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ABSTRACT As encrypted traffic grows, network flow classification has become a significant issue because
of the impossibility to parse the payload in an encrypted packet. A possible packet sniffing location for
organizations is an under control gateway between intranet and internet to inspect network traffic. However,
when an intranet user uses an identity obfuscation protocol such as VPN or TOR, the packet IP and port
would be rewritten to preserve user privacy. The same user’s packet sniffed between a user and TOR entry
node/VPN proxy always has the same 5-tuples (packets with the same source IP, destination IP, source port,
destination port, and IP protocol defined as flow). Thus, we cannot rely on the 5-tuples rule to split traffic into
flows. This challenge is called the ‘‘only one flow problem’’ and poses an obstacle for flow classification.
A previous solution uses timeout value to determine flow separation points to address this issue. However,
the predefined static time threshold cannot fit all user habits, which leads to separation errors. To overcome
timeout limitations, we propose a flexible method called AI-FlowDet by leveraging the scene change concept
and a CNN model to find behavior change points of traffic based on learning data. AI-FlowDet can apply to
the traffic of the identity obfuscation protocols. Next, we propose 294 size-based and direction-based features
that can be used with AI-FlowDet to evaluate flow type classification performance. Every experiment
leverages different machine learning algorithms. The results show that AI-FlowDet with the proposed
features can achieve 98.5% weighted accuracy, which is increased by 12.6% versus the previous timeout
method with baseline features. We proved that the proposed splitting methods for the only one flow problem
and proposed features for flow type classification are effective based on the good results obtained for both
the VPN and TOR datasets.

INDEX TERMS TOR, VPN, flow classification, AI-FlowDet, only one flow problem.

I. INTRODUCTION
With the rise of 5G networks, hacking and information
security incidents have also escalated. Security researchers
will generally obtain information from endpoint devices
(PCs, laptops, mobile phones) or network devices (routers,
switches) for inspection. The information obtained from an
endpoint device is relatively complete but will involve per-
sonal privacy issues, and an agent cannot be installed on
all endpoint devices. Therefore, a more feasible method for
enterprises is to obtain network traffic from network devices
for examination. Current traffic classification studies focus
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on three domains: traffic application type classification (to
determine whether the type of traffic is email, file trans-
fer, or browsing) [1]–[10], website fingerprinting (to distin-
guish the originated websites or users from specific traffic)
[11]–[16], and malicious traffic classification (to detect the
traffic generated via hacker/malware and identify its attack
type) [17]–[22].

The conventional methods to classify traffic use either a
port-based approach [23] or a signature-based approach [24].
In the early stages of the Internet, many applications used a
well-known port. However, most recent applications do not
use the originally specified port, which causes the port-based
method to become unreliable. A signature-based approach,
such as deep packet inspection (DPI) [25], relies on signatures

84110 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-5638-8030
https://orcid.org/0000-0001-5659-1194
https://orcid.org/0000-0003-1699-2270


H.-Y. Chen, T.-N. Lin: Challenge of Only One Flow Problem for Traffic Classification

FIGURE 1. The scenarios of VPN (left) and TOR (right) environments. When the intranet user sends an HTTP request packet (without encryption),
it will first be encrypted and replace the destination address with a TOR node/VPN Proxy (purple background packet). After the packet is sent to the
gateway, the gateway cannot know the server address and only knows the TOR entry node/VPN proxy address. When the packet is sent from the TOR
exit node/VPN proxy to the server, the packet is already decrypted, and the source address is the TOR exit node/VPN proxy, not the user address
(green background packet). The server would therefore never know the user’s identity. When sniffing packets from the gateway, the packets that we
obtain all contain the same 5-tuple, which causes the only one flow problem.

of a packet payload (L7). In the case of frequent rule updating,
theDPImethod can achieve high accuracy and almost no false
positives. However, with the rise of network encryption tech-
niques such as TLS and IPSEC, most network traffic has been
encrypted, and the payload (L7) is becoming unparseable.
Despite using predefined rules, signature-based methods can-
not precisely distinguish encrypted traffic. To overcome some
of the limitations mentioned above, researchers recently
switched to using machine learning-based [1], [2], [5]–[16],
[19], [21], [22] or deep learning-based methods [3], [4], [20],
achieving excellent performance.

In general, regardless of whether the packet is encrypted or
not, the first step is to split traffic into flows by 5-tuples rule
(the packets with the same source IP, source port, destination
IP, destination port, and IP protocol are defined as a flow).
However, some encryption protocols such as Virtual Private
Network (VPN, Fig. 1 (a)) or The Onion Router (TOR,
Fig. 1 (b)) [26] also offer an effective proxy characteristic,
which would replace the source IP and packet port with a
proxy address and ensure privacy preservation for the user.

The sniffing packets between the TOR exit node/VPN
proxy and the server encounter two obstacles. First, the packet
routing path from a TOR exit node/VPN proxy to a server is
dynamic, and we cannot sniff 100% of packets from a static
router. Second, we cannot precisely know where the TOR
node/VPN proxy geographical location is and sniff the pack-
ets from the appropriate router. For organizations that want
to inspect the network behavior of intranet users, the best
passive sniffing packet is a gateway under the organization’s
control. But when an intranet user leverages identity obfus-
cation protocols such as VPN or TOR protocols, the traffic
becomes inseparable because packets between the same user
and a gateway always include the same 5-tuples. We define
this challenge as the ‘‘only one flow problem’’, which indi-

cates a flow with infinite length and a connected server to
which the packet belongs cannot be distinguished. To solve
the problem, previous works [1]–[6] used the timeout value
as a terminating flag to split traffic.

However, time intervals between packets are affected by
human operation parameters such as mouse click frequency.
If the timeout threshold is set as too long, it is easy tomisjudge
the separation point when traffic is generated by a user with
fast application switching and vice versa. In addition, it is
impossible to specify a timeout value to satisfy the behavior
of all users. To overcome this limitation, we propose a deep
learning-based solution named flow detector (AI-FlowDet),
which can automatically determine behavior change points
of traffic via a learning approach. AI-FlowDet utilizes the
concept of image scene change and leverages a 2D convo-
lutional neural network (CNN) to determine the similarity of
flow sequences. Unlike the timeout value, which relies on the
static threshold, AI-FlowDet depends on knowledge learned
from training data to achieve flexibility and independence
with respect to the user’s habits. We apply the technique to
overcome the challenge of the only one flow problem for traf-
fic classification in identity obfuscation environments. More-
over, based on the distinct subflow characteristics of different
applications, we propose 294 size-based and direction-based
(S&D) features that can be applied to flow type classification.

The objective of this paper is to distinguish the applica-
tion types of flow in identity obfuscation environments. This
includes three steps: (1) applying the proposed deep learning
model, named AI-FlowDet, to obtain change points to split
traffic into flows, (2) extracting 294 proposed size-based and
direction-based features from every flow, and (3) leverag-
ing the machine learning models to classify the application
type of every flow. There are two main contributions of
this paper:
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• We present a method called AI-FlowDet to address
the only one flow problem of the identity obfuscation
network environment. When leveraging our method in
an actual obfuscation environment such as TOR and
VPN, compared to the previous timeout value method,
AI-FlowDet can increase the accuracy of the flow appli-
cation type classification by 6.0% under the TOR proto-
col and by 11.1% under the VPN protocol.

• We propose 294 S&D features that can be extracted
from an encrypted flow. When using AI-FlowDet with
S&D features for flow application type classification
in an identity obfuscation environment, 98.5% accuracy
can be achieved with the MLP algorithm. This value is
12.6% higher than that of the previous method using
timeout value and baseline features, which can only
obtain 85.9% accuracy.

II. BACKGROUND AND RELATED WORKS
In this section, we first describe the characteristics of the
identity obfuscation protocol and the problem caused by it.
We then illustrate the previous solution called the timeout
value to address the only one flow problem. Finally, we intro-
duce the earlier works about flow application type classifica-
tion in identity obfuscation environments.

A. IDENTITY OBFUSCATION: ENCRYPTION + PROXY
The tunneling protocol is a communications protocol that
allows data to be transferred from one network to another.
This protocol can be divided into two categories based on the
purpose of use, namely, encryption and proxy. GRE and IP
in IP are proxy tunneling protocols that encapsulate one IP
packet in another IP packet. SSL/TLS belongs to an encrypted
tunneling protocol and aims to prevent packet content from
being eavesdropped upon. IPSEC is a tunneling protocol with
both proxy and encryption features and is often used by VPN.
TOR relies on SSL/TLS techniques for encrypting packets
and virtual circuit routing for proxy function. Here, we define
TOR and VPN as identity obfuscation environments, which
simultaneously have encryption and proxy characteristics.

B. THE EFFECT OF IDENTITY OBFUSCATION: THE ONLY
ONE FLOW PROBLEM
Under the VPN protocol, every packet from the user will be
first sent to the VPN proxy, but not a server. The actual desti-
nation IP and port are hidden in the packet by VPN software.
After the packet arrives at the VPN proxy, the software will
decrypt the packet and obtain the actual destination IP and
port. The VPN proxy will then transfer the decrypted packet
to the server for the user instead. The full scenario of VPN is
illustrated in Fig. 1 (a). From the server’s perspective, it will
regard the VPN proxy as an actual client and never know the
user identity.

TOR is composed of a network based on TOR nodes.
Like VPN, TOR software also encrypts the packet and hides
the actual destination IP and port. Generally, there will be
3 TOR proxy nodes between the user and the server. The

FIGURE 2. The timeout value method for splitting traffic. If we set the
timeout as 10 sec, the Chat and Email traffic will be defined as a flow
because the time interval between them is not more than 10 seconds.
In contrast, the time interval between Email and Video is 12 sec, so the
new flow is defined starting from video packets.

encrypted packet will thus cross 3 proxies and obtain the
actual destination address after 3-time decryption. The full
scenario of TOR is displayed in Fig. 1 (b).

In summary, when sniffing packets from a gateway in iden-
tity obfuscation environments, the destination IP and port of
packets are the proxy address rather than the server address.
If the proxy is not under our control, we cannot retrieve the
actual server address. This poses a challenge (only one flow
problem) for classifying the traffic because we lose the basis
(5-tuples) for splitting the traffic to flow.

C. SPLITTING FLOW METHOD: TIMEOUT VALUE
Previous works [1]–[6] used the timeout value to split the traf-
fic in identity obfuscation environments. The timeout method
is based on the inspecting time interval between packets
to determine change points. To use this method, we need
to set an initial time threshold, such as 10 seconds. If the
time interval is longer than the threshold, a junction between
packets will be a traffic separation point. Next, the packets
that are before the separation point would be considered a
flow.

In the real world, every user has different computer use
habits. The time interval between packets would be affected
by a user’s operation. When the timeout threshold is not
suitable for the current user, it is easy to incorrectly determine
the separation point. As shown in Fig. 2, the timeout threshold
is 10 seconds, and the time interval between chat packets and
email packets is 5 seconds. The flows of chat and email are
thus mistakenly considered a flow. This fault will affect the
phase of feature extraction and disrupt the final classification
results. In addition, it is difficult to select a static timeout
threshold to fit all users. Hence, using the timeout method
inevitably causes some misjudgments and harms classifica-
tion results.

D. FLOW APPLICATION TYPE CLASSIFICATION UNDER AN
IDENTITY OBFUSCATION ENVIRONMENT
[6] and [2] focus on the traffic classification in the TOR
environment. The earlier work [6] only distinguishes the

84112 VOLUME 9, 2021



H.-Y. Chen, T.-N. Lin: Challenge of Only One Flow Problem for Traffic Classification

traffic into four application types:Web, P2P, FTP, and Others.
The authors leveraged the hidden Markov model (HMM) and
some base features to perform classification. In their dataset,
the probability of a successful guess can reach 92%. The
closer work [2] distinguishes the application into eight differ-
ent types: Browsing, Chat, Video, Audio, Email, VoIP, P2P,
or File Transfer. The authors used time-based features (the
enhanced version called the CIC flowmeter feature set [27])
to train the machine learning models. When using the random
forest algorithm and with the timeout value set to 15 seconds,
the best precision is 84.1% and recall is 83.6%.

[1], [3]–[5] focus on traffic classification in the VPN envi-
ronment. [1] is the first work to distinguish seven different
types of VPN traffic: Video, Chat, Audio, Email, VoIP, P2P,
and File Transfer. The authors used machine learning with
time-based features for flow characterization. The average
precision of 84% can be achieved by leveraging decision
tree C4.5, and the timeout value is 15 seconds. [3]–[5] used
the same dataset provided by [1]. [5] is the closest to [1].
The main differences are that 111 flow-based features are
used and that browsing traffic is not considered. In addition,
the authors classify the application type and the protocols
(Facebook, Skype, and so on). By using the k-nearest neigh-
bors (KNN) machine learning algorithm, 93.84% average
accuracy can be achieved. [3] is based on deep learning algo-
rithms. The authors transfer the raw traffic to sequence and
try two different models: one-dimensional (1D) convolutional
neural network (CNN) and autoencoder. The results show that
the CNN is better and can achieve 98% average accuracy.
[4] is also based on deep learning, and the authors compared
the performance between 1D-CNN and 2D-CNN and found
that the accuracy of 1D-CNN is higher than that of 2D-CNN
by as much as 2.51%.

[7] focus on the traffic classification of TOR, I2P, and
JonDonym via a hierarchical approach with modularity char-
acteristics, training efficiency, distributed deployment, and
tunable view of classification outputs. There are three gran-
ularities in their structure, namely, the adopted network
anonymity (L1), the traffic type tunneled in the network (L2),
and the application category in generating such traffic (L3).
In applications classification (L3), the proposed method can
achieve an F-measure up to 75.56%. [9] is an extension work
from [7] and presents a new approach called BDeH, a Big
Data-enabled hierarchical framework that capitalizes on two
complementary types of parallelism: model and data paral-
lelism. The simulation results show that the proposed method
can outperform either pure data or pure model parallelism
approaches by reducing training completion time by up to
78% and cloud-deployment costs by up to 31%.

[8] focus on profiling the users and applications on the
I2P network. They found that an amount of shared bandwidth
would affect profiling the users and the applications. Further-
more, applications that do not use the shared client tunnels
increase the possibility of profiting from the flow behavior.
When the amount of shared bandwidth is 80%, user profil-
ing can be performed with 81.8% accuracy. [10] proposes

a method called packet momentum, which leverages a set
of features based on the first 3 packets of a network traffic
flow and machine learning to identify multilayer-encryption
anonymity networks. Accordingly, 22 application layer pro-
tocols in total, such as HTTP, I2P, TOR, and JonDonym, are
utilized in experiments. They can achieve 97.92% accuracy.

III. AI-BASED FLOW DETECTOR
This section presents AI-FlowDet, a method to find the
application behavior change points in traffic. AI-FlowDet
addresses the only one flow problem caused by iden-
tity obfuscation environments such as VPN and TOR.
Our proposed approach introduces the image scene change
detection [28], [29] concept and leverages it on the net-
work traffic. By comparing the context of network packet
sequences, AI-FlowDet can accurately calculate the simi-
larity of the packet sequences and determine whether the
two sequences are from the same application type or not.
If they are from different applications, the junction between
two packet sequences would be defined as a behavior change
point.

The AI-FlowDet approach relies on the power of data
science and is a 2D convolutional neural network (CNN)
model [30], [31]. The main point of AI-FlowDet is the
training set generation algorithm. To fit the model, we first
need to prepare an amount of different network applica-
tion behavior flows. We then specify three hyper-parameters
called contiguous packet threshold (CPT), confidence region
(CR), and kernel region (KR) for training. The experimental
results of three hyper-parameters are in Section V-A. Finally,
we obtain the change points frommodel prediction and lever-
age them to split traffic into flows. In detail, the construction
of AI-FlowDet can be summarized in four main steps, which
are as follows.

(A) Collecting different network application behavior
flows. In this step, we need to collect specific amounts
of regular traffic (not in TOR or VPN) with different
application behaviors and only one behavior simulta-
neously. We can then use the 5-tuples rule to split the
traffic into flows. Please refer to additional details in
Section III-A.

(B) Building a packet sequences pair dataset for training.
In this step, we first need to determine a hyper-parameter
called the contiguous packet threshold (CPT), which is
the packet sequence size extracted from network flows.
Based on the CPT, every flow would generate many
packet sequence pairs. We then need to specify another
hyper-parameter called the confidence region (CR) to
determine whether the packet sequence pair is a positive
sample (not similar) or a negative sample (similar). See
more details in Section III-B.

(C) Training the 2D CNN model to determine change
points. In this step, we use the packet sequence pairs
generated from the previous step to train a CNN model.
The CNN model input is a matrix that is composed of
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FIGURE 3. The procedure of training dataset generation. (a) shows the flow in the time domain. The blue and green indicate chat and email
flow. The forward packet is a positive value, and the backward packet is a negative value. (b) shows the flow projecting from a time domain to a
packet domain and becoming a packet sequence. The intervals between packets are not based on time. (c) shows the definition of sample pairs.
The CPT value here is 5, and CR is 50%. The top sequence pair is a negative sample pair and the bottom sequence pair is a positive sample pair.

FIGURE 4. The procedure for finding splitting points. (a) presents a CNN model structure. The input is a matrix composed of 2 sequences, and
the output is possibility of change points. (b) shows the merging procedure. We first cluster the close change points into a group and average
their timestamps to generate final change points.

two packet sequences. ACNNmodel’s output is a binary
value, for which 0 means that the two packet sequences
are from the same flow and 1 means that they are from

different flows. Here, we would investigate the impact
of using different kernel sizes (KR) in the convolutional
layer. Please refer to additional details in Section III-C.
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TABLE 1. The packet statistics of the dataset (the results are the average
of 20 flows).

(D) Merging the duplicated change point and splitting
the traffic into flows. In this step, we leverage themodel
on the trafficwith only one flow problem. The classifica-
tion results show the locations of change points. Before
splitting traffic, we need to merge the change points
according to the confidence region (CR) to eliminate
the duplicated points. After merging, traffic can be split
into flows by new change points. See more details in
Section III-D.

A. COLLECTING DIFFERENT NETWORK APPLICATION
BEHAVIOR FLOWS
The UNB dataset [1], [2] is composed of 2 parts: one is
regular traffic (not in VPN/TOR), and the other is VPN/TOR
traffic. It is available for academic usage.We leverage regular
traffic in this section, from which it is easy for us to obtain
ground truth to prepare training data. There are eight different
application behaviors: Browsing, Chat, Video, Audio, Email,
VoIP, P2P, and File Transfer. Finally, we choose 20 flows from
each application type and a total of 160 flows for the next step.
The statistical details of the dataset are shown in Table 1.

B. BUILDING A PACKET SEQUENCES PAIR DATASET FOR
TRAINING (TIME DOMAIN TO PACKET DOMAIN)
This step’s core is using the flows from Section III-A to
generate the packet sequence pairs and ground truth labels.
The packets in the time domain are as shown in Fig. 3 (a),
where the x-axis indicates a timestamp, and the y-axis dis-
plays packet length. In Fig. 3 (a), the packet’s coordinates
and interval distance are based on the influence of time. Here,
however, we do not need to leverage the time series concept.
We decouple it and only retain the order concept of packets.
The decoupled result is shown in Fig. 3 (b), where the x-axis
only displays packet order but not timestamp, and the y-axis
still displays packet length. The packet sequence is a part of a
flow for which length is determined by the hyper-parameters,
which is called the contiguous packet threshold (CPT, sliding
window size). The sequence’s value is packet size, for which
positive indicates the forward direction and negative indicates
the backward direction. Here, different CPT assume the short-
est length of each flow that we will split from traffic. If the
CPT is set as too long, a packet sequence would have a higher
possibility with two more application types. This situation
would confuse the CNNmodel in the training stage. To avoid
more than two flows in a sliding window, we determine the

TABLE 2. The 2D CNN Structure of Flow Scene Change Detection.

CPT based on the average packet number of flows counted
in Table 1. The result shows that most flow has more than
780 packets. Sowe select a number less than 780, such as 100,
200 for experiments. But in the real world, it still has short
flows in traffic, so we discuss the issue in Section V-G. After
specifying the CPT, we select two different application type
flows and concatenate them together. The packet sequence
window, which is the CPT size, would then slide from the
beginning to the end of the merged flow. Next, we need to
specify a hyper-parameter called the confidence region (CR)
to determine whether the front and back packet sequences
represent a positive and negative sample pair. The CR is a
percentage threshold value; it represents when the proportion
of two sequences is composed of different flows. The defini-
tion of a sequence pair example is shown in Fig. 3 (c). The
labeling details are found in Algorithm 1.

C. TRAINING THE 2D CNN MODEL TO DETERMINE
CHANGE POINTS
This step would use the sequence pairs and labels from
Section III-B to train a 2D CNN model. As shown
in Fig. 4 (a), the input of the 2D CNN is a matrix, and the
size is 2 * CPT. The first row of the matrix is the front packet
sequence, and the second row is the back packet sequence.
Every value in thematrix indicates every packet length, where
a positive value indicates an outbound (sent) packet, and a
negative value denotes an inbound (received) packet. The
proposed CNN model can thus be based on packet length
and direction to determine the splitting point. The first layer
is a convolutional layer with a ReLU activation function,
and the size of the filter is 2 * N, where N equals KR *
CPT. The KR is a hyper-parameter, and its range is from 0-1.
It impacts the model of how to compare the packet sequences.
If the KR is longer, the model would compare more packets
simultaneously, and vice versa. The second and last layers are
a fully connected layer and then using a sigmoid activation
to normalize the output value to the range of 0-1, where
1 represents the change point and 0 represents the non-change
point. The structure details are shown in Table 2.

D. MERGING THE DUPLICATED CHANGE POINT AND
SPLITTING THE TRAFFIC INTO FLOWS (PACKET DOMAIN
TO TIME DOMAIN)
After training a CNN model, we leverage it on traffic, which
has only one flow problem. We then obtain all change points
of the traffic. Here, however, we will not directly use change
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Algorithm 1 Training Set Label
1: INPUT:
2: CPT : Contiguous Packet Threshold (Integer)
3: CR: Confidence Region (%)
4: M : Length of flow 1 (Integer)
5: N : Length of flow 2 (Integer)
6: OUTPUT:
7: L: List of labels. (Bool, True is change point)
8: Initialization:
9: L ← []

10: for each i ∈ [CPT ,M + N − 2 ∗ CPT − 1] do
11: if i < M−CPT ∗ (2− CR) then
12: L.append(False)
13: else if i > M−CPT ∗ CR then
14: L.append(False)
15: else
16: L.append(True)
17: end if
18: end for

points because the hyper-parameter CR used in the training
phase causes duplicated change points in the testing phase.
In detail, the definition of a positive sample is affected by the
CR. If the CR value is lower, the change point can be next to
the junction instead of just at the intersection. Thus, we need
to merge the duplicated points in the testing phase. Points
not exceeding the length of the CPT will be clustered into a
group. We then reproject the packets from the packet domain
to the time domain. As shown in Fig. 4 (b), we average each
point’s timestamps in the same group and leave only the
closest average timestamp point. Finally, every group would
generate a new change point. The traffic would then be based
on new change points to split into flows. The packets in a flow
exhibit the same application behavior. The details formerging
change points is found in Algorithm 2.

This section illustrates how to obtain the change points
of traffic by the proposed method and how to use them to
determine flows. This method is divided into two steps in
actual use. The first step is to find splitting points. If the
number of packets is N, then O(N-CPT+1) CNNmodel oper-
ations are required. The second step is to merge the splitting
points. The computational resources required in this step will
be determined according to the number of splitting points
(N) found in the previous step, and the average computational
complexity is O(2N). Next, to classify each flow’s application
type, we propose 294 new features which can be extracted
from flow whether encrypted or not.

IV. S&D: SIZE-BASED AND DIRECTION-BASED FEATURES
In this section, we present the size-based and direction-based
(S&D) features for flow application type classification. The
core of S&D is to measure the packet size in a subflow, which
is composed of consecutive packets in the same direction. The
size and direction of a packet generated by different network
applications will be distinct, e.g., in the file transfer traffic,

Algorithm 2Merge Duplicated Points
1: INPUT:
2: PTS: List of Packet TimeStamps (Float)
3: CP: List of Change Points (Integer)
4: CPT : Contiguous Packet Threshold (Integer)
5: OUTPUT:
6: NCPTS: List of New Change Point TimeStamps (Float)
7: Initialization:
8: SG: Packet is now in the Same Group or not (Bool)
9: GM : List of Member in Group (Integer)
10: GMTS: List of TimeStamps of Group Member (Float)
11: SG← False
12: GM ← []
13: NCPTS ← []
14: for each i ∈ [0, len(CP)] do
15: if SG == False then
16: GM .append(CP[i])
17: SG← True
18: else
19: if CP[i+ 1] - CP[i] < CPT then
20: GM .append(CP[i])
21: else
22: GMTS ← []
23: for each j ∈ [0, len(GM )] do
24: GMTS.append(TS[j])
25: end for
26: AveTimeStamps← mean(GMTS)
27: NCPTS.append(AveTimeStamps)
28: SG← False
29: GM ← []
30: end if
31: end if
32: end for

most packets have the same direction, and the packet size
is almost the maximum transmission unit (MTU). We can
thus observe that the file transfer traffic contains few sub-
flows and the packet size in subflow exhibits a high average
value and low standard deviation. On the other hand, in chat
traffic, packets’ directions are uniformly distributed, and the
direction changes frequently. The subflow number of chat
traffic would exceed that of file transfer, and the packet size
in subflow presents a low average. Hence, the characteristics
of subflow can enable machine learning models to more
accurately distinguish different types of flow. The following
list describes a total of 294 features we proposed.

• Fwd2Bwd: The time of packet direction change from
forward to backward (one feature).

• Bwd2Fwd: The time of packet direction change from
backward to forward (one feature).

• Statistical values of the subflow packet number: The
minimum, maximum, mean and standard deviation val-
ues of the total packet number among all subflows with
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FIGURE 5. Illustration of proposed features.

both directions. An example is shown in Fig. 5 (a) (four
features).

• Statistical values of the forward subflow packet number:
The minimum, maximum, mean and standard deviation
values of total packet number among all subflows with
a forward direction (four features).

• Statistical values of the backward subflow packet num-
ber: The minimum, maximum, mean and standard devi-
ation values of total packet number among all subflows
with a backward direction (four features).

• Statistical values of subflow packet bytes: The mini-
mum, maximum, mean and standard deviation values
of the total packet size among all subflows with both
directions (four features).

• Statistical values of forward subflow packet bytes: The
minimum, maximum, mean and standard deviation val-
ues of the total packet size among all subflows with a
forward direction. An example is shown in Fig. 5 (b)
(four features).

• Statistical values of backward subflow packet bytes:
The minimum, maximum, mean and standard deviation
values of the total packet size among all subflows for the
backward direction (four features).

• Statistical values of subflow bytes per packet: The min-
imum, maximum, mean and standard deviation values
of the total bytes per packet values among all subflows
averaged for both directions (four features).

• Statistical values of forward subflow bytes per packet:
The minimum, maximum, mean and standard deviation
values of the total bytes per packet values among all sub-
flows averaged for the forward direction (four features).

• Statistical values of backward subflow bytes per packet:
The minimum, maximum, mean and standard deviation
values of the total bytes per packet values among all sub-
flows averaged for the backward direction. An example
is shown in Fig. 5 (c) (four features).

• Byte distribution per packet: Every byte distribution
per packet in one flow (from bytes 0 to 255 and total
256 features).

V. EXPERIMENTS ON FINDING FLOW SPLITTING POINTS
AND FLOW APPLICATION TYPE CLASSIFICATION
This section first shows the results of finding flow splitting
points based on the proposedAI-FlowDet. Next, we introduce

TABLE 3. F1-score of different CPT, CR and KR.

the traffic data of the TOR and VPN environments. Finally,
we show the flow type classification results on different
feature sets with two flow splitting methods.

A. RESULTS OF AI-FlowDet ON FINDING FLOW SPLITTING
POINTS
In this experiment, we leverage the regular traffic (not in
TOR/VPN) with different application behaviors for training
AI-FlowDet and evaluate the performance of finding flow
splitting points. As mentioned in Section III, there are three
hyper-parameters called contiguous packet threshold (CPT),
confidence region (CR), and kernel region (KR) that would
affect performance. Here, we show the results on Table 3
which has 18 different hyper-parameter combinations (CPT
are 100 and 200. CR are 0.25, 0.5, and 0.75. KR are 0.25,
0.5, and 0.75.). The first three rows are the F1-score results
of 100 CPT on different CR and KR, and the rest of the
rows are F1-score results of 200 CPT. As one can see,
the average F1-score of CPT 100 is 97.1%, and the standard
deviation is 0.9%. In CPT 200 results, the average F1-score
is 98.1% which is higher than CPT 100, about 1%, and the
standard deviation is 0.7%. Further, the best performance of
CPT 200 is 98.4% F1-score when CR equals 0.75 and KR
equals 0.25. The result shows that AI-FlowDet can find the
appropriate flow segmentation point and is robust because
of the low standard deviation it obtains. In the next stage of
classifying traffic types, we will use the best hyper-parameter
combination (CPT is 200, CR is 0.75, and KR is 0.25).

B. DESCRIPTION OF FLOW APPLICATION TYPE DATASETS:
TOR AND VPN
Since AI-FlowDet is for identity obfuscation but is trained
on regular traffic, it is important to confirm that the packet
characteristics of the identity obfuscation environment are not
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TABLE 4. Application types included in each category.

significantly different from those of the regular environment.
Here, we recorded the traffic in the TOR and non-TOR envi-
ronments at the same time and conducted the same for the
VPN and non-VPN environments. The ratios of packet num-
ber per sec, packet bytes per sec, and bytes per packet between
TOR and non-TOR are 7.5%, 7.3%, and 15.7%, respectively.
The ratios of packet number per sec, packet bytes per sec,
and bytes per packet between VPN and non-VPN are 0.3%,
11.2%, and 10.3%, respectively. The results show that the
packet characteristics between regular and TOR/VPN envi-
ronments are similar.

As mentioned in Section III-A, the UNB dataset [1],
[2] includes regular traffic and VPN/TOR traffic. In this
section, we leverage the VPN/TOR traffic for the flow type
classification problem. The collected traffic between users
and gateways is utilized for different types of applications
with the assumption that a user would not use more than
one application simultaneously. Thus, during traffic record-
ing, one application is executed at a time. All of the traf-
fic was encrypted by the TOR environment and with the
same 5-tuples. After collection, all applications were divided
into the eight categories mentioned in Section II-D. The
application behavior details about every category are shown
in Table 4. The VPN traffic capture procedure is the same as
TOR but has only the seven application types mentioned in
Section II-D.

C. RESULTS OF FLOW APPLICATION TYPE
CLASSIFICATION IN THE TOR ENVIRONMENT
In this experiment, we first compare the two packet split-
ting methods (Timeout vs. AI-FlowDet) on the TOR traf-
fic dataset mentioned in Section V-B. Based on previous
works, the best timeout threshold is 15 seconds, and we also
select the same value for experiments. In the AI-FlowDet,
we choose the following hyper-parameters obtained from
Sec 3-A: CPT of 200, CR of 0.75, and KR of 0.25. Next,
we compare the 294 proposed features with the baseline
features called CIC flowmeter [27]. CIC flowmeter includes
80 features, including timestamp, IP, port, time-based fea-
tures, packet-based features, TCP flag, and so on. To avoid
overfitting, we removed the timestamp and 5-tuple from CIC

TABLE 5. Weighted accuracy in TOR dataset.

FIGURE 6. Accuracy of every class in the TOR environment. ‘‘Mixed’’ here
indicates the set of features, including the CIC flowmeter and proposed
features.

TABLE 6. Weighted accuracy in the VPN dataset.

flowmeter and ultimately used 74 features for experiments.
In each experiment, we leveraged five different machine
learning algorithms: k-nearest neighbors (KNN), decision
tree (DT), random forest (RF), LightGBM (LG), and mul-
tilayer perceptron (MLP).

We use weighted accuracy as an evaluation metric and
in five-fold cross-validation, and experimental results are
shown in Table 5. The first and second columns com-
pare the AI-FlowDet and Timeout flow splitting methods
for the same feature set. As one can see, our approach
shown in the second column achieves better performance
for every algorithm. The best algorithm for the time-
out method is MLP, which can achieve 88.9% weighted
accuracy. In comparison, AI-FlowDet can attain 94.9%
weighted accuracy, which is 6% better than that of the
CIC flowmeter.

The results of the second, third, and fourth columns are for
evaluating different feature sets with the same splitting flow
method. As the second and third columns show, our features
offer better performance than those of the CIC flowmeter for
each algorithm. Moreover, we try combining two feature sets
to improve performance. However, the results of the third and
fourth columns are similar, which implies that our features
include the characteristics of the CIC flowmeter features in
the TOR environment.
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FIGURE 7. Accuracy of every class in the VPN environment. ‘‘Mixed’’ here
indicates the set of features, including the CIC flowmeter and proposed
features.

D. RESULTS OF FLOW APPLICATION TYPE
CLASSIFICATION IN THE VPN ENVIRONMENT
In this experiment, we focus on the VPN traffic dataset men-
tioned in Section V-B, and the settings and algorithms are the
same as in Section V-C. Based on Table 6, we can see that
the outcome is similar to the results in the TOR environment.
Based on columns one and two, our AI-FlowDet method
outperforms the timeout method with the same features by
11.1% under the LightGBM algorithm. However, in the VPN
environment, the difference in performance between the two
feature sets is not significant. When we merge two feature
sets, we can achieve the best performance of 98.8% weighted
accuracy with LightGBM.

E. FURTHER INVESTIGATION OF FEATURE SETS AND
COMPREHENSIVE COMPARISON
To deeply analyze the effects of features, we show the perfor-
mance of every class in TOR (in Fig. 6) and VPN (in Fig. 7)
environments. In TOR, we can see that AI-FlowDet with
the proposed features always offers better accuracy in every
class, especially in chat, where it increases accuracy by 50%.
Nevertheless, after merging the CIC-flowmeter feature set,
the accuracy of some classes slightly declines, while that of
chat decreases dramatically. In VPN, the CIC flowmeter has
better performance than proposed features in most classes.
Unlike TOR results, when we combine two feature sets,
the accuracy is better than when using only one of the feature
sets.

Next, we present a comprehensive comparison of two
features in the identity obfuscation environment’s aver-
age results and all ML algorithms. The accuracy of the
CIC flowmeter is 94.4%, including values of column 2 of
Table 5 and Table 6. On the other hand, the accuracy
of proposed features is 95.9%, including values of col-
umn 3 of Table 5 and Table 6. The 1.5% accuracy
improvement confirms that our features are more robust
than the CIC flowmeter. Moreover, this result implies that
when it is impossible to determine whether the iden-
tity obfuscation environment is VPN or TOR, leveraging
our features has a high probability of achieving better
performance.

TABLE 7. Feature importance rank. (The bold means proposed feature).

F. FEATURE IMPORTANCE AND RANKING
Due to the high number of features (294+74) used for ML
algorithms, in this part, we obtain the importance value of
every feature as based on the LightGBM algorithm and show
which features are truly informative. LightGBM is a gradient
boosting framework that uses tree-based learning algorithms;
it finds a feature with the highest information gain to be a
tree splitting point in every iteration. The more information
gain a feature has, the more important is that feature. After
training the LightGBM model, we can obtain every feature’s
information gain. The top 25 important features in TOR
and VPN are shown in Table 7. It can be found that 18 of
our proposed features are shown in the TOR dataset, and
12 of our proposed features are shown in the VPN dataset.
In addition, we show the results under the different feature
numbers in Fig. 8. When the number of features reaches
40, the accuracy is saturated and increases only slowly. The
above results prove that proposed features can bring about
significant effects for ML algorithms and are informative.

G. NOISE IMPACT FOR AI-FlowDet
As mentioned in Section III-B, we assume the CPT is the
shortest length of each flow splitting from traffic. But there
may be a short flowmixed with traffic. It will cause more than
two flows in a sliding window and impact the AI-FlowDet
splitting results. Here, we simulate the situation of one short
flow (200 packets) mixing between two long flows (more
than 500 packets) and leverage trained AI-FlowDet to find
splitting points. The experiments show that when the CPT
of AI-FlowDet is 200, AI-FlowDet will consider the short
flow part as many splitting points (As Fig. 9 (a)). After
leveraging the proposed merge algorithm, we finally obtain a
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FIGURE 8. The results for different feature numbers. We gradually
increase the number of features according to the importance of features
and test each feature set. The blue line denotes the results for the VPN
dataset, and the orange line denotes the results for the TOR dataset.
As shown in the figure, when the number of features reaches 40,
the accuracy is saturated and increases slowly.

FIGURE 9. The result of AI-FlowDet finding splitting points under the
short flow condition. (a) shows that when CPT is not smaller than the
length of short flow, AI-FlowDet will consider the short flow part as many
splitting points. (b) shows that when CPT is smaller than the length of
short flow, AI-FlowDet will correctly find the spitting points.

splitting point in the middle of the short flow part (the average
position is on the No. 121 packet of short flow). On the
other hand, when the CPT of AI-FlowDet is 100 (half of the
short flow), AI-FlowDet will correctly find the two splitting
points: the head and the end of the short flow. (As Fig. 9 (b)).
In summary, the AI-FlowDet ignores the short traffic, which
length is longer than the CPT, and split it into two parts for
front-flow and back-flow.

Since AI-FlowDet ignores short flow and integrates it as
noise packets into other flows, we design an experiment

TABLE 8. The classification results between with noise packet or not
under different classidiers.

to investigate the impact of flow type classifier’s when the
noise packet is concatenated after the normal flow. The noise
packet number we use is 100 (in CPT 200 condition, a flow
will be concatenated 100 noise packets on average), and the
comparison results are shown in Table 8. Columns one and
two are the comparison result with noise or not under theVPN
dataset. As you can see, there is no significant difference (the
average gap is 3.2%) between noise with or not. The classifier
with the most critical gap is the decision tree (about 6.9%),
and MLP has the smallest gap (about 0.5%). Columns three
and four are under TOR, and the results are similar to VPN(
the average gap is 1.6%). The classifier with the most critical
gap is the decision tree (about 6.4%), and RF has the smallest
gap (about 0.2%). When we leverage our proposed method
in real traffic, the performance would be based on the short
flow appearing ratio. In summary, the above results show that
our method is robust and has little impact on adding noise
packets.

VI. CONCLUSION
With the growing awareness of information security, the issue
of traffic classification has become more important day by
day. Because of endpoint device limitations and privacy
issues, network traffic can usually only be obtained from
network devices. When network traffic is generated from an
identity obfuscation environment, it causes the only one flow
problem, and we cannot leverage the 5-tuple to split traffic
into flows. To address this issue, we leverage the scene change
detection concept to propose a deep learning-based flow split-
ting method called AI-FlowDet. Under the flow application
type classification, compared to previous work using the
timeout value to split traffic, our method can increase the
accuracy by 6.0% in the TOR dataset and by 11.1% in
the VPN dataset. Moreover, we design 294 size-based and
direction-based features based on the characteristics of appli-
cation type. The flow type classification experiments show
that the best performance in TOR is achieved when combin-
ing AI-FlowDet with proposed features, which can achieve
99.7% weighted accuracy in the MLP algorithm. On the
other hand, in VPN, we need to merge the previous feature
set, called CIC flowmeter, into AI-FlowDet and the pro-
posed features, through which a weighted accuracy of 98.8%
can be obtained in the LightGBM algorithm. According to
the great performance obtained in both identity obfuscation
environments, we proved that AI-FlowDet and the proposed
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features are superior to the previous work with respect to flow
classification.

VII. LIMITATIONS AND FUTURE WORK
In the training dataset, only one application typewas recorded
at the same time. In the actual field, however, various applica-
tion types will be mixed. Our method can thus only estimate
the most significant application behavior of each segment
flow. How to accurately split each flow in TOR remains a
problem (the VPN environment would face the same prob-
lem). In future work, we will more deeply investigate the
identity obfuscation protocol environment and find a robust
rule to split flow. We will then combine this with the features
we proposed to enable this algorithm to be implemented in
noisy traffic environments.
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