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ABSTRACT The study of structural controllability of control systems is a crucial property in the design
and analysis of complex networks as well as networks which require a control relationship between nodes.
The fundamental aim of attack vulnerability research is to safeguard electric power networks along-with
their control systems as part of critical infrastructure systems. Such a system may have its structural
control undermined or co-opted to hinder or hijack control if the entire network system is already known
and understood by an attacker. A significant focus on the graph-theoretical interpretation of Kalman
controllability has emerged as a concept linked to structural controllability that offers a powerful abstraction
for understanding the structural properties of a control network and its critical elements. The determination
of driver node sets that can monitor the whole network is therefore enabled, although it is a W[2]-hard
problem identifying these nodes. Indeed, problematic computational complexity is a feature of the various
extant driver node identification techniques. Accordingly, this paper is highly motivated to adopt the power
dominating set approach to explore how directed Erdés-Rényi networks are influenced by targeted iterative
multiple-edge removal, in addition to the assessment of its effects on the robustness of network controllability

from multiple structural vulnerabilities.

INDEX TERMS Structural controllability, network robustness, attack models, cyber-physical systems.

I. INTRODUCTION

The studies on securing networked control systems located
within natural, economical and man-made engineered sys-
tems have attracted many researchers from both fields of
network science and control science [1]. In the viewpoint
of complex networks, individuals comprise the nodes, whilst
the connections they share act as the edges. Driver nodes in
electric power networks, for instance, can constitute control
terminal units that guide industrial sensors or actuators. Mali-
cious attacks can remove edges, which can lead to the vio-
lation of real-time boundaries. Thus, the redistribution loads
across the whole network can enlarge the load of some other
edges, which may be more than they can handle. The network
control can be deteriorated as its observability experiences
substantial reduction. Consequently, a range-based attack on
edges represents a significant concern in control systems
[2]-[4]; if such attacks are not guarded against, the attacker
can create more disruptions. This attack scenario could
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leave two states of the network unable to connect in a
time-dependent input. As a result, the control robustness of
a network in safeguarding against the failure of any integral
components is a significant issue in relation to the opera-
tion of a complex network [1]. This issue has become a
further considerable problem in network controllability and
its robustness, which has been broadly studied, in particular
following the examination put forward by Lin [5] on struc-
tural controllability.

To design and maintain a networked system under con-
trol, two structural properties of the dynamical systems have
been well established as observability and controllability.
However, the focus on substantial complex systems and net-
works as the environment for these concepts has renewed the
researchers’ interest recently [6]—[8].

Kalman [9] initially considered state controllability and
observability as properties for linear time-invariant (LTT)
systems. Informally, controllability is defined as the abil-
ity to derive the requisite configuration from an arbitrary
configuration in a finite number of steps. Linear network
models are the specific initiation point in the study of network

VOLUME 9, 2021


https://orcid.org/0000-0002-9822-7080
https://orcid.org/0000-0003-4448-5698

B. Alwasel: Simulating Robustness of Structural Controllability for Directed Networks

IEEE Access

controllability. Therefore, the focus of this paper is a lin-
ear time-invariant system, with taking into consideration the
following equation representing this system:

%(t) = Ax(t) + Bu(t), x(to) = xo (1)

where x(t) € R" is the state vector at time ¢, u(t) € R™ is
the input vector through which network dynamics may be
influenced; A is the state matrix of the system’s representative
network, while the interacting components are indicated by
every non-zero input. B € R is the input matrix (m < n)
stipulates the set of nodes controlled by a time-dependent
input vector u(t) = (u1(t), . .., u,(¢)), with the requisite state
forced by this. The system in equation (1) is controllable if
and only if:

rank [B, AB,A’B, ..., A" 'B]=n )

To determine whether an LTI system is controllable or
observable, one could verify the rank of the constant control-
lability or observability matrix of the system, also known as
the Kalman rank condition for controllability or observabil-
ity [9]. However, the inappropriateness of the Kalman rank
condition is apparent from identifying precise system param-
eters in an applied context. Consequently, a graph perspective
concerning controllability analysis was offered through Lin’s
notion of structural controllability, which considers network
or system parameters and can resolve this challenge [5]. The
seminal work by Liu et al. proposed that a bipartite graph
used for conversion of the structural controllability problem
into a maximum matching problem [10]; this also helps to
identify the necessary minimum number of driver nodes (Np)
or the minimum number of inputs required to control a net-
work by using a minimum inputs theorem. Before stating the
relevant theorem, some fundamental definitions are required
to describe the network structure characteristics:

Definition 1 (Stem and Bud, [5]): Given a directed graph
G(A,B) = (VA U VB, Ep U EB), a stem is a directed path
originating from any node of Vg, while a bud is a directed
cycle with an additional edge that ends, but does not begin,
in a vertex of the cycle; this edge is known as the distinguished
edge.

Definition 2 (Dilation, [5]): Given a digraph G(A, B) =
(VAU VB, EAUEB), G(A, B) contains a dilation if and only if
there is a subset S C Vj such that |S| > |T(S)|, where T(S)
is the neighbourhood set of a set S representing the tails of
edges whose heads are all vertices of S.

Definition 3 (Inaccessibility, [5]): Given a digraph G
(A,B) = (VA U Vg, Ex U Ep) and a state node v; of Vy,
node v; is inaccessible, if and only if there are no directed
paths that reach v; from the input vertices of Vg.

Definition 4 (Cactus, [5]): A cactus is a subgraph that can
be defined recursively as follows: A stem is a form of cactus,
thus, given a stem Sp and buds By, By, ..., B;, then SoUB{ U
B, U...UBy is acactus if for every i (1 < i <) the initial
vertex of the distinguished edge of B; is not the top of Sy and
it is the only vertex that belongs simultaneously to B; and
SoUBUBU...UB;_;.
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Theorem 1 (Lin’s Structural Controllability Theorem, [5]):
Given system (A, B) described by equation (1) is said to
be structurally controllable if a linear control system (A, B)
is structurally controllable, where a directed graph G(A, B)
does not include any inaccessible node or dilation such that
the G(A, B) is spanned by a cactus.

Nevertheless, this paper concentrates on the similar power
dominating set (PDS) problem, which Haynes et al. [11]
developed to build on the PDS. The principal reason for this is
the structure of electric power networks, and these networks
requiring the provision of efficacious control. Adopting the
PDS problem or the maximum matching problem for bipartite
digraphs is the requisite initial stage so that identification
of the minimal set of nodes Vg in G(A, B) = (V, E) from
a given G(A,B) = (V,E) is possible, as well as to use
observed nodes Va and driver nodes Vp to convey a graph-
ical design [10]. Each of the problems undertakes a node-
by-node analysis of the whole graph, in addition to assessing
the degree of dominance for the nodes in relation to their
neighbourhood. The observed nodes, denoted as O, and the
minimum subset of driver nodes (Np) are two crucial sets
that can be derived from this process, with a minimum of one
driver node involved in their control O <— V \ Np.

The contribution of this paper is, therefore, to investigate
the behaviour of network controllability in directed Erdds-
Rényi (ER) networks when subject to multi-round edge
removal in various scenarios using the power dominating set
problem. The robustness of structural controllability over a
directed ER network and its observability before and after
an attack is then assessed by simulating the attack scenarios
proposed here. In terms of practicality, the findings shown
in this paper are significant. They can be applied to evaluate
vulnerability analysis on edge attacks (e.g. transmission lines
or communication links joining two electrical sensors or
actuators in remote monitoring real-world systems such as
electrical power network control). The restoration strategies
under perturbations are not the focus of this paper.

The remaining sections of the paper are structured as
follows. Section II gives a brief review of the relation-
ship between structural controllability and power dom-
inance including a number of recent studies on the
attack vulnerability of network controllability. Section III
describes the network model underpinned by diverse types
of multi-round edge attack strategies on robustness. Subse-
quently, Section IV details how such disturbance strategies
impact network controllability and observability, discussing
the quantitative analysis and findings of the network control-
lability under vulnerability for directed ER networks. Finally,
Section V concludes the paper.

Il. STRUCTURAL CONTROLLABILITY AND POWER
DOMINATION

Equation (2) shows the controllability rank condition, which
provides a thorough framework for the design and analysis
of control systems. Thus, the computation of this criterion
in an arbitrary network requires knowing the weight of each
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link, that is either not known for many real networks or is
time-dependent and approximated. Nevertheless, should the
weights be made clear, a brute-force search is still needed
to calculate Kalman’s rank criterion for (2¥ — 1) clear-cut
combinations that can prove costly for large complex
networks.

Given a system described by equation (1), the matrix A
indicates the network topology, while the matrix B is the input
matrix, which shows the nodes where the external controllers
are injected into the entire network. These nodes are also
referred to as driver nodes (Np) and correspond to the input
vector u. Lin [5] showed that the whole system, denoted as
(A, B), can be illustrated by a directed graph G(A,B) =
(V,E) with V = V U Vp is the set of vertices and £ =
EA U Ep is the set of edges.

Acquiring the minimal set of Vg (driver nodes) from a pro-
vided G(V, E) requires the application of the PDS problem or
the maximum matching problem for bipartite digraphs. Even
though the legitimacy of the maximum matching method for
extracting Np has been evidenced through other studies [1],
[10], [12]-[14], the PDS problem is the concentration of
this paper. The PDS problem was originally suggested by
Haynes et al. [11] to study electric power networks and the
expansion of the well-known Dominating Set (DS) prob-
lem. Ultimately, Haynes et al. first devised OR1 and OR2
as the key observation rules, subsequently simplified by
Kneis et al. [15], which primarily support the extraction of
Np through the PDS:

[OR1] A vertex in Np observes itself and all of its
neighbours.

[OR2] If an observed vertex v of degree d > 2 is adjacent
to d — 1 observed vertices, then the remaining unobserved
neighbour becomes observed as well.

It is possible to deduce from this definition that ORI is
included within the definition of OR2, implying that the
subset of nodes that conform to OR1 is also part of the subset
of nodes conforming to OR2. Therefore, compliance with
each of the rules is necessary for control, while any topo-
logical change may indicate an error in OR1-2 compliance
and, subsequently, the system’s deterioration. Furthermore
and notably, application of the two rules to the dual prob-
lem of controllability is being undertaken here, despite their
characterisation as observation rules. Also, it could be noted
that the only distinction between PDS and DS problems is the
presence of OR2, and DS is proven to be
textnp-complete for general graphs with a polynomial-time
approximation factor of ®(logn) [16]. The PDS problem,
on the other hand, is a generalization of the DS problem, and
Haynes et al. have shown that it is still
textnp-complete for general graphs and valid for certain
specific types of graphs such as bipartite graphs and
chordal graphs [11], [17]. Similarly, a power dominating
set with the minimum cardinality of a given digraph is also
NP-complete, as shown by Aazami and Stilp [18] and cannot
be approximated better than NP € DTIME (n?>"08(),
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A. CONTROLLABILITY OF NETWORKS UNDER
VULNERABILITY

When the network distribution and its power domination are
exposed to vulnerability attack, an adversary may disrupt a
distributed system or prevent defenders from recovering full
or partial control of the network; this provides a powerful
incentive to analyse vulnerabilities on robustness control-
lability when network edges are susceptible to malicious
attacks or random failures. Various recent studies on complex
networks subjected to malicious attacks and random failures
have sought to measure the attack vulnerability of numer-
ous complex network systems, such as real-world networks
where removal of some of the edges or nodes has occurred
[19]-[21]. Pu et al. investigated how cascading failures and
attacks impacted directed Erdds-Rényi and scale-free net-
works in relation to network controllability [1]. Cascad-
ing overload failures as a result of the removal of vertices
because of random or intentional attacks was assessed by
the researchers in [22]; a network part or utter collapse
can result. The robustness of network controllability on a
number of network topologies in the presence of vertex
removal was investigated by [23], as well as the effect of
several non-interactive attack types on the PDS and under-
lying graphs. The researchers also considered range-based
attacks on edges, which are interesting because edges have
been overlooked through the emphasis on attacks on nodes in
most complex network security research.

Additionally, a dynamic programming algorithm based on
recent work by Aazami and Stilp as well as Guo et al. [17],
[18] was designed to compute PDS in the context of structural
controllability recovery after a malicious attack on network
vertices [24]. This approach is based on a nice tree decompo-
sition for a given ER random digraph in a LTI model, where
the worst-case time complexity is O(nck), and average-case
time complexity is O(log(cX)). As a result, we proposed a
novel power dominating set algorithm that recovers a control
network by re-using the remaining PDS of the original where
possible [25]. This approach based on depth-first search
yields an improved average-case complexity over previous
work in [24], while the worst-case time complexity remains
unchanged. Following that, using a block decomposition on
the input digraph, a restoration method for reconstructing a
minimal PDS, when the PDS or its dependent nodes partially
compromised, was studied [26]. Besides, Alcaraz et al. pro-
posed three strategies to efficiently restore structural con-
trollability of general power-law and scale-free digraphs
following attacks [27]. The authors of [28] studied the ability
to recovers the minimum-input structural controllability of
digraph in linear time by identifying a maximum matching
without recomputation. They also devised an approach to
efficiently recovering structural controllability of the residual
system following malicious attacks or failures by introducing
a minimum set of edges into a given system network [29],
as well as the classification of the effects of removing single
node driver on controlling residual network [30].
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IIl. NETWORK AND ATTACK MODELS

This section covers the graph class as well as several attack
strategies. The network model is built on a directed ER ran-
dom graph since it is one of the oldest and most well-studied
network models, and is widely used to model a range of com-
plex networks, allowing for the analysis of various network
processes such as cascading failures.

A. NETWORK MODEL

To examine the robustness of controllability for directed ER
networks under vulnerability, the random directed graphs
G(V, E) are studied, provided by Erdés-Rényi random graph
class ER(n, p) which is defined as follows [31]:

Definition 5 (Erdds-Rényi Random Graph): The ER(n, p)
model has two boundaries, n and p. Here n is the number
of vertices of the graph and p is the edge probability. The
random connection of nodes allows for the construction of a
graph. The edges featured in graph G are determined inde-
pendently with the edge probability p so that the pairs of
vertices u, v € n connect with an identical edge probability.
Equally, the graphs with n nodes and M edges have the same
M1 — p)@~M) probability.

For the network model, it is assumed that a given input
network G has an arbitrary set of nodes V and a set of edges E,
with no self-loops or duplicate edges (i.e. two edges with both
the same tail vertex and the same head vertex). Subsequently,
networks with small (> 100) and large (< 2000) numbers of
nodes are modelled, in which any two nodes are adjacent with
independent probability p for each node pair. The resulting
instance of ER(n, p) is a weakly connected graph, where the
underlying undirected graph is connected and without its
isolated vertices (i.e. a vertex with in-degree and out-degree
zero, denoted here as Visoared)-

TABLE 1. The simulation results of the computation of PDS (or set of Np)
for several directed ER network sizes with different small connectivity
probabilities.

N P E PDS Neonnected Visolated
100 0.031 153 23 72 5
500 0.0050 624 142 313 45
1000  0.0025 1249 294 615 91
2000  0.0012 2399 582 1233 185

Since several real-world networks such as real power net-
works are sparse, different network sizes were generated by
an ER model with 100, 500, 1000 and 2000 nodes and with
several low connectivity probabilities. Based on the previ-
ous work [32], the number of PDS (a set of driver nodes)
for the directed ER networks presented here was computed,
as shown in Table 1, as well as the result of the graphi-
cal representation of network controllability for a network
of 500 nodes as an example (see Figure 2). This algorithm
used the structural controllability abstraction, which offers
an equivalent formulation for identifying minimum driver
node subsets. It relied on the PDS formulation to traverse
the entire network to search for the best driver candidates Np
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TABLE 2. Network connectivity (C) and control diameter (D) before and
after further rounds of attacks.

Threa}t N
Scenarios
100 500 1000 2000
C|D C|D C|D C|D
Before Attack | 6 | 24 | 4 9 5 17 |5 6
1-AR 0 0 0 0 0 0 0 0
Before Attack | 3 2 3 7 6 | 42| 5 5
TS, 2-AR 0 0 0 0 0 0 0 0
Before Attack | 2 3 3 4 4 5 4 5
3-AR 0 0 0 0 0 0 0 0
Before Attack | 2 3 4 9 4 6 6 | 33
4-AR 0 0 0 0 0 0 0 0
Before Attack | 6 | 24 | 4 9 5 17 | 5 6
1-AR 1 5 1 9 4 |17 | 3 6
Before Attack | 3 2 3 7 6 | 42| 5 5
2-AR 1 1 2 5 5142 3 4
TSs
Before Attack | 2 3 3 4 5142 4 5
3-AR 1 3 2 4 2 | 41 1 5
Before Attack | 2 3 4 9 4 17 | 6 | 33
4-AR 1 3 2 6 1 1312 |17
Before Attack | 2 2 1 1 1 1 2 6
1-AR 1 1 0 0 0 0 1 6
Before Attack 1 1 2 2 1 1 2 3
TS5 2-AR 0 0 1 1 0 0 1 3
Before Attack 1 1 1 1 2 2 1 5
3-AR 0 0 0 0 1 2 0 0
Before Attack | 2 3 5 33| 2 1 1 1
4-AR 1 3 3 4 1 1 0 0
Before Attack | 2 | 24 | 2 9 2 7 2 | 44
1-AR 1 8 1 9 1 4 1| 44
Before Attack | 2 8 2 133 2|42 |2 5
2-AR 1 8 11|33 11421 4
TSy
Before Attack | 2 8 2 4 2 17 | 2 6
3-AR 1 8 1 2 1 17 1 6
Before Attack | 2 3 2 4 2 3 2 3
4-AR 1 3 1 1 1 1 1 3

(i.e. PDS) that met the OR1 and OR2 conditions, as shown
in Pseudocode 1. These obtained driver nodes are not unique
and are achievable by applying the two observation rules for
controllability as shown in the two observation rules OR1 and
OR2 above, where OR1 involves Np controlling all vertices
in V \ Np by the application of OR2. The computational
findings in Table 1 illustrate that as the number of nodes in
the original networks increases, the minimum number of PDS
increases as well, owing to the networks’ low connectivity
probabilities, which reduce the total number of edges in the
networks.

B. ATTACK STRATEGIES

So as to analyse the vulnerability of controllability under
directed ER networks in terms of network connectivity and
observability (as the dual of controllability), the paper inves-
tigates the behaviour of network controllability when a net-
work is exposed to a range of edge attacks that might damage
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FIGURE 1. The implications of eliminating a driver node or its dependent are identified by calculating the number of removed
edges when are exposed to multiple-round attacks (TS;, TS,, TS5 and TS;).

a control network by eliminating its existing driver nodes or
isolating the network completely or partially by deleting all
or some edges from the network. Here, it can be supposed
that the attackers are familiar with the structural control of
the deployed networks and exploit existing vulnerabilities to
execute malicious removals of edges from nodes in the cur-
rent Np or dependent nodes. The following threat scenarios
(denoted here as TS;) are based on the above mentioned type
of attack:

TS;: An adversary targets a node in Np with the largest
out-degree (i.e. the number of outgoing edges linking to the
most connected nodes) by iterative removal of all its edges.

TS»: Repeatedly attacks structural controllability by delet-
ing a few (but not all) edges from a vertex in Np with
maximum out-degree.

TS3: Randomly deletes some (but not all) edges from a
vertex within Np of the minimum out-degree.

TS,4: Continuously removes one edge at most from vertices
not within Np in each attack round.

IV. DISCUSSION
This section analyses the vulnerability of structural control-
lability for directed ER networks with respect to the attack
scenarios defined in Section III through Matlab simulations. '
Under multi-round edge removal attacks, robustness and vul-
nerability are assessed from two perspectives:

1) degree of structural connectivity, and

2) degree of structural observability.
For structural connectivity, edge connectivity of driver nodes
and their control diameter are considered in addition to
disconnected components. For observability, the remaining

IThe full code is available in APPENDIX.
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observable nodes after an attack as a percentage (OR1)
are computed. For the former perspective, the paper intro-
duces certain connectivity metrics in the context of structural
controllability:

Definition 6 (Edge Connectivity): Edge connectivity, den-
oted by (C), is the minimum number of directed out-edges
needed to disconnect the dependent nodes from a node within
driver nodes (i.e. PDS).

Definition 7 (Control Diameter): Control diameter, deno-
ted by (D), is defined as the greatest length of the shortest
dependency path between a node in driver nodes (i.e. PDS)
and its dependent nodes, such that the edges of the path are
directed from a node within PDS to a leaf (child) node.

Definition 8 (Disconnected Component): Let u € PDS,
anode v is said to be controlled if there is a directed path from
u to v. Each directed path that is incident to « is a dependency
path. Dependency paths can be defined as paths where a
sequence of nodes is directed from u to v as a connected com-
ponent. Therefore, the deletion of edges in a dependency path
results in the emergence of new disconnected components,
denoted by (DCC), see Figure 6.

A. EXPERIMENTAL RESULTS

The simulation is carried out as follows. It is assumed that
adversaries with pre-existing knowledge of structural con-
trol of the deployed networks exploit existing vulnerabili-
ties to perform malicious removals of edges from nodes in
the current driver nodes Np or their dependent nodes. Here
four attack rounds (referred to as i-AR) are applied based
on different threat scenarios (TS, TS, TS3 and TS4) as
specified in subsection III-B. The findings of the threat model
against various directed ER network sizes are also depicted
graphically in Figures 3-6 (see APPENDIX).
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(a) An original network of 500 nodes, including its
isolated vertices and p = 0.0050 before an attack.

(b) The structurally controlled network after the
computation of driver nodes.

“'\> < o

(c) The representation of each driver node Np with
its dependent nodes. The network is dominated by
a minimum set of driver nodes, which are marked
in green, while the dependent nodes controlled by

Np are marked in blue, with a dependence path
consisting of a sequence of dependent nodes.

FIGURE 2. Illustrations of controlling network.

Consequently, the results show that TS; attacks are more
efficient on network structural controllability than the other
threat scenarios. This result is evident in Table 2, where
edge connectedness is completely destroyed because a node
in Np with the highest out-degree is targeted by iterative
removal of all its edges. As seen in Table 3, this attack results
in a significant reduction in observability, and therefore,
the appearance of new disconnected components, in which
the affected nodes (denoted as AN) are isolated from a net-
work, as shown in Table 4. Furthermore, the degradation of
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TABLE 3. Observation rates after perturbations or attacks.

Threat AR N

Scenarios 100 500 1000 2000
1-AR 0.53 0.95 0.95 0.99

TS, 2-AR 0.48 0.91 0.81 0.98
3-AR 0.41 0.89 0.80 0.97

4-AR 0.35 0.85 0.78 0.93

1-AR 0.60 0.97 0.99 0.99

TS, 2-AR 0.56 0.96 0.99 0.99
3-AR 0.53 0.95 0.90 0.98

4-AR 0.52 0.93 0.87 0.96

1-AR 0.97 0.99 0.99 0.99

TS5 2-AR 0.95 0.99 0.99 0.99
3-AR 0.93 0.98 0.99 0.99

4-AR 0.92 0.91 0.99 0.99

1-AR 0.75 0.99 0.99 0.98

TS, 2-AR 0.74 0.98 0.98 0.98
3-AR 0.72 0.97 0.98 0.98

4-AR 0.70 0.97 0.98 0.98

TABLE 4. The number of affected nodes (AN) along with disconnected
components (DCC) per attack round in each threat scenario.

Threajt N
Scenarios
00 500 1000 3000

i-AR | AN | DCC | AN | DCC | AN | DCC | AN | DCC
AR [ 4| 7 221 5 (4] 6 19 6

7, |2ZAR[S [ 4 [16[ & (18] 7 [ 151 6
3AR[ 7T 3 11 4 121 5 165
AAR[ 5 3 [ 5 (13 5 B3 7
AR 38 | 5 |12 3 [ 4 1 [ 9 2

Ty |ZAR[3 [ 2 [ 7 [ T [T [ T [6[2
3AR[ 3 [ 1T [ 2 T [ 3 [0 3
AAR[ T [ T [0 2 28] 3 [ 38 4
AR 2 | T (2 1T [ 21 1 [ 2] 2
QAR 2 T 2 T 2 T [ 2712

TS3 |3 AR T T T2 T [T T [ 672
AAR[ T [ T (3@ 2 T T [ 212
AR |23 1T [ 6 1T [ 3 1T [ 1
QAR T [ T 21 T [ 8 T 31

TSa |3 AR T T T2 T [ 4 T [ 31
AAR[ 2 T 3 T 2 T [ 111

network controllability can lead to the entire network mal-
functioning if targeted repeatedly by TS;. In the worst case,
if this attack pattern is repeatedly executed until all nodes in
the set of driver nodes and all dependent nodes are eliminated,
full destruction of the control network can result. While the
results confirm that TS, can also harm the networks’ connec-
tivity, the damage it causes is not as severe as that caused by
TS|, as shown in Table 2. Nonetheless, the networks attacked
by TS, become very sensitive in connectivity terms, and the
impact of compromised nodes is noticeable in both small and
large networks when the number of attacks reaches the node
connectivity with the highest out-degree. However, there is
no remarkable change in the connectivity of the networks
when a TS3 attack occurs, as the behaviour of this attack
eliminates some (but not all) edges from a vertex within Np
of the minimum out-degree.

The results obtained also highlight that observability rates
dramatically decrease in small networks when subject to
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(a) (1-AR) (b) 2-AR) (c) 3-AR) (d) (4-AR)

FIGURE 3. The simulation process of network controllability robustness under multiple-round attacks (i-AR). Here, the vulnerability scenario TS, is
applied to a directed ER network of 500 nodes, in which an adversary targets a node in Np with the largest out-degree (i.e. the number of outgoing
edges linking to the most connected nodes) by iterative removal of all its edges. Nodes with (small) red denote uncontrolled nodes which are completely
isolated from a network after an attack, while an attacked driver node (Np) with all of its edges removed is denoted by (big) red node. A vertex in Ny,
that is susceptible to the elimination of a few (but not all) edges is represented by an orange node.

T...-— ) i .. e E “ . . : . . PR , H E
.T--" . . ., E . . - . N e .' RN RN
(a) 1-AR (b) 2-AR (c) 3-AR (d) 4-AR

FIGURE 4. The attack strategy TS, with four rounds of attack is illustrated here, in which a vertex in Np with the highest out-degree is repeatedly
attacked by removing a few (but not all) of its edges.

ST T LI | et | g bt HE R L g T MRS
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D e D e S O
(a) 1-AR (b) 2-AR (c) 3-AR (d) 4-AR

FIGURE 5. Structural controllability of a directed network of 500 nodes is vulnerable to edge deletions based on TS5, in which some (but not all) edges
from a vertex within Np of the minimum out-degree are randomly removed by four attack rounds.
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FIGURE 6. This threat TS, eliminates one edge at most from vertices not belonging to Ny in each attack round (i-AR). Following an attack,
the emergence of disconnected components (DCC) is marked in red.

TS, TS, and TS4, where the network of 100 nodes reached threat scenarios based on TS and TS,, as shown in Table 3.
35% of observability. In contrast, these rates remain slightly This means that structural observability is influenced not only
decreased for the large networks, with the exception of the by the structure of driver nodes or their dependent nodes, but
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profile on
clear all

%%% 10 generate a directed ER graph, two boundaries n and p must be
defined, where n is the number of vertices and p is the edge
probability %%%

")

n=input('Enter Num of Nodes (n)=
(p)=")

pro=input('Enter Probability

num_e=prox*n#(n—1)/2;
num_e=round(num_e) ;
r=zeros(n);
IND=randperm(n*n,n*n);
y=0;
for u=1:length(IND)
[I,]] = ind2sub([n,n],IND(u));
Li=sub2ind([n,n],J,I);
y(u)=IND(u);
y(y==Li)=[1];
if length(y(y~=0))==num_e
break;
end
end

e=y(y~=0);

for i=l:num_e
[I,J] = ind2sub([n,n],e(i));
r(I,J)=1;

end

%%% The Original Graph before Computation PDS %%%

g=digraph(r);
plot(g, 'layout', 'force")

%%% Removing Isolated Nodes %%%

for i=1:n
iso_n(i,1)=sum(r(i,:))+sum(r(:,1));
end
iso_n_num=find(0==iso_n);
new_g=rmnode (g, transpose(iso_n_num));
new_r= full(adjacency(new_g));
nn=size(new_r);n=nn(1,1);

if num_e>0
rr=new_r;
gg=new_g;
a=1

while sum(sum(rr))>0

for i=1:n
emax(i,1)=sum(rr(i,:));

end

pp=find(emax==max(emax))

p=pp(1);

if max(emax)==1 && length(pp)>1

pg_ranks = centrality(gg, 'outcloseness');
p=find(pg_ranks==max(pg_ranks))

p=p(1)

end

s=find(rr(p,:)~=0)
powe{a}=p;
se{a}=s;
rr(:,p)=0;
rr(p,s)=0;
rr(:,s)=0;
gg=digraph(rr)
for i=1:1length(s)
nn_in = nearest(gg,s(i),Inf)
d=distances(gg,s(i),nn_in)
dd=find(d==max(d))

Pseudocode 1. The code illustrates the process of computing PDS for a
given directed ER graph step by step, with the results of the
computational simulation for a network of 500 nodes shown in Figure 2.

also by the behaviour of the attack scenario. As the networks
are also attacked by TS3, their robustness is also evaluated.
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if isempty(dd)==0
[mf,GF] = maxflow(gg,s(i),nn_in(dd(1)), 'augmentpath')
if mf==

m{a,i}= GF.Edges{:,1}
u=unique(m{a,i})
rr(u,:)=0;
rr(:,u)=0;
gg=digraph(rr);
else m{a,i}=[];
rr(s(i),:)=0;
gg=digraph(rr);
end
else
m{a,i}=[1;
rr(:,s(i))=0;
gg=digraph(rr);
end
end
a=a+l;
end

m=reshape(m, [1,1);
m=cell2mat(m);
z=0;
for i=1:1length(powe)
for j=1:length(se{l,i})
x(1,j+z)=powe{l,i}
x(2,j+z)=se{1,i}(1,])
end
z=length(x);
end

x1=nonzeros(x(1,:));x2=nonzeros(x(2,:));
x=[x1,x2];
output=cat(1l,x,m)

for i=1:n
if isempty(find(output==i))==
v(i)=1i;
else v(i)=0;
end
end

v=transpose(nonzeros(v));

power_node=cat(2,cell2mat(powe),v);

s_n=cell2mat(se);

num_of_powernode=length(power_node) ;

cn=unique(output);

for i=1l:num_of_powernode
cn(find(cn==power_node(1i)))=[]

end

controlled_node=cn;

num_of_cn=length(controlled_node);

%%% Representing the Whole Graph with Each PDS (i.e. Driver Nodes)
and its Dependent Nodes %%%

g2=digraph();

g2=addnode(g2,n)

g2=addedge(g2,output(:,1),output(:,2))
num_of_edges=height(g2.Edges);

figure;

h2=plot(g2, 'layout', 'force');

highlight(h2,power_node, 'NodeColor',[0 1 @], 'MarkerSize',4);

%%% The Final Graph after Computation PDS %%%

figure

hl=plot(new_g, 'layout', 'force');

highlight(hl,power_node, 'NodeColor',[0 1 @], 'MarkerSize',4);

highlight(hl,output(:,1),output(:,2), 'EdgeColor',[0 1 O], 'LineWidth
',1.3)

else

figure;

h=plot(new_g, 'layout', 'force');

highlight(h,[1:n], 'NodeColor',[0 1 0]);

end

Pseudocode 1. (Continued.) The code illustrates the process of
computing PDS for a given directed ER graph step by step, with the
results of the computational simulation for a network of 500 nodes
shown in Figure 2.

It is observed that this threat has no considerable effect on
observability even for the network with a small number of
nodes, where observability rates remain high (above 91%
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sel

sel
num
num
num
eff

if

end
num
exc

g3=

P9-
for
suc
end
suc
nod

Pseudoc

%%% Applying Threat Scenarios, denoted by TS %%%
93=g2
eff_n={};

ected_nodes=[];

num_uncnode=[1];
num_redge=[1;
num_rpnode=[];
eff_ns=[];

while(1)

93=g2

eff_n={};
ected_nodes=[];
_uncnode=[];
_redge=[1;
_rpnode=[];
_ns=[1];

sc=input('Enter Type of Scenario:[1,2,3,4] = Zero for Break')

sc==
break;

_exec=input('Enter Number of Executions = ');
_disp=input('Display Each Execution = 1 Yes 2. No ');

for i=l:num_exec

switch sc
case {1,2,3}
pg_ranks = centrality(g3, 'outcloseness');
onlycn=zeros(1,length(pg_ranks));
onlycn(power_node)= pg.ranks(power_node)
if sum(onlycn)==0
display('All Power Nodes are Disconnected')
sel_n=0;
conn_b= 0;dia_b=0;
conn_af= 0;dia_af=0;
else
display('sls2s3"')
maxpowern= find( onlycn==max(onlycn))
maxpowern=maxpowern(1);

[num_uncn,num_re,num_rpn,newgraph,sel_n,eff_node]=scenario(g3,

maxpowern, power_node,sc)
num_uncnode (length(num_uncnode)+1)=num_uncn;
num_redge(length(num_redge)+1)=num_re;
num_rpnode (length(num_rpnode)+1)=num_rpn;
conn_b= outdegree(g3,sel_n);
conn_af= outdegree(newgraph,sel_n);
1=nearest(g3,sel_n,Inf);
dia_b= max(distances(g3,sel_n,1));
12=nearest(newgraph,sel_n,Inf);
dia_af= max(distances(newgraph,sel_n,12));
if isempty(dia_af)==
dia_af=0;
end
if sc==1 || dia_af==0
dis_conncomp=num_redge+1;
sum_disccomp=sum(num_redge)+1;
else
dis_conncomp=num_redge;
sum_disccomp=sum(num_redge) ;
end
sum_disccomp=sum(dis_conncomp);
newgraph
end
case 4
ranks = centrality(g3, 'outcloseness')
n=1:1length(power_node)
IDs{n} = successors(g3,power_node(n))

ID=cell2mat(reshape(sucIDs,[],1))
es=find(pg_ranks~=0)
onlycn=zeros(1,length(pg_ranks))
rms5n=find(pg_ranks==min(pg_ranks(nodes)))
onlycn(nodes)= pg_ranks(nodes)
for k=1:length(rms5n)
if ismember(rms5n(k),sucID)==0
onlycn(rms5n(k))= 0
end
end

ode 2. The main code for running the vulnerability scenarios

(TS1. TS,, TSz and TS,). Note that Pseudocodes 1 and 2 should be

combine

d into a single Matlab file, with the latter placed after

Pseudocodes 1.

in the worst case) after an attack. Since the behaviour of
TS3 targets only a few (but not all) edges of a vertex in Np
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onlycn(eff_ns)=0
onlycn(power_node)= 0
if sum(onlycn)==0
display('All Target Nodes are Disconnected')
sel_n=0;
dia_b=[];dia_af=[];
else
display('s4")
target_node=find(onlycn~=0)
[num_uncn, num_re,num_rpn,newgraph,sel_n,eff_node]=scenario(g3,
power_node, target_node, sc)
num_uncnode (length(num_uncnode)+1)=num_uncn;
num_redge(length(num_redge)+1)=num_re;
sel_pns4=0;
for j=1:length(power_node)
controlled_nodes{j}=nearest(g3,power_node(j),Inf);
if ismember(sel_n,controlled_nodes{j})==1 & sel_n~=0
sel_pns4=power_node(j) ;
end
end
if sel_pns4==0 || sel_n==0
dia_b=0;dia_af=0;
else
l=nearest(g3,sel_pns4,Inf);
dia_b= max(distances(g3,sel_pns4,1));
12=nearest(newgraph,sel_pns4,Inf);
dia_af= max(distances(newgraph,sel_pns4,12));
end
dis_conncomp=num_redge;
sum_disccomp=sum(num_redge) ;
sum_disccomp=sum(dis_conncomp);
g3=newgraph
end
end
eff_n{length(eff_n)+1}=eff_node;
eff_ns=cat(1l,eff_n{1,:});

if sel_n ~=0
selected_nodes(length(selected_nodes)+1)=sel_n;
end

selected_nodes
num_uncnodes=length(unique(eff_ns));
num_redges=sum(num_redge) ;
num_rpnodes=sum(num_rpnode) ;
num_selected_n=length(unique(selected_nodes));
sum_selected_nrep=length(selected_nodes);
pg-ranks = centrality(g3, 'outcloseness');
u=ismember(power_node,selected_nodes);
ul=power_node(find(u==1));
u2=find(pg_ranks(ul)==0);
u3=find(pg_ranks(ul)~=0);
Orang_pn=ul(u3);
red_pn=ul(u2);
if exc_disp==1
figure;
end
if sc==
tit= [num2str(i), ' dia [',num2str(dia_b),',', num2str(dia_af),"' |
discc[',num2str(dis_conncomp),']", 'sum_dcc[ '
,num2str(sum_disccomp),' 1'];
else if sc==5
tit=[num2str(i)];

else
tit= [num2str(i),' conn [',num2str(conn_b),"',"',num2str(conn_af
)R
' dia [',num2str(dia_b),',', num2str(dia_af),' ] discc[',
num2str(dis_conncomp),']", 'sum_dcc[ '...
,num2str(sum_disccomp),' 1'];
end
end

h2=plot(g3, 'layout', 'force'); title( tit);

highlight(h2,power_node, 'NodeColor',[0 1 O], 'MarkerSize',4);

highlight(h2,selected_nodes, 'NodeColor',[1 0.5 0.1 ])

highlight(h2,0rang_pn, '‘NodeColor',[1 0.5 0.1 ], 'MarkerSize',5)

highlight(h2,eff_ns, 'NodeColor','r")

highlight(h2, red_pn, 'NodeColor','r', '‘MarkerSize',5);

unobs_r=(num_uncnodes+num_rpnodes)/ height(g3.Nodes);

obs_r=((length(controlled_node)—num_uncnodes)+(num_of_powernode—
num_rpnodes))/ height(g3.Nodes);

end

end

Pseudocode 2. (Continued.) The main code for running the vulnerability
scenarios (TS;, TS, TS3 and TS,). Note that Pseudocodes 1 and 2 should
be combined into a single Matlab file, with the latter placed after
Pseudocodes 1.

with the minimum out-degree. As shown in Table 3, which
demonstrates observability rates, TS4 also causes only slight
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function [num_uncn,num_re,num_rpn,newgraph,sel_n,eff_nodel=scenario
(g,power_node,all_p,sc)

%%% Applying Threat Scenarios TS1 %%%

if sc==
num_uncn=length(nearest (g, power_node,Inf));
if num_uncn==
num_rpn=0;
else
num_rpn=1;
end
sucIDs = successors(g,power_node);
num_re=length(sucIDs);
rem_e(l:num_re,1l)=power_node;
newgraph=rmedge(g, rem_e, sucIDs);
sel_n=power_node;
eff_node=nearest(g,power_node,Inf);
end

%%% Applying Threat Scenarios TS2 %%%
if sc==2

pg_ranks = centrality(g, 'outcloseness');

onlyp=zeros(1,length(pg_ranks));

onlyp(all_p)= pg_ranks(all_p);
maxp=find(onlyp==max(onlyp))
maxpower=maxp (1)

sucIDs = successors(g,maxpower)
if length( sucIDs) > 1
r=randi(length( sucIDs)—1,1,1

num_rpn=0;

else r=length( sucIDs); num_rpn=1;
end

r2=randperm(length( sucIDs),r)
num_re=r

selectededge=sucIDs (r2)

p(1l:r,1)=maxpower;
newgraph=rmedge(g,p,selectededge)
for i=1:r

uncn{i}= nearest(g,selectededge(i,1),Inf)
end
num_uncn=length(cat(1l,uncn{l,1:r}))+r
sel_n=maxpower;
eff_node=cat(1,selectededge,uncn{l,:})
end

%%% Applying Threat Scenarios TS3 %%%
if sc==

pg_ranks = centrality(g, 'outcloseness');
onlyp=zeros(1, length(pg_ranks));
onlyp(all_p)= pg_ranks(all_p);
if length(find(onlyp~=0))>1
onlyp(power_node)=0;

end

maxp=find(onlyp~=0)

maxpower=maxp (randi(length(maxp),1,1))

sucIDs = successors(g,maxpower)
if length( sucIDs) > 1
r=randi(length( sucIDs)—1,1,1)
num_rpn=0;
else r=length( sucIDs);num_rpn=1;
end
r2=randperm(length( sucIDs),r)
num_re=r
selectededge=sucIDs (r2)
p(1l:r,1)=maxpower;
newgraph=rmedge(g,p,selectededge)
for i=1:r
uncn{i}= nearest(g,selectededge(i,1),Inf)
end

Pseudocode 3. To accomplish the threat scenarios, Pseudocode 2 calls
the functions in this code. After saving the code to a separate file and
renaming it “scenario” copy it in the same direction as the Matlab file.

damage to the structural control in most networks, with the
exception of small networks. This occurs mainly because
this attack removes at most one edge during each attack
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num_uncn=length(cat(1l,uncn{l,1:r}))+r

sel_n=maxpower;

eff_node=cat(1l,selectededge,uncn{l,:})
end

%%% Applying Threat Scenarios TS4 %%%

if sc==
maxp=all_p;
maxpower=maxp (randi(length(maxp),1,1))

sucIDs = successors(g,maxpower)
num_re=1
selectededge=sucIDs ;
newgraph=rmedge(g, maxpower,selectededge)
uncn= nearest(g,maxpower,Inf)
num_uncn=length(uncn);
num_rpn=0;
sel_n=maxpower;
eff_node=uncn;
end
end

Pseudocode 3. (Continued.) To accomplish the threat scenarios,
Pseudocode 2 calls the functions in this code. After saving the code to a
separate file and renaming it “scenario” copy it in the same direction as
the Matlab file.

round from a vertex not belonging to the set of Np. However,
the observation degree of small networks under TSy attacks
decreases drastically due to their low connectivity probability,
which produces a smaller number of edges joining each
pair of vertices in the networks (i.e. any network has fewer
connections between vertices).

The diameter of the network after removing edges is
assessed to measure the robustness of network structural con-
trollability against edge removals. This metric mainly relies
on calculating the distance between two nodes in a network
after an attack, particularly nodes belonging to driver nodes
and their dependent nodes, and this is done by computing
the number of edges in the shortest dependency path between
such nodes. Table 3 shows that the networks begin to lose the
control diameter values due to TS; attacks, where the values
reach null and become variable under threats of type TS;.
In addition, the networks are only somewhat influenced by
the attack scenarios TS3 and TS4; notably, in some cases the
control network diameter has no change at all following the
attacks.

For each attack scenario, the numbers of AN and DCC are
computed when the networks are vulnerable to four attack
models (TS1, TS;, TS3 and TSy4). This computation allows to
determine the minimum-size set of PDS necessary to control
the compromised nodes in event of recovery of structural con-
trollability, where the number of driver nodes needed to con-
trol the AN is equal to the size of DCC, as shown in Table 4.
With TS| and TS, the fraction of AN in most networks
continuously increases along with the number of DCC. As
Table 4 and Figure 1 illustrate, the number of compromised
nodes dramatically increases when more edges are removed
during each attack round, leading to an increase in the DCC
size required to achieve full control and, significantly, for
networks under attack from TS| and TS,. However, there is
an insignificant variation in the number of DCC when the net-
works are subjected to TS3 and TSy; this variation depends
on the nature of the attack TS3, which targets at least one
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edge or several (but not all) edges of a vertex within Np of the
minimum out-degree. In the case of TSy, the number of DCC
required to monitor AN in each attack round is equal to one
driver node at most, although the number of AN increases,
as shown in Table 4. This is due to the fact that the behaviour
of TS4 exploits one edge at most in each attack round,
resulting in a minor impact on the size of DCC. Additionally,
the position of the node to which the attacked edge belongs
may be in the middle of a dependency path controlled by PDS
(i.e. the compromised nodes are a descendant of the node to
which its edge is removed), resulting in the complete isolation
of a sequence of dependent nodes that are controlled by the
attacked node.

V. CONCLUSION

Structural controllability provides an efficient graph-
theoretical understanding of network structural properties
and their critical elements in large cyber-physical control
networks. This paper, therefore, focused on an alternative
method based on the power dominating set problem to iden-
tify the minimum number of driver nodes which must be
considered crucial for attackers attempting to compromise
the network control.

The paper has discussed a simulation experiment analysing
the robustness of structural controllability for directed ER
networks and their power domination in terms of struc-
tural connectivity and observability when the networks were
exposed to vulnerability attacks, particularly multi-round
edge removals in various scenarios. The robustness of net-
works showed a unique behaviour when subject to threats
of type TS, TS, TS3; and TS4. The simulation results
demonstrated that TS; has a significantly harmful effect on
structural controllability as it enables adversaries to attack a
considerable fraction of edges in the whole original network,
leading to disrupting legitimate control. TS, also poses a
threat to the connectivity of the networks but is not dangerous.
The results also highlighted that TS; had a clear influence
on the networks’ control diameter values, while the networks
became less affected by the attack scenarios TS3 and TS4.

The paper has also presented the disconnected components
(DCC) to calculate a minimum set of Np required to control
the compromised nodes following an attack. The number
of DCC dramatically increased when additional edges were
removed in each attack round, leading to an increase in the
DCC size required to gain full control.

Ongoing and prospective research focuses on the impact of
such attacks on various networks and similar control topolo-
gies, mainly small-world (Watts-Strogatz) and scale-free
(Barabasi-Albert) graphs. In addition, a recovery algorithm
will be developed to preserve network structural controllabil-
ity in the presence of adversaries capable of removing power
links partially.

APPENDIX
See Figure 2—-6 and Pseudocode 1-3.
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