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ABSTRACT The series-fed subarray still plays a critical role in a partially-corporate-fed array, which has
advantages over the corporate feed one in terms of both beam steerability and freedom in array sizes. In this
paper, two techniques are presented for the wideband design of series-fed waveguide slot arrays. Firstly,
the overload technique is adopted to design standing-wave fed 1 × 4-element arrays of both coupling slots
and radiating slots. The simulated bandwidths for |S11| < −15 dB are enhanced to 8.1% and 12.2%,
respectively. Secondly, the open-cavities, namely decoupling structures above radiating slots, are introduced
to suppress the mutual couplings among a 4 × 4-element array. Its bandwidth for |S11| < −15 dB is
significantly improved from 5.1% to 11.3%. For demonstration, a 4 × 4-element array is designed in
the X-band, and is fabricated by Direct Metal Laser Sintering technique. The measured bandwidths for
|S11| < −12.5 dB and the antenna efficiency higher than 70% are as wide as 12.4% and 9.5%, respectively.
The validity of those wideband design techniques is verified.

INDEX TERMS Waveguide slot array, wideband design, standing-wave feed, overload technique, decou-
pling structure.

I. INTRODUCTION
The waveguide slot array is characterized by the low profile,
high-power capacity, low loss, and high efficiency even in the
millimeter-wave (MMW) band. It has beenwidely applied for
space, radar, and wireless communications for decades. How-
ever, its limited bandwidth of less than 5% is well known as
one major drawback. In recent years, the high-gain and wide-
band array antennas have attracted significant attention from
high-resolution radar and high-capacity wireless communi-
cation systems. Conventionally, wide slots and dumbbell
slots [1]–[3] have been adopted to improve the overall band-
width of a waveguide slot array. However, those approaches
are unsatisfactory, and the corresponding antenna perfor-
mance regarding cross-polarization discrimination (XPD)
would be degraded as a tradeoff.
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One effective way to improve the antenna bandwidth
is to decompose the overall array into several subarrays.
When the feeding circuits evolve from the series-fed structure
into the center-fed, partially-corporate-fed, and corporate-
fed structures, the corresponding bandwidths are signifi-
cantly enhanced by reducing the long-line effects [4]–[13].
Over the last decade, the corporate feed becomes domi-
nant in realizing a wideband high-gain beam-fixed array,
whose number of elements in one dimension is gen-
erally restricted to 2N instead of an arbitrary integer.
For example, the corporate-fed slot arrays based on
the conventional hollow waveguide technique [14]–[19]
and the ridge gap waveguide technique [20]–[22] have
been successfully developed in the MMW band. Mean-
while, various corporate-fed slot arrays based on the
dielectric-filled post-wall waveguide and substrate integrated
waveguide (SIW) have been studied for MMW applica-
tions [23]–[25]. All of those corporate-fed array antennas
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adopt the double-layer cavity-backed structures associating
with a 2 × 2-element subarray as the radiating unit.
On the other hand, the partially corporate feed still has

advantages over the corporate feed in terms of both beam
steerability and freedom in array sizes. It has broader applica-
tions in SAR (Synthetic Aperture Radar) and wireless com-
munication systems. As an assumption, a 16 × 16-element
array is under development. By replacing the center feed
with the partially corporate feed, the overall array can be
decomposed into 8 × 8- and 4 × 4-element end-feed subar-
rays. Then, the number of in-series elements can be reduced
from 8 to 4 and 2, respectively. In this way, the overall
array bandwidth can be doubled and quadrupled straightfor-
wardly. Moreover, the overall array design is also simplified
into the designs of subarray and feeding network. Therefore,
the wideband design of a subarray becomes essential.

A technique called ‘‘overload’’ [3], [26] has been
introduced in the design of a one-dimensional (1-D)
standing-wave fed array to expand its matching band-
width effectively. By overloading the slotted waveguide, the
matching bandwidth of the 4-element subarray was improved
to about 9.5% for VSWR < 1.5. However, when apply-
ing this overload technique to designing two-dimensional
(2-D) arrays, the matching bandwidth of the center-fed
8 × 10-element array [10] was improved to only 4.5% for
VSWR < 1.5. The effect of bandwidth enhancement in a
2-D array is limited compared with that in a 1-D array.
Therefore, the mutual coupling among slots may seriously
defect the overload technique and degrade overall bandwidth
performance.

Previously the baffles as well as open-cavities, functioning
as the decoupling structures, have been introduced in the
external region of radiating slots [15], [27]–[30]. The decou-
pling becomes essential when designing a high-performance
2-D array in terms of aperture distribution, radiation pattern,
and impedance matching. As illustrated in [30], when the
mutual couplings among radiating slots are effectively sup-
pressed by optimizing the three-dimensional (3-D) sizes of
open-cavities, the active admittance of a slot lying in a 2-D
array is identical to its own self-admittance. Hence, one slot
even belonging to a 2-D arraymay operate as if it exists alone.

In this paper, a 4 × 4-element waveguide slot array, which
can be widely adopted as a subarray to realizing a high-
gain array with a fixed or scanned beam, is demonstra-
tively designed and tested for wideband operation in the
X-band. Firstly, we apply the overload technique to improve
the bandwidths of standing-wave fed 1 × 4-element sub-
arrays. The performance for both coupling slots and radi-
ating slots is examined. Secondly, the effects of mutual
couplings among radiating slots are investigated in detail.
Thirdly, under the periodic boundary condition, the decou-
pling structures, ‘‘open-cavities,’’ is additionally introduced
in the 1 × 4-element subarray, and effectively improves its
bandwidth. Forthly, we combine the subarrays of radiat-
ing and feeding parts into a 4 × 4-element array. Under
the conditions of both radiation and periodic boundaries,

FIGURE 1. Series-fed waveguide slot arrays and their equivalent circuits.
(a) 1 × 4-element subarray of coupling slots and its equivalent circuit;
(b) 1 × 4-element subarray of radiating slots and its equivalent circuit.

FIGURE 2. Principles of match and overload design technique.

the bandwidth improvement is observed when introducing
open-cavities. Finally, we fabricate the 4 × 4-element array
by the DMLS (Direct Metal Laser Sintering) technique. After
experimental evaluations, the validity of those wideband
design techniques is verified.

II. OVERLOAD TECHNIQUE
Fig. 1 illustrates the series-fed waveguide slot arrays and their
equivalent circuits. In this study, the center-inclined slots and
longitudinal slots are adopted as the couplers and radiators,
respectively. It is well-known that their equivalent circuits
are respectively represented by four impedances in series and
four admittance in parallel, as shown in Fig. 1. The element
spacing for both coupling and radiating slots is fixed at half
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FIGURE 3. Simulation models of 1 × 4-element subarrays. (a) Feeding
part. (b) Radiating part.

TABLE 1. Slot parameters and bandwidths of 1 × 4 coupling slots for
different designs.

a guided wavelength in common. The FEM-based (Finite
Element Method) high-frequency electromagnetic-field sim-
ulator Ansys HFSS is applied to the array analysis and design.

According to our investigation, the standing-wave-fed
array exhibits larger matching bandwidth than the traveling-
wave-fed one when the number of in-series elements is suf-
ficiently small [11]. Generally, to achieve perfect matching
at the center frequency, the structural parameters are opti-
mized to realize a normalized input impedance or admittance
equal to 1. For simplicity, identical structural parameters are
assumed for the four slots in series. Hence, the normalized
impedance or admittance of a single slot is just 1/4 in the
1 × 4-element subarray. The reflection and admittance are
diagrammatically drawn as a function of frequency. As shown
in Fig. 2, the principles of ‘‘match’’ and ‘‘overload’’ are
respectively illustrated by blue and red lines for comparison.
The reflection of the matched subarray exhibits a single res-
onance.

For wideband operation, the overload technique is intro-
duced further to enhance the matching bandwidth of a
standing-wave-fed array. When the impedance or admittance
of each slot is uniformly enlarged from 1/4 to some extent
at the center frequency, the slotted waveguide is overloaded,
i.e., the normalized input impedance or admittance is larger
than 1. On the other hand, it approaches 1 at the lower and
higher frequencies, according to the frequency behavior of
impedance or admittance, as illustrated in Fig. 2. That is,
a double-resonance behavior is achieved over the operating
frequency range. Therefore, the matching bandwidth is sig-
nificantly enhanced by applying the overload technique for a
specific |S11|.

FIGURE 4. Reflection coefficient |S11| of 1 × 4 coupling slots for different
designs.

III. WIDEBAND DESIGN OF 1 × 4 COUPLING SLOTS
In the feeding part, the 1 × 4-element subarray of coupling
slots is designed by applying the overload technique first.
Its simulation model in HFSS is shown in Fig. 3 (a), where
the coupling slots are isolated in the external region. The
upper radiating waveguides adopt the standard waveguide
WR-90 with a cross-section of 22.86 mm × 10.16 mm,
while the lower feeding waveguide has a cross-section
of 21.05 mm × 10.16 mm. They couple through the
center-inclined slots with a spacing of half-guided wave-
length. As the key structural parameter, the tilt angle θ
and length l of a center-inclined slot cut in a rectangular
waveguide mainly control the equivalent resistance r and
reactance x, respectively. During the subarray design, a single
resonance is first observed in the frequency characteristics
of reflections when the angle θ is less than a specific value.
If the slot angle θ is continuously increased, a phenomenon
of double resonance rather than single resonance is observed
and exhibits a wider matching bandwidth for a certain |S11|.

Three types of 1 × 4-element subarrays are designed for
comparison. The worst values of reflection coefficient (|S11|)
at the center frequency are set at −10, −15, and −20 dB,
respectively. As listed in Table 1, the parameters of θ and l are
mainly optimized to satisfy different design criteria. As the
design bandwidths for |S11| < −10, −15, and −20 dB are
achieved as 11.3%, 8.1% and 5.9% respectively. By increas-
ing the tilt angle θ , the slotted feeding waveguide is over-
loaded, and the matching bandwidth is enhanced. However,
as a tradeoff, the impedance matching at the neighborhood
of center frequency degrades to some extent. By the way,
compared to the matched subarray with a single resonance,
the matching bandwidth for |S11| < −15 dB is improved
by 2.7%.

During the abovementioned subarray design, the feeding
waveguide height b and the slot widthw are fixed at 10.16mm
and 3.6 mm, respectively. According to our investigation,
those two parameters also exert a non-negligible influence
on the matching bandwidth. Its dependence on those two
parameters is studied in detail. For a fixed b or w, θ and
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FIGURE 5. Bandwidth dependence on other parameters. (a) Dependence
on widths of feeding slot. (b) Dependence on height of feeding
waveguide.

l are optimized to maximize the matching bandwidth for
|S11| < −10 dB or−15 dB, while other structural parameters
in the1 × 4-element subarray remain unchanged. As sum-
marized in Fig. 5 (a), the matching bandwidths for |S11| <
−10 dB and −15 dB improve with the increase of w and
reach their maximum values around w = 3.9 mm. Since the
excessively enlarged slot width may lead to the degradation
in XPD, w = 3.6 mm is a suitable value and is adopted
in the subsequent designs. On the other hand, the matching
bandwidths for |S11| < −10 dB and −15 dB also improve
moderately with the increase of feeding waveguide height b,
as shown in Fig. 5 (b). However, those matching bandwidths
are maximized around b = 10 mm and degraded for larger
values. Hence, b = 10.16 mm which is the height of the
standard waveguide WR-90, is appropriate to be adopted in
the subsequent designs as well.

IV. WIDEBAND DESIGN OF 1 × 4 RADIATING SLOTS
In the radiating part, the 1 × 4-element subarray of radiating
slots is designed in a similar manner by applying the overload
technique. Two types of boundary conditions are assumed
in their external region for comparison. One is the radiation

boundary condition to simulate the radiation in a half-free
space; the other is the periodic boundary condition to simulate
the mutual couplings in an infinite 2-D array. Introducing
open-cavity as the decoupling structure is investigated as
well.

A. RADIATION BOUNDARIES
As illustrated in Fig. 3 (b), since a 1-D array is under
investigation, radiation boundaries are assumed in the exter-
nal region. As shown in Fig. 1 (b), the longitudinal slot is
offset from the waveguide axis, and the distance between
the slot center and the axis is defined as slot offset p. The
design procedures for achieving the matched and overloaded
1 × 4-element subarrays of radiating slots are detailed as
follows.

Firstly, a single longitudinal slot with an equivalent admit-
tance g of 1/4 is designed. According to the relationship of
g = −2S11/(1 + S11), the reflection S11 for a single element
is calculated as −1/9. Then, the corresponding values of
|S11| = −19.5 dB and 6 S11 = 180◦ are realized by optimiz-
ing the slot offset p and length l. According to the previous
studies, those two structural parameters mainly determine the
amplitude and phase of S11, respectively. They are optimized
using HFSS and are achieved as the initial values in the
subarray design.

Secondly, the structural parameters of a single slot opti-
mized in the previous step are adopted as the initial values
in the design of the 1 × 4-element subarray, where four slots
with identical spacing are alternatively arranged on the left
and right sides of the waveguide axis. Due to the week
mutual couplings among those 1-D four slots, the normal-
ized equivalent admittance of a single slot slightly deviates
from 0.25, while the normalized equivalent admittance of
the 1 × 4-element subarray slightly deviates from 1 as well.
Fortunately, thematched subarraywith a single resonance can
be achieved as long as we fine-tune the parameters of slot
offset p and length l.

Thirdly, when the slot offset value is further enlarged and
the slot length is accordingly fine-tuned, a phenomenon of
double resonance is observed in the frequency characteristics
of the subarray’s reflection.

Three types of 1 × 4-element subarrays are designed for
comparison. Design requirements for impedance matching
remain unchanged. They are, the worst values of |S11| at
the center frequency are set at −10, −15, and −20 dB,
respectively. As listed in Table 2, the parameters of p and
l are mainly optimized to satisfy different design criteria.
As the design results, the simulated reflections of those three
subarrays are summarized in Fig. 6 for comparison. The
matching bandwidths for |S11| < −10, −15, and −20 dB
are achieved as 17.4%, 12.2% and 8.5%, respectively. This
time, by increasing the offset p, the slotted radiating waveg-
uide is overloaded, and the matching bandwidth is enhanced.
By the way, compared to the matched subarray with a single
resonance, the matching bandwidth for |S11| < −15 dB is
improved by 3.6%.
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FIGURE 6. Reflection coefficient |S11| of 1 × 4 radiating slots for different
designs under radiation boundary condition.

FIGURE 7. Simulation models of radiating part under periodic boundary
condition. (a) Without open-cavities. (b) With open-cavities.

TABLE 2. Slot parameters and bandwidths of 1 × 4 radiating slots for
different designs under radiation boundary condition.

B. PERIODIC BOUNDARIES WITHOUT OPEN-CAVITIES
A 2-D array with the mutual couplings taken into account is
under investigation. When simulating in HFSS, two pairs of
periodic boundaries are assumed in the external region of a
subarray, as illustrated in Fig. 7 (a).

The previous design procedures are re-examined here.
At the center frequency, the single slot with an equivalent
admittance of 0.25, and the matched subarray with a nor-
malized input impedance of 1 are achieved in order. After
that, the overload technique is applied to widen the match-
ing bandwidth. The parameters of slot offset p and length
l are optimized and summarized in Table 3. As the design
results, the simulated reflections are summarized in Fig. 8 for

FIGURE 8. Reflection coefficient |S11| of 1 × 4 radiating slots for different
designs under E & H-plane periodic boundary without open-cavities.

TABLE 3. Slot parameters and bandwidths of 1× 4 radiating slots for
different designs under E & H-plane periodic boundary without
open-cavities.

comparison. The matching bandwidths for |S11| < −10,
−12.5, and −15 dB are achieved as 12.3%, 9.4% and 6.3%,
respectively. Due to introducing two pairs of periodic bound-
aries in both E- and H -planes, the matching bandwidth for
|S11| < −15 dB degrades by as large as 2.8%. Consequently,
the introduction of decoupling structures becomes essential
to improve the performance of impedance matching.

C. PERIODIC BOUNDARIES WITH OPEN-CAVITIES
In order to decouple the mutual couplings among slots as
well as to enhance the bandwidth, we introduce a decoupling
structure, ‘‘open-cavity’’ [30], on the top of every radiating
slot. As illustrated in Fig. 7 (b), the open-cavity is surrounded
by metal walls. It is equivalent to interlacing horizontal and
vertical baffles around the slots. The introduction of open
cavity narrows the beamwidth of the slot’s radiation pattern
and physically blocks the electromagnetic wave propagation
close to the ground plane.

Firstly, the single slot model, where two pairs of periodic
boundaries are assumed in its external region, is investigated.
At the center frequency, the three dimensions of the open-
cavity are optimized to achieve the active-admittance of a
slot lying in a 2-D array identical to the self-admittance
of the same slot lying in a half-free space, while the slot
structural parameters remain unchanged. It should be noted
that introducing identical cavities for all slots may function
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FIGURE 9. Reflection coefficient |S11| of 1 × 4 radiating slots for different
designs.

FIGURE 10. Simulation models of 4 × 4-element arrays with and without
open-cavities.

well since the open-cavity effectively decouples the mutual
couplings among the slots in a 2-D array.

Secondly, the optimized open-cavity is adopted in the
1 × 4-element subarray as illustrated in Fig. 7 (b), where
two pairs of periodic boundaries are reserved in HFSS sim-
ulation. The parameters of slot offset p and length l listed
in Table 3 are adopted as the initial values and are fur-
ther fine-tuned. The structural parameters of slot are sum-
marized in Table 4. Meanwhile, the three dimensions of
the open-cavity are fine-tuned as well to maximize the
matching bandwidth and the dimensions of the open-cavity
is 21.04 mm × 16.08 mm × 11 mm. The reflections of
1 × 4-element subarrays with and without open-cavities are
reproduced in Fig. 9 for better comprehension. According
to introducing open-cavities, the matching bandwidth for
|S11| < −15 dB recovers to 12.6%, which is superior
to that of the 1 × 4-element subarray adopting radiation
boundaries. It follows that, when the three dimensions of
the open-cavity are appropriately designed, the cavity-loaded
radiating slots lying in a 2-D array operate equivalently to
those slots radiate directly into the half-free space. In other
words, the open-cavity effectively decouples the mutual cou-
plings among radiating slots and further enhances the band-
width to some extent.

V. WIDEBAND DESIGN OF 4 × 4-ELEMENT ARRAYS
The wideband designs of 1 × 4-element subarrays of both
coupling and radiating slots have been investigated in detail.
By applying the overload technique, wideband 1× 4-element

FIGURE 11. Reflection coefficient |S11| of 4 × 4-element subarrays with
periodic boundaries.

FIGURE 12. Reflection coefficient |S11| of 4 × 4-element arrays with
radiation boundaries.

subarrays have been successfully achieved. After that, a
4 × 4-element array is under development and is constructed
by combining the abovementioned 1 × 4-element subarrays.
As discussed in other literature, the infinite array model
associated with the periodic boundary conditions is appro-
priate for realizing a 2-D array with a number of elements
larger than 8 × 8. However, especially in a small 2-D array,
the mutual coupling effect becomes more critical, since the
different element lying in different locations suffers from
various mutual coupling effects. Hence, the design of a small
2-D array becomes more challenging [15]. It is worth noting
that the decoupling structure may play a more crucial role
in realizing a small 2-D array. Besides, the applicability of
the overload technique needs further examination in such a
small 2-D array. The end-fed 4 × 4-element arrays with and
without open-cavities are illustrated in Fig. 10. Here, both
radiation boundaries and periodic boundaries are assumed
in the external regions to examine the effectiveness of both
overload technique and decoupling structure.

Firstly, the periodic boundaries are assumed in the exter-
nal region of the 4 × 4-element subarrays with and with-
out cavities, which are to be adopted in a large 2-D array.
As the initial parameters, the corresponding 1 × 4-element
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FIGURE 13. Measured and simulated radiation patterns for the 4 × 4-element array under radiation boundary in E-and H-planes. (a) E-plane at
9.1 GHz. (b) E-plane at 9.5 GHz. (c) E-plane at 9.9 GHz. (d) H-plane at 9.1 GHz. (e) H-plane at 9.5 GHz. (f) H-plane at 9.9 GHz.

TABLE 4. Slot parameters and bandwidths of 1 × 4 radiating slots for
different designs.

subarrays of both coupling and radiating slots designed
above are combined together. Their parameters are fine-tuned
again using HFSS. By applying the overload technique, the
4 × 4-element subarrays with and without cavities are opti-
mized for wideband operation. The frequency characteristics
of their reflections are summarized in Fig. 11 for comparison.
The matching bandwidth for |S11| < −15 dB is only 5.1%
for the 4× 4-element subarray without cavities. On the other
hand, the corresponding bandwidth is enhanced to 11.3%
when loading open-cavities above the 4 × 4-element sub-
array. The phenomenon of triple resonance is achieved by
fine-tuning the resonant frequencies of feeding and radiat-
ing subarrays. It is evident that the open-cavities effectively
decouple the mutual couplings in the 4× 4-element subarray,
assuming the periodic boundary condition.

Secondly, the small 4× 4-element arrays with and without
cavities are designed for wideband operation. This time, radi-
ation boundaries are assumed in the external region. Similar
design procedures illustrated above are re-followed, and the

structural parameters of both coupling and radiating slots are
fine-tuned in HFSS. The reflections of the 4 × 4-element
arrays with andwithout cavities are summarized in Fig. 12 for
comparison. The matching bandwidth for |S11| < −15 dB is
as small as 3.8% for the 4× 4-element array without cavities,
and the corresponding bandwidth is enhanced to 11.1%,when
loading open-cavities above the 4 × 4-element array. There-
fore, the decoupling effect of open-cavities is remarkable
and appropriate for designing small arrays. Meanwhile, the
matching bandwidth of 11.1% for the array under the radi-
ation boundary condition is comparable with that of 11.3%
for the subarray under the periodic boundary condition. It is
verified from another perspective that the open-cavities do
effectively decouple the mutual couplings in either small or
large 2-D arrays.

Moreover, the simulated field distributions over the array
aperture are examined as well. According to introducing
the open-cavities, the uniformities in both amplitude and
phase distributions are improved significantly. A wideband
cavity-loaded 4× 4-element array with uniform aperture dis-
tribution is achieved in terms of not only impedancematching
but also radiation patterns.

In consideration of antenna measurement, the transi-
tion from an SMA connector to the standard waveg-
uide WR-90 is designed using HFSS. The cavity-loaded
4 × 4-element array fed through an SMA connector is also
analyzed by HFSS. The radiation patterns in both E- and
H -planes are summarized in Fig. 13. At the center fre-
quency, the main-beams in both E- and H -planes point
in the boresight direction. The first sidelobe levels are
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FIGURE 14. Measured and simulated reflection coefficient |S11|
of 4 × 4-element array.

−12.5 dB and −13.0 dB in the E- and H -planes, respec-
tively. It follows that a uniform excitation is achieved. The
half-power beamwidths are 16.9 and 18.5 degrees in the
E-plane andH -planes, respectively. Due to the end-feed con-
figuration as well as the long-line effect, the main-beamsmay
slightly tilt from the boresight when the operating frequency
deviates from the center frequency. The simulated antenna
reflection is shown in Fig. 14. The matching bandwidth
for |S11| < −15 dB is as large as 11.1%. The simulated
directivity and realized gain are summarized in Fig. 15. The
bandwidth for the antenna efficiency higher than 70% is about
10.4%. Hence, the designed 4 × 4-element array behaves in
widebandmanners in terms of impedancematching, radiation
patterns, directivity, and realized gain.

VI. FABRICATION & MEASUREMENT
Finally, the designed antenna is fabricated and measured. The
3-D printing technology has attracted considerable attention
in recent years because of its low cost, flexibility, and rapid
prototyping. The test antenna is fabricated by direct metal
laser sintering (DMLS), which synthesizes metallic parts
from metal alloy powder. It is characterized by the advan-
tages of directly manufacturing metal and complex compo-
nents with a wide selection of metal materials. At present,
the DMLS technique has been successfully applied to fab-
ricating waveguide slot arrays [31]–[34]. The antenna effi-
ciency as high as 80% can be achieved in themicrowave band,
and it may degrade to some extent in the millimeter-wave
band. The photograph of the test antenna fabricated byDMLS
of the aluminum alloy powder is shown in Fig. 16, where the
antenna dimensions are also included. The processing cycle
time and cost are respectively about one week and 150 US
dollars. The antenna is fed by a coaxial cable through a SMA
connector designed above.

The measured and simulated radiation patterns in both
E- andH -planes are included in Fig. 13 for comparison. As a
wideband design, the performance of sidelobe levels in both
E- andH -planes are very stable. A relatively good agreement
between the simulated and measured results is observed. The

FIGURE 15. Measured and simulated directivity and realized gain of 4 ×
4-element array.

FIGURE 16. Photographs of the test antenna.

measured reflection is included in Fig. 14 for comparison.
The envelopes for both measured and simulated reflections
are similar to each other, while their resonant frequencies are
close to each other. A small discrepancy may be caused by
fine-tuning the inner conductor length during the experiment.
The measured reflection degrades at the frequency of about
9.4 GHz. The matching bandwidth for the overall measured
reflection below −12.5 dB is about 12.4%. The measured
directivity and realized gain are included in Fig. 15 for
comparison. The measured maximum aperture efficiency
of 96.2% with the corresponding directivity of 20.1 dB is
achieved at the frequency of 9.6 GHz. The measured max-
imum antenna efficiency of 92.8% with the corresponding
realized gain of 20.0 dB is also achieved at the frequency of
9.6 GHz. A slight frequency shift is observed in Fig. 15. Due
to our investigation, it is mainly due to machining errors. The
bandwidth for the antenna efficiency higher than 70% is about
9.5%. By the way, the conductivity and the surface roughness
for the test antenna contribute to the higher measured con-
ductor loss compared with the simulated one in HFSS, where
the material of pure aluminum is assumed. Consequently,
we achieve the wideband 4 × 4-element array applicable
in the wideband SAR and wireless communication systems.
Higher antenna gain can be easily implemented by combining
the 4× 4-element subarray with a partially corporate feeding
circuit.
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Recently, a radial line slot array (RLSA) antenna based
on the non-uniform radial TEM waveguide achieved a 3-dB
gain bandwidth of as high as 27.6% [35]. The introduction of
non-uniformity in the waveguiding structure plays a key role,
and may provide us with an opportunity to enhance the array
bandwidth further.

VII. CONCLUSION
Two techniques have been introduced in the wideband design
of series-fed waveguide slot arrays. The overload technique
is adopted first in the standing-wave fed 1 × 4-element
arrays of both coupling slots and radiating slots. Their sim-
ulated bandwidths for |S11| < −15 dB are enhanced to
8.1% and 12.2%, respectively. However, the effects of mutual
couplings among radiating slots significantly degrade the
bandwidth performance. The open-cavities functioning as the
decoupling structures are additionally introduced above the
radiating slots. The bandwidth of the 4 × 4 radiating slots
under the periodic boundary condition successfully recovers
from 5.1% to 11.3%. For demonstration, a 4 × 4-element
array is designed in the X-band, and is fabricated by Direct
Metal Laser Sintering technique. The measured bandwidths
for |S11| < −12.5 dB and for the antenna efficiency higher
than 70% are as wide as 12.4% and 9.5%, respectively. The
validity of those wideband design techniques is verified.
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