case57_ieee 17 3 20
pglib_opf_case89_pegase 50 44 94
pglib_opf_casel18_ieee 11 14 25
pglib_opf_case200_tamu 66 4 70
pglib_opf_case300_ieee 129 14 143
pglib_opf_case500_tamu 131 15 146
pglib_opf_case2000_tamu 847 148 995
pglib_opf_case2383wp_k 171 0 171
pglib_opf_case2746wp_k 174 0 174
pglib_opf_case3012wp_k 201 9 210
pglib_opf_case3120sp_k 206 9 215
pglib_opf_case3375wp_k 387 9 396
pglib_opf_case4661_sdet 1329 696 2025

compensators. In this sense, these results are used only
as a reference for validating the results obtained with
the proposed VND-MA.

The proposed VND-MA algorithm was implemented in
the mathematical modeling environment AMPL. Numerical
experiments were performed using a DELL XPS with Intel
Core TM 17-6700 3.40GHz and 8GB RAM. The knitro option
“mip_maxtime_cpu” is used to limit the CPU processing
time up to 18000 seconds.

A. PGLIB_OPF CASE118_IEEE SYSTEM

This subsection presents, for illustrative purposes, the obtained
solutions for the pglib_opf_casel18_ieee system with the
optimization solver Knitro, the proposed rounded strategy
RR-SOL, Matpower, and the proposed VND-MA. Table 2
presents the objective function value, and the active and
reactive power generation values. Tables 3 and 4 present
the tap positions of the OLTCs and the shunt compensators
operation, respectively. Finally, the voltage profile for each
solution is presented in Fig. 3.

Knitro provides the best solution with an objective function
value of 97136.77 $/h, followed by the solution obtained with
the proposed VND-MA which is just 0.50 $/h higher. It is
worth noting that Table 2 presents the active power injection
only for the generation units which have an active power
injection greater than zero. In this case, the generation units
have similar active power injections for all the obtained solu-
tions including null active power injections in the same gener-
ation units. On the other hand, the reactive power injections
present different behaviors for all the solutions because the
reactive subproblem of the OPF model is strongly non-linear
and non-convex.

The positions of the OLTCs’ taps determined by Knitro
are quite similar to the ones determined by the proposed
VND-MA. In these cases, the differences are in the OLTCs
at branches 38-37 and 65-66. However, note that these taps
positions are close each other. On the other hand, the shunt
compensators have different operations in all the solutions.
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TABLE 2. Results for the pglib_opf_case118_ieee system.

Variable Knitro RR-SOL  Matpower VND-MA
f(Pg;) ($/h) 97136.77  97142.58 97213.61 97137.27
Pg,, (MW) 505.00 505.00 505.00 505.00
Pg,5 (MW) 70.52 66.42 717.97 67.08
Pg,s (MW) 485.00 485.00 485.00 485.00
Pg,, (MW) 17.00 17.00 17.00 17.00
Pg,s MW) 20.00 20.00 20.00 20.00
Pg,, MW) 223.00 223.00 223.00 223.00
Pg,, MW) 53.00 53.00 53.00 53.00
Pg,, (MW) 308.00 308.00 308.00 308.00
Pgy, MW) 195.00 195.00 195.00 195.00
Pggy (MW) 840.81 846.32 831.98 845.22
Pgg, (MW) 509.00 509.00 509.00 509.00
Pggy (MW) 467.87 467.02 471.46 467.32
Pg, oo (MW) 653.00 653.00 653.00 653.00
Pg,y; MW) 31.27 31.39 31.28 31.27
Qga, (MVAr) 15.00 15.00 15.00 15.00
Qa, (MVAr) 29.93 27.95 71.07 30.19
Qag (MVAr) 36.80 36.72 46.70 36.96
Qag (MVAr) -52.19 -26.01 -4.86 -51.34
Qa,, (MVAr) -84.98 -83.69 -86.33 -84.64
Qa,, (MVAr) 43.00 43.00 43.00 43.00
Qa5 (MVAr) 30.00 30.00 30.00 30.00
Qg (MVAr) 44.94 47.79 41.39 46.21
Qa,y (MVAr) 24.00 24.00 24.00 24.00
Qa,y, (MVAI) 18.98 19.48 9.27 19.64
Qa,5 (MVAr) 101.66 64.95 -47.00 101.85
Qa,s (MVAr) -155.95 -119.91 -6.13 -154.92
Qa,; (MVAr) 40.14 40.16 32.10 40.04
Qa,, (MVAr) 9.00 9.00 9.00 9.00
Qa4, (MVAr) 38.18 3841 35.84 38.26
Qa,, (MVAr) 18.97 15.06 8.56 18.63
Qa5s (MVAr) 24.00 23.73 23.64 24.00
Qa,o (MVAr) 39.25 38.45 38.72 39.02
Qa,, (MVAr) 26.55 27.36 22.30 23.21
Qg (MVAr) 8.52 10.00 -0.54 2.93
Qa9 (MVAr) -85.00 -84.62 -85.00 -85.00
Qas, (MVAr) 27.00 27.00 27.00 27.00
Qas5 (MVAr) 23.00 23.00 23.00 23.00
Qase (MVAr) 15.00 15.00 15.00 15.00
Qasy (MVAr) 108.25 100.73 108.77 111.62
Qacg, (MVAr) -20.11 -14.92 -11.25 -0.71
QaGgo (MVAr) 12.49 12.46 1.50 -11.37
Qags (MVAr) 137.68 150.66 200.00 160.30
Qacge (MVAr) -60.15 -56.04 -67.00 -67.00
Qacge (MVAr) -300.00 -300.00 -256.10 -300.00
Qayy (MVAr) 21.80 30.03 32.00 19.70
Qay, (MVAr) -3.47 -3.45 -3.04 -3.42
Qay, (MVAr) -1.41 -1.40 1.33 -1.39
Qa,, (MVAr) 9.00 9.00 9.00 9.00
Qar (MVAr) 23.00 23.00 23.00 23.00
Qay, (MVAr) 70.00 70.00 70.00 70.00
Qag, (MVAr) 31.85 29.49 -28.52 32.84
Qags (MVAr) 23.00 23.00 23.00 23.00
Qag, (MVAr) 4.99 5.00 5.00 5.00
Qagy (MVAr) -5.22 1.04 -8.76 -5.02
Qag, (MVAr) 45.87 45.83 45.97 45.86
Qagy, (MVAr) 1.69 1.76 1.82 1.68
Qagy, (MVAr) 9.00 9.00 9.00 9.00
Qagy (MVAr) 7.11 6.94 7.53 7.07

QG0 (MVAr) 18.57 29.30 8.90 18.73
Qa5 (MVAr) 9.83 12.66 9.94 9.82
Qac,o, (MVAr) 23.00 23.00 23.00 23.00
Qa5 (MVAr) 23.00 23.00 23.00 23.00
Qa1 o, (MVAr) 15.39 17.17 12.18 13.82
Qa9 (MVAr) 23.00 23.00 23.00 23.00
Qa,,, (MVAr) 291 4.37 2.92 291
Qa,,, (MVAr) 16.24 17.51 16.24 16.24
Qa5 (MVAr) 1.33 4.30 -2.80 2.89
Qg ¢ (MVAr) 278.09 275.34 281.95 283.15
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TABLE 3. OLICs of the pglib_opf_case118_ieee system.

Branch Knitro RR-SOL VND-MA Matpower
ny o | nh e | nboa | oai
8-5 3 1.019 4 1.025 3 1.019 | 0.985
26- 25 -7 0.956 -5 0969 -7 0956 | 0.960
30- 17 2 1.012 2 1.012 2 1.012 | 0.960
38-37 3 1.019 5  1.031 4 1.025 | 0935
63- 59 5  1.031 6 1.038 5 1.031 | 0.960
64- 61 1 1.006 1 1.006 1 1.006 | 0.985
65- 66 9 1.056 9 1.056 10 1.063 | 0.935
68- 69 15 1.094 14 1.087 15  1.094 | 0.935
81- 80 0 1.000 -1 0994 0 1.000 | 0.935
86- 87 1 1.006 -3 0981 1 1.006 | 1.000
68- 116 -2 0988 -5 0969 -2 0988 | 1.000

TABLE 4. Shunt compensators of the pglib_opf_case118_ieee system.

Bus Knitro RR-SOL VND-MA Matpower
n;  (MVAr) | nf (MVAr) | n; (MVAr) | (MVAr)
5 0 0.00 2 -22.47 0 0.00 | -44.78
34 4 15.65 3 11.72 3 11.73 | 15.63
37 0 0.00 1 -7.02 0 0.00 | -28.09
44 3 7.53 3 7.47 3 7.46 | 10.01
45 4 9.86 3 7.32 4 9.75 | 9.78
46 4 10.15 3 7.55 4 10.00 | 9.99
48 2 7.62 2 7.59 1 3.77 | 15.23
74 4 11.94 3 8.84 4 11.90 | 11.89
79 4 21.01 3 15.50 4 21.00 | 21.23
82 4 20.93 3 15.48 4 20.93 | 21.07
83 4 10.56 3 7.81 4 10.55 | 10.61
105 4 21.34 3 15.95 4 21.34 | 21.34
107 2 3.16 2 3.16 3 4.74 | 6.32
110 4 6.21 2 3.09 4 6.21 | 6.21
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FIGURE 3. Voltage profile of the of the pglib_opf_case118_ieee system.

For example, the solutions obtained with Knitro and the
proposed VND-MA have a total reactive shunt injection
of 145.96 and 139.37 MVAr, respectively. This is because
the shunt compensators at nodes 5 and 37 are disconnected.
Finally, Matpower and the RR-SOL have a total reactive
shunt injection of 86.43 and 81.99 MVAr, respectively.

For this system, the minimum and maximum voltage mag-
nitude limits are 0.94 and 1.06, respectively, and all the
obtained solutions are within these limits. Fig. 3 shows that
the voltage profile of the solutions obtained with Knitro and
the proposed VND-MA are quite similar in all the buses.
On the other hand, notable differences can be observed
in the voltage profile of the solutions obtained with the
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proposed RR-SOL and Matpower when compared with
Knitro’s solution.

B. TEST SYSTEMS

For all the test systems, Table 5 shows the most relevant
results obtained solving the model (1)-(17) with the solver
Knitro, the rounded strategy RR-SOL, Matpower, and the
proposed VND-MA, including the value of the objective
function, the CPU time, and the number of iterations of the
VND-MA algorithm. In our experiments, the solutions found
by the RR-SOL are feasible solutions. However, note that
the RR-SOL strategy could find infeasible solutions for other
power systems.

Table 6 shows the difference in generation costs and
the respective percentage between RR-SOL/VND-MA,
Knitro/VND-MA, and Matpower/VND-MA. The negative
values in Table 6 indicate the test systems where Knitro and
Matpower found better solutions than the VND-MA, while
the positive values indicate where the proposed VND-MA
found better solutions than the other approaches. Finally,
a summary of the better results is presented in Table 7, where
check (v') indicates which approach has the better solution
and circle (o) indicates an equal solution for the approaches

V. DISCUSSION

Comparing the rounded solution (RR-SOL) with the solu-
tion provided by the proposed VND-MA, the proposed
methodology obtains better solutions for 88.23% of the
systems tested and only two systems (pglib_opf_casel4_ieee
and pglib_opf_case30_ieee) where the algorithm was
unable to improve the rounded solution. For large systems
(pglib_opf_case3012wp_k and pglib_opf_case4661_sdet),
the proposed VND-MA provides significantly better solu-
tions with a reduction in the generation cost of 4.68% and
19.95% respectively. These results show that for small sys-
tems, the proposed algorithm to generate the initial solution
finds high-quality solutions, however, a specialized optimiza-
tion algorithm is necessary to solve medium- and large-scale
systems.

For 47.06% of the systems tested, Knitro did not
converge, i.e., the execution of the optimization solver
was interrupted because it exceeded the established time
limit (5 hours). Comparing Knitro with the proposed
VND-MA, the proposed algorithm obtains better results
for 58.82% of the systems tested. For systems until
118 buses the solver Knitro provides better solutions, how-
ever, note that the maximum profit is 0.0011% in the
solution of the system pglib_opf_case89_pegase. On the
other hand, for medium- and large-scale systems, start-
ing from the pglib_opf_case200_tamu system to the
pglib_opf_case3375wp_k system the proposed VND-MA
provides better solutions than Knitro, besides, the CPU time
is significantly less for all these systems. For cases where the
solver Knitro was forced to stop the optimization process for
exceeding the processing time, the proposed VND-MA pro-
vides better results, and the processing time has been reduced
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TABLE 5. Fuel generation cost and processing time.

System Knitro RR-SOL Matpower VND-MA
Total fuel CPU Total fuel CPU Total fuel | Total fuel CPU Number of
cost [$/h] time [s] cost [$/h] time [s] cost [$/h] cost [$/h] time [s] iterations
pglib_opf_casel4_ieee 2177.29 0.08 2177.29 0.08 2178.08 2177.29 0.63 9
pglib_opf_case24_ieee_rts 63334.12 0.17 63334.31 0.08 63352.2 63334.12 0.59 8
pelib_opf_case30_ieee 8177.92 0.39 8178.19 0.08 8208.52 8178.18 0.78 12
pglib_opf_case39_epri 138390.06 2.89 138391.78 0.19 138415.56 138390.31 1.06 11
pelib_opf_case57_ieee 37550.48 10.41 37551.04 0.14 37589.34 37550.61 0.69 6
pelib_opf_case89_pegase 106489.34 16170.97 106620.83 0.42 107285.67 106490.56 11.33 46
pglib_opf_case118_ieee 97136.77 12.42 97142.58 0.28 97213.61 97137.27 4.03 22
pelib_opf_case200_tamu 27572.09 7820.84 27553.66 0.5 27557.57 27553.02 4.86 20
pelib_opf_case300_ieee 545908.8 18002.67 545564.68 0.47 565219.99 545555.89 2.94 6
pelib_opf_case500_tamu 72266.94 18025.62 72314.68 0.8 72578.3 72266.93 7.3 12
pelib_opf_case2000_tamu | 1230189.56 18020.86 1227572.85 8.06 1228487.06 1226955.22 77.14 17
pelib_opf_case2383wp_k 1858267.5 18017.38 1858632.08 6.25 1868191.64 1858244.92 46.63 11
pglib_opf_case2746wp_k | 1630283.75 18003.36 1631677.36 7.72 1631707.93 1630238.71 79.7 16
pelib_opf_case3012wp_k | 2594182.32 18000.86 2721290.9 25.66 2600842.77 2593986.6 130.39 19
pglib_opf_case3120sp_k 2144516.04 18004.53 2144942.44 7.05 2147969.11 2144503.35 1321.81 12
pelib_opf_case3375wp_k | 7427299.79 473.59 7430647.5 14.8 7438169.48 7427199.25 173.38 15
pelib_opf_case4661_sdet | 2254217.61 18001.17 2815729.43 45.44 2251344.08 2254129.08 1860.25 44
TABLE 6. Difference in fuel generation costs.
System RR-SOL / VND-MA KNITRO / VND-MA Matpower / VND-MA
Difference Difference Difference
[$/h] [%] [$/h] [%] [$/h] [%]
pglib_opf_casel4_ieee 0 0 0 0 0.79 0.0363
pglib_opf_case24_ieee_rts 0.19 0.0003 0 0 18.08 0.0285
pglib_opf_case30_ieee 0 0 -0.26 -0.0032 30.34 0.3696
pglib_opf_case39_epri 1.47 0.0011 -0.25 -0.0002 25.25 0.0182
pglib_opf_case57_ieee 0.43 0.0011 -0.13 -0.0003 38.73 0.103
pglib_opf_case89_pegase 130.27 0.1222 -1.22 -0.0011 795.11 0.7411
pglib_opf_casel18_ieee 5.31 0.0055 -0.5 -0.0005 76.34 0.0785
pglib_opf_case200_tamu 0.64 0.0023 19.07 0.0692 4.55 0.0165
pglib_opf_case300_ieee 8.79 0.0016 35291 0.0646 19664.1 3.479
pglib_opf_case500_tamu 47.75 0.066 0.01 0 311.37 0.429
pglib_opf_case2000_tamu 617.63 0.0503 3234.34 0.2629 1531.84 0.1247
pglib_opf_case2383wp_k 387.16 0.0208 22.58 0.0012 9946.72 0.5324
pglib_opf_case2746wp_k 1438.65 0.0882 45.04 0.0028 1469.22 0.09
pglib_opf_case3012wp_k 127304.3 4.6781 195.72 0.0075 6856.17 0.2636
pglib_opf_case3120sp_k 439.09 0.0205 12.69 0.0006 3465.76 0.1614
pglib_opf_case3375wp_k 3448.25 0.0464 100.54 0.0014 10970.23 0.1475
pglib_opf_case4661_sdet 561600.35 19.9451 88.53 0.0039 -2785 -0.1237
TABLE 7. Best obtined results.
System KNITRO RR-SOL VND-MA Matpower
pglib_opf_casel4_ieee o o -
pglib_opf_case24_ieee_rts o o -
pglib_opf_case30_ieee v - -
pglib_opf_case39_epri v - -
pglib_opf_case57_ieee v - -
pglib_opf_case89_pegase v - -
pglib_opf_casel18_ieee v - -
pelib_opf_case200_tamu - v -
pglib_opf_case300_ieee - v -
pelib_opf_case500_tamu v -
pglib_opf_case2000_tamu - v -
pglib_opf_case2383wp_k - v -
pglib_opf_case2746wp_k - v -
pglib_opf_case3012wp_k - v -
pelib_opf_case3120sp_k - v -
pglib_opf_case3375wp_k - v -
pglib_opf_case4661_sdet - - v

by an average of 97.31%. Note that, the solver Knitro reports
a locally optimal solution for case pglib_opf_case3375wp_k
in 439.09 seconds, however, the proposed VND-MA algo-
rithm found an integer solution that is 12.69 $/h lower than
the solution reported by Kanitro.
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As presented in Table 5, the minimum and maximum
CPU time reported by the proposed VND-MA are 0.63s
and 1860.25s, respectively. Note that, Knitro is faster than
the proposed VND-MA only in the first three small sys-
tems, however, the VND-MA provides faster solutions for
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the remaining medium- and large-scale systems. These
results show that for medium- and large-scale systems,
the proposed VND-MA presents a good trade-off between
the total CPU time and the quality of the solutions.
On the other hand, it is worth mentioning that the solution
time highly depends on the efficiency of the optimization
solver, then the number of iterations is not a suitable met-
ric for the proposed VND-MA. It can be noted comparing
the solution time for cases pglib_opf_case89_pegase and
pglib_opf_case3120sp_k where the total CPU times were
11.33s and 1321.81s, respectively, however, the number of
iterations were 46 and 12.

For illustrative purposes, Fig. 4 shows the convergence
curve when using the proposed VND-MA to solve the
pglib_opf_case3012wp_k system. This plot shows that the
objective function value decreases rapidly over 9 iterations,
then gradually decreases until it reaches the stopping crite-
rion in iteration 19. Fig. 4 shows some iterations without
improvements in the objective function value, this behavior
indicates that the search strategy change to the next neigh-
borhood structure. This is the expected behavior since the
methodology is based on the VND algorithm.
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FIGURE 4. Convergence curve of the pglib_opf_case3012wp_k system.

Comparing the results provided by the proposed VND-MA
and Matpower, the pglib_opf_case4661_sdet system is the
only case in which Matpower obtains a solution that is 0.13%
better than the solution found by the proposed VND-MA,
however, the solution reported by Matpower does not con-
sider the optimization of the integer variables in the resolution
of OPF.

VI. CONCLUSION

This work presented a new matheuristic optimization
methodology to solve the OPF problem considering a MINLP
model. This is a new approach that combines the classic
mathematical MINLP-OPF model with the philosophy of the
VND heuristic algorithm.
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Numerical experiments reveal that the commercial opti-
mization solver Knitro provides high-quality solutions to
this model for small- medium-scale power systems, how-
ever, its convergence process fails in the large-scale ones.
On the other hand, the proposed VND-MA can solve even
large-scale power systems in adequate computational time
for solving the OPF problem for planning the operation
giving high-quality solutions. In small-scale power systems,
obtained results show similar solutions with both solution
techniques, whereas, for medium- large-scale power systems,
the advantage of the proposed VND-MA is evident since in
all the cases it was possible to find better solutions.

In this paper, the polar formulation of the MINLP-FPO
problem was considered, however, since the proposed neigh-
borhood structures are based only on the integer variables
of the problem, these can be used or adapted to solve other
FPO formulations and approaches including convex or rect-
angular FPO formulations, single and multi-objective func-
tions. Besides, similar strategies can be applied using other
neighborhood algorithms including Tabu Search and all the
variable neighborhood search algorithms.
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