
Received April 28, 2021, accepted June 3, 2021, date of publication June 8, 2021, date of current version June 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3087577

Multi-Step Look-Ahead Optimization Methods for
Dynamic Pricing With Demand Learning
DINA ELREEDY , AMIR F. ATIYA , (Senior Member, IEEE),
AND SAMIR I. SHAHEEN , (Life Member, IEEE)
Computer Engineering Department, Cairo University, Giza 12613, Egypt

Corresponding author: Samir I. Shaheen (sshaheen@ieee.org)

ABSTRACT Dynamic pricing is a beneficial strategy for firms seeking to achieve high revenues. It has
been widely applied to various domains such as the airline industry, the hotel industry, and e-services.
Dynamic pricing is basically the problem of setting time-varying prices for a certain product or service for the
purpose of optimizing revenue. However, a major challenge encountered when applying dynamic pricing is
the lack of knowledge of the demand-price curve. The demand-price curve defines the customer’s response
towards changing the price. In this work, we address the dynamic pricing problem in case of unknown
demand-price relation. This work introduces a less myopic pricing approach based on looking ahead for one
or several future steps in our quest to optimize revenue. Specifically, the proposed formulation maximizes the
summation of the immediate revenue and the expected future revenues of one or multiple look-ahead steps.
A key benefit of the proposed approach is that it automatically strikes a balance between the conflicting goals
of revenue maximization and demand learning, by producing less myopic and profitable prices. We provide
a formulation for the presented look-ahead pricing approach, and we implement two variants of it: one-step
and two-step look-ahead methods. Experiments are conducted on synthetic and real datasets to compare the
proposed pricing methods to other pricing strategies in literature. The experimental results indicate that the
proposed look-ahead methods outperform their counterparts in terms of the achieved revenue gain.

INDEX TERMS Demand learning, dynamic pricing, optimization, revenuemanagement, sequential decision
making.

I. INTRODUCTION
In the last few decades dynamic pricing has been consid-
ered an active area of research having substantial contri-
butions in the fields of operations research, management
sciences, economics, and computer science [1]. Dynamic
pricing is defined as setting a time-varying price for a cer-
tain product or service [2], [3]. Recently, dynamic pricing is
broadly applicable in various domains such as: hotel revenue
management [4], airline industry [5], [6], mobile data ser-
vices [7], electricity [8], [9] and [10], and e-services [11].
However, there is a fundamental challenge when applying
dynamic pricing, which is how to set prices optimally in
order to maximize revenue returns. Determining the optimal
price is an arduous problem since in most cases, the cus-
tomer’s behavior in response to a price change is not known
beforehand. In other words, firms usually do not know the
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demand-price relation, and this is particularly the case for
new products/services [12].

Dynamic pricing in case of unknown demand behavior has
attained a growing interest in the literature [13]–[16]. In such
a problem, the ultimate objective of firms is to maximize
the total gained revenues over a finite sales time horizon
T . Therefore, given an initial estimate of demand behavior,
the simplest strategy is to choose the price maximizing the
revenue given the estimated demand model parameters. This
simple pricing policy is known as greedy or myopic pricing.
However, as its name indicates, the ‘‘myopic’’ pricing yields
‘‘myopic’’ decisions, and accordingly sub-optimal revenue
returns.

The myopic pricing policy obtains sub-optimal revenues
since it does not devote any attention to learning the
demand model parameters. In particular, myopic pricing
is a pure exploitation strategy where it fully emphasizes
revenue maximization. Accordingly, myopic pricing obtains
sub-optimal revenues since it relies on initial inaccurate
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estimates of the demand behavior. The trade-off between
learning demand curve parameters and maximizing revenue
is known as the learning versus earning trade-off [17], [18].
It is akin to the exploration-exploitation trade-off encoun-
tered in machine learning and evolutionary optimization
algorithms [19]–[22].

In this work, we address the dynamic pricing problem
with demand learning [16] in a less myopic scheme. Most
of the pricing policies in case of unknown demand are essen-
tially variants of the myopic pricing such as: myopic pric-
ing with dithering [23] and controlled variance pricing [24].
However, in this work, we propose a different less myopic
approach. Specifically, instead of maximizing the immedi-
ate revenue, our proposed formulation seeks to maximize
the summation of the immediate revenue in addition to one
or more look-ahead steps of the expected future revenues.
The multi-step look-ahead formulation not only yields less
myopic pricing decisions, but also boosts the overall revenue
gains. Furthermore, the proposed formulation automatically
balances the trade-off between learning demand parameters
and earning revenues. The proposed approach achieves this
balance since it produces more diverse prices than the myopic
approach. In contrast, the myopic approach obtains prices
that are centered on the price maximizing the immediate rev-
enue, therefore such prices do not enhance demand learning.
In addition, our proposed formulation is simple and closed-
form. Furthermore, the presented formulation is efficient and
computationally tractable.

In the proposed formulation, we employ a simple para-
metric model, assuming a linear demand curve. We apply
a parametric model for several reasons: first, at early time
steps, limited information is available, which hinders the
performance of non-parametric models. Moreover, gener-
ally, parametric models are less computationally expensive
than non-parametric ones. Furthermore, linear demand mod-
els are the most dominant models adopted in the opera-
tions research and economics literature [15], [23], [25]–[27].
Finally, as argued by Keskin and Zeevi in [15], the linear
demand function could approximate any demand function,
especially that firms usually do not consider a very broad
range of prices. They rather experiment with prices within a
certain range, where such predefined prices are set according
to business considerations and marketing conditions. Even if
the true demand curve is nonlinear, in a narrow range a linear
model would be a good approximation. Thus, operating in a
narrow range of prices supports the validity of using a linear
demand model.

In this work, we apply the recursive linear regressionmodel
developed in [28] for estimating the demand curve parameters
after acquiring each new price and its corresponding demand.
We adopt the recursive linear regression model because it fits
the recursive nature of the problem in case of considering
multiple future time steps, where each time step updates and
improves over the previous time step. Moreover, the recursive
linear regression model is very computationally efficient due

to its incremental updates of model parameters. Section IV
presents the formulation of the recursive linear regression
model proposed in [28].

We conduct a set of experiments to our proposed pricing
formulation with one and two look-ahead steps. In addition,
we compare the proposed pricing methods to myopic pricing
and to some other pricing strategies in the literature. The
experiments demonstrate that the proposed look-ahead for-
mulation outperforms not only the myopic pricing policy,
but also other competing methods in terms of the achieved
revenue.

An analogous problem that experiences a similar debate
between single-step and multi-step is the problem of adap-
tive control. There have been approaches for one-step-ahead
adaptive control, and also other approaches for multi-step
adaptive control, the so-called model predictive control. The
multi-step look-ahead optimization has also proved its effi-
cacy in different applications such as active search and
surveying [29], [30]. However, to the best of our knowl-
edge, the multi-step look-ahead optimization has not been
applied to the dynamic pricing problem. Generally, most
of the dynamic pricing methods essentially maximize the
immediate revenues such as: myopic pricing with dither-
ing [23] and controlled variance pricing [24]. Accordingly,
such pricing methods yield myopic prices since they do not
consider future revenues. On the other hand, the proposed
multi-step look-ahead pricing provides less myopic pric-
ing by incorporating the immediate revenue and look-ahead
future revenues. Thus, the proposed pricing approach is
expected to achieve higher revenue gains than other pricing
methods [23], [24].

The main contributions of this work are summarized as
follows:
• In this work, we develop a novel multi-step look-ahead
formulation for the dynamic pricing problem in case of
unknown demand curve.

• The presented formulation is simple, easy to implement,
and computationally tractable.

• We apply our proposed pricing formulation to real
and synthetic datasets. The proposed pricing approach
achieves good performance in terms of the gained rev-
enue compared to the other pricing methods in the
literature including: myopic pricing, myopic pricing
with dithering [23], and controlled variance pricing
(CVP) [24].

The paper is organized as follows: Section II presents a
literature review. Section III defines the problem formula-
tion. Section IV briefly describes the recursive formulation
of the linear regression model that is applied in our exper-
iments. Then, the proposed look-ahead model formulation
is introduced in Section V. After that, Section VI demon-
strates the experimental results. Then, the results are further
analyzed in Section VII. Section VIII concludes the paper.
Finally, potential future research directions are presented
in Section IX.

VOLUME 9, 2021 88479



D. Elreedy et al.: Multi-Step Look-Ahead Optimization Methods for Dynamic Pricing

II. RELATED WORK
A. DYNAMIC PRICING WITH DEMAND LEARNING
In this section, we review the main contributions related to
the considered problem: dynamic pricing in case of unknown
demand. Several comprehensive reviews are provided in [16],
[31]–[33].

Carvalho and Puterman propose a simple single-step
look-ahead method for revenue maximization in case of
log-normal demand curve [12]. Their proposed pricing
method maximizes the one-step look-ahead revenue using
Taylor series expansion to approximate the next step revenue.
Their proposed method outperforms myopic pricing. Further,
Carvalho and Puterman [34] extend their work of [12] and
apply it to online pricing over the internet. The authors’
model uses a binomial demand distribution since they model
individual customer’s response to a price change as a binary
random variable.

A major difference between Carvalho and Puterman’s
work and the proposed work is that our one-step look-ahead
formulation is exact. However, Carvalho and Puterman use
Taylor series approximation in their objective function for-
mulation. Another significant difference is that Carvalho
and Puterman present and experiment with a single-step
look-ahead revenue maximization policy. On the other hand,
our formulation is general and can be applied to multiple
future steps ahead as illustrated in Section V. For example,
in the conducted experiments, we apply one and two steps
look-ahead policies as presented in SectionVI. Finally, unlike
the work of [12], [34], we adopt the linear demand model
which is the most ubiquitous model in the operations research
literature [16].

Besbes and Zeevi investigate how model misspecification
could affect revenue loss [27]. They consider a multi-period
single product pricing problem, and prove that some pricing
strategies based on a two-parameter linear demand models
could converge to near-optimal pricing decisions even in case
of model misspecification.

Harrison et al. provide a mathematical analysis to study the
impacts of myopic pricing on demand learning [35]. In their
study, the authors consider a binary demand variable for each
price, and they develop a Bayesian formulation with a binary
prior distribution. Their results emphasize the negative con-
sequences of myopic pricing on learning the demand model,
which is named as ‘‘incomplete learning’’.

To alleviate incomplete learning, many variants of myopic
pricing are developed. For example, the authors of [23] pro-
pose a basic simple pricing policy for linear demand learning
of a single product based on the simple myopic pricing policy.
The authors adjust the myopic pricing and introduce some
exploration to it by adding a random perturbation to the
myopic price.

Another extension of the simple myopic pricing is intro-
duced in [24]. The proposed pricing policy, named Controlled
Variance Pricing (CVP), chooses the optimal price given the
current estimate of the model (like myopic greedy pricing).
However, the CVP policy imposes a constraint that the chosen

price should not be very close to the average of the previously
selected prices. This constraint typically ensures the diversity
of the chosen prices. Consequently, the CVP policy incorpo-
rates some exploration to enhance the accuracy of demand
learning.

Furthermore, Keskin and Zeevi address both single and
multiple-product pricing along a finite sales horizon [15].
They propose some variants of the greedy iterative least
squares strategy which utilize sequential model learning, and
myopic price optimization given the learned model.

Some dynamic pricing approaches use customized prices
for different customers by adjusting the price according to
each customer’s buying behavior. This pricing scheme is
commonly known in literature as personalized pricing [36],
[37]. As an example, the authors of [38] assume a different
potential buying probability per customer. They develop two
different pricing policies. The first policy seeks to maxi-
mize the expected revenue improvement. The second pricing
method selects the price maximizing the summation of the
expected immediate revenue and the expected revenue of
the next time step. However, both of these methods fail to
outperform the myopic greedy pricing policy.

B. MULTI-STEP LOOK-AHEAD UTILITY OPTIMIZATION
Multi-step look-ahead optimization has been studied in dif-
ferent (non-pricing) optimization contexts since it provides
less myopic solutions. For example, Garnett et al. propose a
customized multi-step look-ahead formulation for two clas-
sification problems: active search and active surveying [29].
In addition, their work is extended in [30] and applied to the
active search problem. In order to emphasize exploration, the
authors of [30] approximate the final cumulative expected
utility by assuming independence of the future points till the
end of the time horizon. However, their proposed approach
is computationally intensive since they evaluate the objective
function representing look-ahead formulation over all the
feasible points in the dataset. Then, the point maximizing the
objective function is queried. On the other hand, our proposed
approach employs an optimization algorithm in order to pick
the point maximizing the objective function. In fact, using an
optimization algorithm is much faster than iterating over the
feasible data points.

Multi-step look-ahead formulations have been applied to
information allocation and ranking applications. A simple
Bayesian single-step look-ahead method named knowledge
gradient (KG) is proposed in [39]. The knowledge gradi-
ent method is applied to sampling allocation and ranking.
The knowledge gradient method myopically maximizes the
expected improvement of a certain utility function at each
time step. This method maintains a Bayesian predictive dis-
tribution for each alternative’s utility, and the posterior distri-
butions are updated according to new observations. However,
the KG method is proved to be optimal in extreme cases: for
a single step horizon, and when the time horizon tends to
infinity [40]. Furthermore, the KG method could be compu-
tationally intensive in case of large number of alternatives.
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C. REINFORCEMENT LEARNING
Reinforcement learning is analogous tomulti-step look-ahead
optimization. Specifically, the proposed look-ahead formula-
tion could be regarded as an approximation of the Bellman
equation of the Markov decision process (MDP) using a
certain number of look-ahead steps. However, there are some
principal differences: first, the utility function in the consid-
ered dynamic pricing problem incurs inherent uncertainty.
Moreover, the dynamic pricing problem has a continuous
space of actions and states. Furthermore, most of the rein-
forcement learning approaches in literature tackle problems
where the time horizon T is infinite, or sufficiently large [41],
[42]. However, the dynamic pricing problem is generally
studied in a finite sales horizon setting [12].

Reinforcement learning is extensively applied in the
dynamic pricing framework [6], [26], [43]–[47]. For example,
the authors of [26] employ Q-learning for dynamic pric-
ing and demand learning. In their work, the authors use
Q-learning for learning the value function aiming to max-
imize revenue. However, one of the main pitfalls of the
reinforcement learning approach is that it is computation-
ally expensive. Consequently, within the constraint of hav-
ing limited price experimentation, reinforcement learning
could be incompatible with the considered dynamic pricing
problem.

D. STUDIES HANDLING THE EXPLOITATION-EXPLORATION
TRADE-OFF
The exploration-exploitation trade-off is studied in various
fields including: dynamic pricing ( [14], [24], [27], [35]), evo-
lutionary optimization [21], and sequential optimization [48].
In addition, the exploration-exploitation trade-off is investi-
gated in the multi-armed bandit problem literature [49]–[52].

Multi-armed bandit (MAB) is a class of sequential decision
making problems originally introduced in [53], [54]. The
multi-armed bandit problems seek to maximize rewards, but
under uncertainty and incomplete feedback about rewards.
Consequently, multi-armed bandit problems incur a trade-off
between performing an action that retrieves information
regarding reward (exploration), and making a decision that
maximizes the immediate reward given the information
gained so far (exploitation) [55]. Many problems can be
formulated using the multi-armed bandit setting such as: our
target problem: dynamic pricing with unknown demand [33],
online advertising [56], and clinical trials [57].

Trovo et al. utilize the multi-armed bandit formulation for
developing pricing policies that maximize revenue in case
of an unknown demand model [58]. The authors propose
two pricing policies that are typically refined versions of the
Upper Confidence Bound (UCB) algorithm proposed in [59]
to adapt to the pricing problem. Nevertheless, the proposed
methods do not achieve better regret bounds than the UCB
algorithm.

Another piece of work that exploits multi-armed bandit
algorithms for dynamic pricing of e-commerce applications
is presented by Ganti et al. in [1]. The authors apply two

different multi-armed bandit algorithms: Upper Confidence
Bound (UCB) [59] and Thomson Sampling (TS) [53]. How-
ever, the revenue improvement of the proposed methods over
myopic pricing essentially depends on the number of prod-
ucts they actually price.

Recently, active learning has been an effective paradigm
whenever the cost of data collection is substantial [60].
In [61], the authors develop an active learning framework
that aims to balance the exploration-exploitation trade-off
in optimization problems. They apply their framework to
the dynamic pricing with demand learning problem. Their
proposed methods surpass myopic pricing and the upper
confidence bound (UCB) algorithm [59].

In order to highlight the features of the different pricing
policies for the case of uncertain demand parameters in a
concise way, Table 1 compares these policies with respect to
their approaches, contributions, and limitations. In order to
stay focused, we limit the table to the core approaches.

III. PROBLEM FORMULATION
In this work, we formulate the dynamic pricing problem in
case of unknown demand curve as an iterative optimization
problem. At each time step, we choose the price maximizing
a certain utility function which is essentially the summation
of the immediate revenue and the expected future revenue(s)
for one or multiple time steps ahead. Then, the correspond-
ing demand for the chosen price is observed. In order to
estimate the demand model parameters, we adopt the recur-
sive formulation of the weighted least squares algorithm
proposed in [28].

In this work, we employ a linear price demand model
(or price elasticity model), like typically used in the eco-
nomics and operations research literature. The price is the
key controlling variable for demand.We assume amonopolist
seller who has a sufficient inventory to satisfy all potential
demand, which is known in literature as infinite inventory.
The presented work addresses pricing a single product over a
finite sales horizon T .
The adopted linear price demand model is defined as

follows:

y = a+ bp+ ε (1)

where p is the price, y is the corresponding demand, and a and
b denote the demand model parameters. In addition, the price
sensitivity parameter b is negative (b < 0), and ε is a normally
distributed random error term such that ε ∼ N (0, σ 2).
Let x = [1 p]T , then the linear regression problem can be

expressed as follows:

y = βT x + ε (2)

where β = [a b]T .
Assume that at any time step n, the cumulative utility

function given n data pointsDn is denoted as u(Dn), such that
Dn = {(xi, yi) ∀i 1 ≤ i ≤ n}. The utility function u(Dn) can
be defined as the total cumulative revenue or the cumulative
discounted revenue gained from time step 1 to n.
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TABLE 1. Comparison between the main dynamic pricing strategies in the
literature.

We formulate the dynamic pricing problem as a sequen-
tial optimization problem where at each time step n,
we choose the price pn that maximizes the expected utility.
The expected immediate utility with no look-ahead steps,
E[u(Dn)|xn,Dn−1] is computed as follows:

E[u(Dn)|xn,Dn−1] =
∫
yn
u(Dn)Pr[yn|xn,Dn−1] dyn (3)

where xn = [1 pn]T and yn is the corresponding demand for
pn. The look-ahead formulation is presented in Section V.

IV. PRELIMINARIES: RECURSIVE FORMULATION OF
WEIGHTED LINEAR REGRESSION
In this section, we briefly describe the weighted linear regres-
sionmodel developed in [28] and used in the proposed formu-
lation.We apply such a recursive regression model for several
reasons. First, it suits the recursive nature of our proposed
formulation in case of multiple look-ahead steps. Moreover,
the dynamic pricing with demand learning problem exhibits
a sequential behavior. At each time step, a new price is tested,
and the demand model is updated accordingly. Consequently,
using the recursive linear regression model with incremental
updates conforms to the sequential operation of the dynamic
pricing. Moreover, the recursive regression model is compu-
tationally efficient due to its incremental updates. Further-
more, the weighted linear regression converges to a global
minimum since it is a least-squares formulation.

For the notation used in the recursive linear regression,
let xn be the d-dimensional vector chosen at time n. In the
dynamic pricing problem xn is defined as: xn = [1 pn]T

where pn is the price chosen at time step n. Let yn be
the corresponding predicted output, which is essentially the
demand in the dynamic pricing problem. In addition, let β̂
be the d-dimensional vector of the estimated coefficients of
the regression model. Since we adopt a linear demand model
where d = 2 as defined in Eq. (1), the estimated model’s
parameters vector can be defined as β̂ = [â b̂]T .

The discounted error function for T time steps is defined
as follows:

E(T ) =
T∑
n=1

γ T−n
(
xnT β̂ − yn)2 (4)

where γ is a discount factor such that 0 < γ ≤ 1, and
generally, γ is set close to 1.

A. ESTIMATING THE REGRESSION MODEL PARAMETERS
In this section, we present the formulas for evaluating the
regression model’s coefficient vector and the covariance of
the regression model’s parameters. The estimated model’s
parameter vector β̂ is given by the least squares formula as
follows:

β̂ = (XTWX )−1XTWy (5)

where the rows of matrix X represent the input vectors xnT ,
and y is defined as the vector of target output variables yn.
The matrixW denotes the discount matrix, which is an n× n
diagonal matrix with the diagonal entriesWnn = γ

T−n.
The covariance matrix of β is computed as follows:

6β = σ
2(XTWX )−1 (6)

Evaluating Eq. (5) and Eq. (6) in a continuous manner
is computationally extensive, therefore we use the recursive
formulation instead.
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According to the work of [28], the recursive formula for
updating the model’s parameters vector βn in terms of previ-
ous estimates is:

βn = βn−1 +
6βn−1xn

(
yn − xnTβn−1

)
σ 2γ + xnT6βn−1xn

(7)

Similarly, the covariance matrix of the model’s parameter
vector, 6βn is recursively updated as follows:

6βn =
1
γ
6βn−1 −

6βn−1xnxn
T6βn−1

σ 2γ 2 + γ xnT6βn−1xn
(8)

B. ESTIMATING THE VARIANCE OF THE RANDOM ERROR
TERM (σ2)
In the last section, we have presented the recursive formu-
las of the regression model’s parameter vector β, and the
covariancematrix6β using the work presented in [28]. In this
section, we estimate the variance σ 2 of the random error term
ε defined in the adopted linear demand model (see Eq. (1)).
We use the maximum likelihood estimator [62] for evaluating
the variance parameter σ 2.
The likelihood function is defined as:

L(σ 2, β) =
T∏
n=1

1
√
2πσ

e

∑T
n=1 −γ

T−n(yn−βT xn)2

2σ2 (9)

where T denotes the number of data points used in the
estimate, and γ is the discount factor of the weighted linear
regression. Accordingly, the log-likelihood function is calcu-
lated as follows:

l(σ 2, β) = −T log σ − T log
√
2π

−

∑T
n=1 γ

T−n(yn − βT xn)2

2σ 2 (10)

Maximizing the log-likelihood in Eq. (10) results in the
following estimate σ̂ 2:

σ̂ 2
=

∑T
n=1 γ

T−n(yn − βT xn)2

T
(11)

It is evident from Eq. (11) that this estimate represents the
variance of data.

In order to unify all the update equations to be recursive,
we derive a recursive version for estimating the variance of
the error term as follows:

σ 2
n =

γ (n− 1)
n

σ 2
n−1 +

en2

n
(12)

where en = yn − βT n−1xn.

C. EVALUATING THE PREDICTIVE DISTRIBUTION
In this section, we present the formulas for the predictive
distribution of the adopted regression model. The regression
coefficients’ vector β follows a multivariate Gaussian distri-
bution [63]. The expectation of this Gaussian distribution is
evaluated in Eq. (7), and the covariance matrix is estimated
in Eq. (8).

From Eq. (2), it can be inferred that the predicted value at
time step n (yn) follows a Gaussian distribution as follows:

yn ∼ N (E[yn|xn, βn−1], σ 2
yn|xn,βn−1) (13)

According to Eq. (2), the expected value of yn is evaluated
as follows:

E[yn|xn, βn−1] = xnTβn−1 (14)

The variance of yn is calculated as:

σ 2
yn|xn,βn−1 = xnT6βn−1xn + σ

2
n−1 (15)

V. MODEL FORMULATION
In this section we present the formulation of the proposed
multi-step look-ahead approach. First, we define the formu-
lation for any general utility function u. Then, we apply
the proposed formulation to the dynamic pricing application
by setting the target utility function to the revenue func-
tion. We provide the detailed formulation of the one-step
look-ahead case, and we use recursive updates for multiple
look-ahead steps.

A. GENERAL FORMULATION
Typically, the greedy approach, which maximizes the imme-
diate utility, obtains myopic and sub-optimal solutions, espe-
cially when the utility function incurs some uncertainty.
In this work, we propose less myopic solutions for utility
optimization by looking ahead for one or more future steps
of the considered utility function u. The proposed approach
seeks to achieve near-optimal solutions.
We first consider a one-step look-ahead formulation where

the objective choosing the point xn−1 that maximizes the
expected utility at step n, for a general utility function u. Then,
we apply the proposed formulation to the dynamic pricing
problem where the utility function is the attained revenue.

For a general utility function u, the expected one-step
look-ahead utility function at time step n given the n − 2
previously acquired data points and the underlying point
(the optimization variable) xn−1, E[u(Dn)|Dn−2, xn−1], is
evaluated as:

E[u(Dn)|Dn−2, xn−1]

=

∫
yn

∫
xn

∫
yn−1

u(Dn)

×Pr[yn|xn,Dn−2, xn−1, yn−1]Pr[xn|Dn−2, xn−1, yn−1]]

×Pr[yn−1|Dn−2, xn−1] dyn−1 dxn dyn (16)

However, the probability Pr[xn|Dn−2, xn−1, yn−1] can be
safely ignored since the selection rule of xn given Dn−1 is
deterministic as will be further illustrated in Section V-B.
Thus, Eq. (16) can be simplified into:

E[u(Dn)|Dn−2, xn−1]

=

∫
yn

∫
yn−1

u(Dn)Pr[yn|xn,Dn−1]

×Pr[yn−1|Dn−2, xn−1] dyn−1 dyn (17)
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where the probabilities Pr[yn|xn,Dn−1] and Pr[yn−1|Dn−2,

xn−1] are evaluated according to the regression model as
defined in Eq. (13) (see Section IV-C).

B. DYNAMIC PRICING FORMULATION
In this section, we apply the general formulation presented
in Section V-A to the dynamic pricing problem. We use the
cumulative revenue function R(Dn) as the utility function to
be maximized.

The cumulative revenue function at time step n is recur-
sively defined as:

R(Dn) = R(Dn−1)+ pnyn (18)

whereR(Dn−1) is the cumulative revenue accomplished so far
from time step 1 till time step n − 1, pn is the experimented
price at time step n, and yn is the corresponding demand.
The expected value of the cumulative revenue function at

time step n given n− 1 price-demand pairs is defined as:

E[R(Dn)|xn,Dn−1] = R(Dn−1)+ pnE[yn|xn,Dn−1] (19)

where xn = [1 pn]T .
Using the look-ahead utility definition at Eq. (16) in

Section V-A, and the recursive definition of the revenue func-
tion presented in Eq. (18), the expected one-step look-ahead
revenue is evaluated as follows:

E[R(Dn)|xn−1,Dn−2]

= E[R(Dn−1)|xn−1,Dn−2]

+

∫
yn

∫
pn

∫
yn−1

pnynPr[pn|Dn−2, xn−1, yn−1]

×Pr[yn|xn, xn−1, yn−1,Dn−2]

×Pr[yn−1|Dn−2, xn−1] dyn−1 dpndyn (20)

Substituting for the first term E[R(Dn−1)|xn−1,Dn−2]
using the recursive definition of Eq. (19), the expected
one-step look-ahead revenue can be expressed as:

E[R(Dn)|Dn−2, xn−1]

= R(Dn−2)+ pn−1E[yn−1|xn−1,Dn−2]

+

∫
pn

∫
yn−1

pnPr[pn|Dn−2, xn−1, yn−1]

×Pr[yn−1|xn−1,Dn−2]

×E[yn|xn, xn−1, yn−1,Dn−2] dyn−1 dpn (21)

However, as previously mentioned in Section V-A,
the probability Pr[pn|Dn−2, xn−1, yn−1] is simply evaluated
since the selection rule of pn given Dn−1 is deterministic.
Convincingly, xn is set so as to maximize the immediate
revenue at time step n according to Eq. (19).
Accordingly, Eq.(21) could be further simplified into:

E[R(Dn)|Dn−2, xn−1]

= R(Dn−2)+ pn−1E[yn−1|xn−1,Dn−2]

+

∫
yn−1

pnPr[yn−1|Dn−2, xn−1]

×E[yn|xn, xn−1, yn−1,Dn−2] dyn−1 (22)

Using the dataset D definition presented in Section III,
the expected one-step look-ahead revenue is expressed as
follows:

E[R(Dn)|Dn−2, xn−1]

= R(Dn−2)+ pn−1E[yn−1|xn−1,Dn−2]

+

∫
yn−1

pnPr[yn−1|Dn−2, xn−1]

×E[yn|xn,Dn−1] dyn−1 (23)

Inspired by reinforcement learning literature [42],
we apply a discount factor γr to future revenues in order to
boost instantaneous revenue gain, as follows:

E[R(Dn)|Dn−2, xn−1]

= R(Dn−2)+ pn−1E[yn−1|xn−1,Dn−2]

+ γr

∫
yn−1

pnPr[yn−1|Dn−2, xn−1]

×E[yn|xn,Dn−1] dyn−1 (24)

The probability Pr[yn−1|Dn−2, xn−1] presented in the
integral of Eq. (24) is evaluated according to the lin-
ear regression model as defined in Eq. (13). Similarly,
the expectation E[yn|xn,Dn−1] is computed using Eq. (14)
(see Section IV-C).

Concerning the price pn presented in Eq. (24), it is set so
as to maximize the expected immediate revenue at time step
n, which is denoted as E[r(pn)|Dn−1], as follows:

pn = argmaxp∗ E[r(p∗)|Dn−1]

= argmaxp∗ pnE[yn|x∗,Dn−1]

= argmaxp∗ p∗(x∗
T
βn−1)

= argmaxp∗ bn−1p∗
2
+ an−1p∗ (25)

Accordingly, the price pn can be evaluated in terms of βn−1
components as:

pn =
−an−1
bn−1

(26)

Then, substituting for the price pn from Eq. (26) into
Eq. (25), the maximum expected immediate revenue is com-
puted as:

E[r(pn)|Dn−1] =
−a2n−1
4bn−1

(27)

Substituting from Eq. (27) into the third term of Eq. (24)
results in:

E[R(Dn)|Dn−2, xn−1]

= R(Dn−2)+ pn−1E[yn−1|xn−1,Dn−2]

+ γr

∫
yn−1

−a2n−1
4bn−1

Pr[yn−1|Dn−2, xn−1]dyn−1 (28)
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After several substitutions presented in the appendix,
Eq. (28) can be formulated as:

E[R(Dn)|Dn−2, xn−1]

= R(Dn−2)+ an−2pn−1 + bn−2p2n−1

+ γr

∫
yn−1

N (yn−1;µyn−1(pn−1), σ
2
yn−1(pn−1))

×
−
(
A(pn−1)yn−1 + B(pn−1)

)2
4
(
C(pn−1)yn−1 + D(pn−1)

) dyn−1 (29)

where the expectation µyn−1 and the variance σ 2
yn−1 are eval-

uated using Eq. (14) and Eq. (15), respectively as defined in
Section IV-C.

The four terms: A(pn−1), B(pn−1), C(pn−1), and D(pn−1)
are four polynomials of pn−1 which are evaluated as follows:

A(pn−1) = σ 2
an−2 + σabn−2pn−1 (30)

B(pn−1) =
(
bn−2σabn−2 + an−2σ

2
bn−2

)
p2n−1

+
(
an−2σabn−2 + bn−2σ

2
an−2

)
pn−1

+ γ an−2σ 2
n−2 (31)

C(pn−1) = σ 4
bn−2p

3
n−1 + 3σabn−2σ

2
bn−2p

2
n−1

+
(
2σ 2

abn−2 + σ
2
bn−2 (γ σ

2
n−2 + σ

2
an−2)

)
pn−1

+ σabn−2(γ σ
2
n−2 + σ

2
an−2 ) (32)

D(pn−1) = 2bn−2σ 4
bn−2p

4
n−1

+
(
7bn−2σ 2

bn−2σabn−2 − an−2σ
4
bn−2

)
p3n−1

+
(
4bn−2σ 2

abn−2 + 3bn−2σ 2
bn−2(γ σ

2
n−2 + σ

2
an−2)

+ 2bn−2σ 2
abn−2 − 3an−2σabn−2σ

2
bn−2

)
p2n−1

+
(
(5bn−2σabn−2 − an−2σ

2
bn−2)(γ σ

2
n−2 + σ

2
an−2)

− 2an−2σ 2
abn−2

)
× pn−1 +

(
bn−2(γ σ 2

n−2 + σ
2
an−2)−an−2σabn−2

)
× (γ σ 2

n−2 + σ
2
an−2) (33)

Finally, it is worth noting that the key objective of the
one-step look-ahead formulation is to choose the pricing
point pn−1 maximizing the expected revenue at time step n.
Using Eq. (29), the underlying optimization objective can be
formulated as:

p∗n−1 = argmaxpn−1 R(Dn−2)+ an−2pn−1 + bn−2p2n−1

+ γr

∫
yn−1

N (yn−1;µyn−1(pn−1), σ
2
yn−1(pn−1))

×
−
(
A(pn−1)yn−1 + B(pn−1)

)2
4
(
C(pn−1)yn−1 + D(pn−1)

) dyn−1 (34)

The term R(Dn−2) is constant, thus it is independent
of the optimization variable pn−1, and Eq. (34) can be

simplified into:

p∗n−1 = argmaxpn−1 an−2pn−1 + bn−2p
2
n−1

+ γr

∫
yn−1

N (yn−1;µyn−1(pn−1), σ
2
yn−1(pn−1))

×
−
(
A(pn−1)yn−1 + B(pn−1)

)2
4
(
C(pn−1)yn−1 + D(pn−1)

) dyn−1 (35)

However, firms generally prefer that prices belong to a
controllable range. Thus, we assume price bounds: pl and pu
such that any potential price belongs to the range [pl, pu].

Accordingly, the optimization problem defined in Eq. (35)
turns to be a constrained optimization problem as follows:

p∗n−1 = argmaxpn−1, pl≤pn−1<pu an−2pn−1 + bn−2p2n−1

+ γr

∫
yn−1

N (yn−1;µyn−1(pn−1), σ
2
yn−1(pn−1))

×
−
(
A(pn−1)yn−1 + B(pn−1)

)2
4
(
C(pn−1)yn−1 + D(pn−1)

) dyn−1 (36)

To solve the optimization problem in Eq. (36), a con-
strained optimization algorithm or a simple grid search
over the potential pricing values could be used. In our
implementation, we employ the interior point optimization
algorithm [64].

For multiple look-ahead steps, we apply the look-ahead
formulation recursively. For example, for a two-step
look-ahead pricing, assume that at time step n− 1, the objec-
tive is to maximize the expected revenue at step n + 1. This
can be recursively expressed as:

E[R(Dn+1)|xn−1,Dn−2]

= E[R(Dn)|xn−1,Dn−2]

+ γr
2
∫
yn
pn+1Pr[yn|xn,Dn−1]

×E[yn+1|xn+1, xn, yn,Dn−1] dyn (37)

The two-step look-ahead expected revenue is evaluated as
follows: first, the first term of Eq. (37) is recursively evaluated
using Eq. (29). Then, the second term of Eq. (37) is evaluated
(see the appendix for more details). The second term is mul-
tiplied by γr 2 since it represents the two-step future revenue.
The same recursive equation (Eq. (37)) can be applied in case
of further number of look-ahead steps.

The final formulation of the price pn−1 maximizing the
two-step look-ahead revenue is defined as:

p∗n−1
= argmaxpn−1, pl≤pn−1<pu an−2pn−1 + bn−2p2n−1

+ γr

∫
yn−1

N (yn−1;µyn−1(pn−1), σ
2
yn−1(pn−1))

×
−
(
A(pn−1)yn−1 + B(pn−1)

)2
4
(
C(pn−1)yn−1 + D(pn−1)

) dyn−1
+ γr

2
∫
yn
N
(
yn; (µyn ◦W )(pn−1), (σ 2

yn ◦W )(pn−1)
)
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×

−

((
J ◦W )(pn−1)yn + (F ◦W )(pn−1)

)2
4
(
(G ◦W )(pn−1)yn + (H ◦W )(pn−1)

) dyn

where the four polynomials J , F , G, and H are defined
in Eq. (70), Eq. (72), Eq. (74), and Eq. (76), respectively.
In addition, theW function is defined in Eq. (78). The detailed
formulation of the two-step look-ahead is provided in the
appendix.

VI. EXPERIMENTS
We apply the proposed look-ahead formulation defined in
Section V-B with two values for the number of steps: one step
and two steps. We have found that increasing the number of
steps beyond two steps does not lead to further improvement.

We have conducted experiments using synthetic and real
datasets in order to assess the performance of the proposed
approach.

A. BENCHMARKS
In order to perform a comprehensive analysis, we com-
pare our proposed approach to the myopic pricing and two
other pricing algorithms proposed in literature: myopic pric-
ing with dithering [23], and the controlled variance pric-
ing (CVP) policy [24].

The myopic pricing applies pure exploitation by choosing
the price that maximizes the immediate revenue. However,
myopic pricing yields sub-optimal revenues since it does not
consider learning the demand function [35].

The myopic pricing with dithering is a simple variant of
myopic pricing [23]. It is a myopic-type pricing that incor-
porates a random perturbation to the myopic price in order to
enhance demand learning by introducing some exploration.

The controlled variance pricing strategy chooses the price
value that maximizes the immediate revenue provided that it
does not belong to a specific taboo interval around the average
of the prices selected so far [24]. Thus, the CVP method
injects some price diversity, which enhances exploration.

In addition, we apply another benchmark strategy that per-
forms exploration and exploitation separately in two phases.
In this strategy, the first phase is a pure exploration with the
goal being to obtain an accurate estimate of model parame-
ters. Exploration in this phase is performed by simple random
sampling. In the next phase, the estimated demand model is
used and pure exploitation is implemented using the myopic
pricing policy. We name this benchmark as Random-Myopic
policy.

B. PERFORMANCE METRICS
We assess the performance of the different pricing policies
in terms of two major aspects: revenue maximization and
demand model estimation accuracy. However, revenue max-
imization is essentially the primary objective. The revenue
maximization objective is measured in terms of the gained
revenue. We evaluate a normalized version of the cumulative
discounted revenue RT evaluated at the last time step T .

We normalize RT with respect to the optimal revenue if the
true demand model parameters are known.

The revenue gain is defined as follows:

Rev Gain =
RT
Ropt
=

∑T
n=1 γr

n−1rn∑T
n=1 γr

n−1ropt
(38)

where rn is the revenue gained at step n, and ropt is the optimal
revenue given the true model parameters a and b, which is
expressed as:

ropt = popt (a+ bpopt ) = bp2opt + apopt (39)

where popt is the optimal price, which equals to −a2b in case of
the adopted linear demand model (see Eq. (1)). The parame-
ters a and b are the ground truth values of the demand model
parameters.

Simplifying the summation term
∑T

n=1 γr
n−1 in the

denominator of Eq. (38) using the summation of geometric
series formula, we get:

Rev Gain =
RT
Ropt
=

∑T
n=1 γr

n−1rn
(1− γr T )/(1− γr )ropt

(40)

In addition to evaluating the gained revenue, we test
whether the final price converges to the true optimal price by
measuring the deviation of the price pT , at last time step T ,
from the true optimal price popt .

δp =
|pT − popt |

popt
(41)

The demand model estimation accuracy is evaluated in
terms of the model estimation error of the final estimated
demand model’s parameter vector β̂T , at time step T ,
as shown in Eq.(42):

δβ =
||β − β̂T ||2

||β||2
(42)

C. EXPERIMENTAL SETUP
The simulation proceeds as follows: after generating a pool
of price-demand data, we start with a very limited number
of points, three points (less than three points cannot give
any sensible initial parameter estimate). Then, we train a
regression model to obtain an initial estimate for the model
parameters β0, and the corresponding covariance matrix6β0.
After that, we apply the proposed look-ahead optimization
approach in order to obtain the look-ahead price at iteration
n, denoted as pn. Then, the corresponding demand yn is
observed. It follows the linear demand model (Eq. (1)), with
the error term ε giving random fluctuations around the true
demand line. We utilize this acquired point (pn, yn) to update
the demand model estimates β and 6β using the recursive
weighted linear regression update equations (Eq. (7) and
Eq. (8)). The simulation loop continues till reaching a certain
predefined number of iterations T .

In the conducted experiments, the number of iterations T
is set to 100, and the discount factor of the weighted linear
regression, γ is set to 0.99. Similarly, the discount value γr
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used in the look-ahead formulation (Eq. (24)) is set to 0.99. To
ensure the reliability of the results, we run each experiment
20 times and we present the average results over the runs.

In our implementation, for the considered two-phase
random-myopic strategy, we use the same number of itera-
tions for the exploration phase as for the exploitation phase,
i.e. 50 for each. Regarding the myopic pricing with dithering
method [23], we set the amount of dithering to 0.1.

To have a fair comparison among all the adopted pric-
ing strategies, we employ a unified method for estimat-
ing the demand model parameters. Specifically, we apply
the recursive weighted linear regression model described in
Section IV.

D. EXPERIMENTS USING SYNTHETIC DATASETS
First, we apply our two proposed look-ahead pricing meth-
ods: one-step and two-step look-ahead, and the other bench-
mark pricing methods to synthetic datasets. The advantage of
using synthetic data is that the true model’s parameter vector
β is known. Accordingly, the revenue gain can be accurately
estimated with the knowledge of the true optimal revenue
(see Eq. (40)). In addition, the demandmodel estimation error
can be precisely evaluated (see Eq. (42)). We create synthetic
datasets by generating several price points and then assum-
ing linear demand model, we calculate the corresponding
demands using Eq. (1). We generate twenty synthetic datasets
using different values for parameters a, b, and σ .
We investigate different values for the demand price elas-

ticity parameter b including the three demand elasticity cases
of inelastic, neutral, and elastic demands [65]. Furthermore,
we adopt two different values for the standard deviation σ of
the error term representing low (5%) and high (40%) error
settings. We use different values for the standard deviation σ
of the error term to analyze the impact of the error term on the
different pricing policies, and to quantify their robustness to
errors. Additionally, in the dynamic pricing application, using
different error settings could be considered as aggregating all
other influencing factors that may be hard to incorporate in
the model such as: competition, seasonality, and perishability
of the products.

Tables 2-4 represent the gain in revenue, the estimation
error of model parameters β, and the percentage error of the
estimated price with respect to the optimal price, respectively.
These tables show the results averaged over the twenty syn-
thetic datasets in case of low and high error settings.

Figure 1 demonstrates the performance of different pricing
policies over time horizon T in terms of the cumulative
discounted revenue compared to the optimal revenue, using
a synthetic dataset with parameters a = 408.17, b = −1.32,
and σ = 163. Figure 2 shows the chosen prices over T itera-
tions by different pricing strategies compared to the optimal
price for the same synthetic dataset.

E. EXPERIMENTS USING REAL DATASETS
We apply our experiments to five real demand-price datasets
described in Table 5. For the transport dataset, we gather it

TABLE 2. Revenue gain of different pricing methods, averaged over
twenty different synthetic datasets for two different settings of the
standard deviation of the error term. The methods are sorted in
descending order according to their average revenue gain over the two
settings of the standard deviation of the error term. The bold entries
represent the maximum revenue gain per column over all methods. The
myopic pricing chooses the price maximizing the immediate revenue. The
myopic dithering adds a random perturbation to the myopic price. The
controlled variance pricing (CVP) method selects the myopic price unless
it is close to the previously chosen prices. The random-myopic baseline
first applies exploration using random sampling, then it performs
exploitation using myopic pricing.

TABLE 3. Percentage error in estimating model’s parameter vector β of
different pricing methods, averaged over twenty different synthetic
datasets for two different settings of the standard deviation of the error
term. The methods are sorted in ascending order according to their
average percentage model error over the two settings of the standard
deviation of the error term. The bold entries represent the minimum
model error per column over all methods. The myopic pricing chooses the
price maximizing the immediate revenue. The myopic dithering adds a
random perturbation to the myopic price. The controlled variance
pricing (CVP) method selects the myopic price unless it is close to the
previously chosen prices. The random-myopic baseline first applies
exploration using random sampling, then it performs exploitation using
myopic pricing.

TABLE 4. Percentage error of the final estimated price pT for all pricing
methods, averaged over twenty different synthetic datasets for two
different settings of the standard deviation of the error term. The
methods are sorted in ascending order according to their average price
deviation over the two settings of the standard deviation of the error
term. The bold entries represent the minimum price deviation per column
over all methods. The myopic pricing chooses the price maximizing the
immediate revenue. The myopic dithering adds a random perturbation to
the myopic price. The controlled variance pricing (CVP) method selects
the myopic price unless it is close to the previously chosen prices. The
random-myopic baseline first applies exploration using random
sampling, then it performs exploitation using myopic pricing.

online through surveying. This dataset is essentially trans-
portation ticket pricing data. We have asked users about the
minimum and the maximum fares they are willing to pay
for an economy class bus ticket between two certain cities.
We have received 41 responses from different users. In order
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FIGURE 1. Cumulative discounted revenue of different pricing policies
over 100 iterations for the synthetic dataset a = 408.17, b = −1.32, and
σ = 163.

FIGURE 2. Prices of different pricing policies over 100 iterations for the
synthetic dataset a = 408.17, b = −1.32, and σ = 163.

TABLE 5. A description for the real-world datasets.

to have the data in the form of price and demand pairs,
we perform the following. For each price, we calculate the
corresponding demand as the number of users who can afford
this price according to their stated minimum and maximum
prices.

For the other four datasets: the beef dataset is obtained from
the USDA Red Meats Yearbook [66]. Similarly, the spirits
dataset is obtained from [67]. The sugar dataset is adopted
from [68], and the coke dataset is acquired from [69].

In spite of the importance of performing our experiments
on real datasets, there is one hurdle in applying dynamic
pricing methods on real datasets. In dynamic pricing, at each
time step n, a certain price pn is chosen according to a certain
criterion. A real dataset has a finite set of price-demand
points. Thus, the chosen price pn can be outside the available
prices provided in the real dataset. Consequently, we use
real datasets mainly for estimating linear demand model’s
parameters vector β only. Then, we generate data using the
estimated parameters, with the same methodology described
in Section VI-D. The regression model coefficients a and b
are estimated using ordinary least squares linear regression.

TABLE 6. Revenue gain of all pricing methods, averaged over the five real
datasets, using different error settings σ . The strategies are sorted in
descending order according to their average revenue gain for the two
settings of the standard deviation of the error term. The bold entries
represent the maximum revenue gain per column over all methods. The
myopic pricing chooses the price maximizing the immediate revenue. The
myopic dithering adds a random perturbation to the myopic price. The
controlled variance pricing (CVP) method selects the myopic price unless
it is close to the previously chosen prices. The random-myopic baseline
first applies exploration using random sampling, then it performs
exploitation using myopic pricing.

TABLE 7. Percentage model error for all pricing methods, over the five
real datasets, using different error settings σ . The strategies are sorted in
ascending order according to their model estimation error for the
different error settings. The bold entries represent the minimum model
error per column over all methods. The myopic pricing chooses the price
maximizing the immediate revenue. The myopic dithering adds a random
perturbation to the myopic price. The controlled variance pricing (CVP)
method selects the myopic price unless it is close to the previously
chosen prices. The random-myopic baseline first applies exploration
using random sampling, then it performs exploitation using myopic
pricing.

TABLE 8. Price deviation from the optimal price for all methods,
averaged over the five real datasets, using different error settings σ . The
strategies are sorted in ascending order according to their average price
deviation over the different error settings. The bold entries represent the
minimum price deviation per column over all methods. The myopic
pricing chooses the price maximizing the immediate revenue. The myopic
dithering adds a random perturbation to the myopic price. The controlled
variance pricing (CVP) method selects the myopic price unless it is close
to the previously chosen prices. The random-myopic baseline first applies
exploration using random sampling, then it performs exploitation using
myopic pricing.

Similar to the synthetic datasets, two different values for the
standard deviation σ of the error term are experimented to
represent low (5%) and high (40%) error settings.

Tables 6-8 present the revenue gain, the demand model
estimation error, and the deviation error of the final estimated
price from the optimal price, respectively. These tables dis-
play the results averaged over the five real datasets described
in Table 5, for low and high error settings.
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FIGURE 3. Cumulative discounted revenue of different pricing policies
over 100 iterations for the beef dataset with the high error setting σ = 12.

FIGURE 4. Prices of different pricing policies over 100 iterations for the
beef dataset with the high error setting σ = 12.

Figure 3 shows the cumulative discounted revenue
achieved by different pricing policies over time horizon T
versus the optimal revenue using the beef dataset with high
error setting σ = 12. Figure 4 represents the selected prices
by different pricing methods over T steps versus the optimal
price for the beef dataset with the high error setting σ = 12.

VII. DISCUSSION
In this section, we analyze the empirical results presented in
Section VI. The main findings of the experimental results are
summarized as follows:
• It can be observed from Table 2 and Table 6 that our
proposed look-ahead methods outperform the myopic
pricing and other benchmarks in terms of the achieved
revenue gain in both cases of low and high error settings,
for synthetic and real datasets.

• In particular, both of the one-step and two-step
look-ahead methods surpass the performance of myopic
pricing and all other benchmarks. For synthetic datasets,
the one-step look-ahead achieves the highest revenue
gain as indicated in Table 2. Concerning the real
datasets, the two-step look-ahead method performs the
best according to Table 6.

• The proposed look-ahead methods accomplish superior
performance in terms of the gained revenue due to
their less myopic behavior by considering not only the
immediate revenue as myopic pricing and its variants

do, but also future revenues. For example, the proposed
look-ahead methods achieve above 2% and 4.5% rev-
enue improvement over the CVP method on synthetic
and real datasets, respectively (see Table 2 and Table 6).
In addition, our proposed approach exceeds the myopic
pricing by around 7% and 4.5% in case of synthetic
and real datasets as indicated in Table 2 and Table 6,
respectively.

• The myopic pricing with dithering policy incorporates
some exploration to the myopic pricing, thus it enhances
the myopic pricing performance with respect to the
accomplished revenue. However, the look-ahead meth-
ods lead to around 6% and 4% revenue gain over myopic
pricing with dithering, on synthetic and real datasets as
presented in Table 2 and Table 6, respectively.

• Regarding the random-myopic pricing policy, it obtains
the worst revenue gain in case of synthetic and real
datasets. The reason for that is the long exploration phase
which essentially compromises revenue by choosing
non-rewarding prices.

• Table 2 and Table 6 demonstrate that our pro-
posed look-ahead methods achieve significant revenue
improvement over myopic pricing and other pricing
policies, especially, in case of high error setting. Specif-
ically, both of the look-ahead methods attain over 13%
and 8 − 9% revenue gain over the myopic pricing in
case of high error setting, for synthetic and real datasets,
respectively. Accordingly, one can conclude that the
look-ahead pricing methods are robust towards high
error settings.

• As presented in Table 2 and Table 6, the proposed
look-ahead methods outperform the controlled variance
pricing (CVP) method proposed in [24] in terms of the
achieved revenue gain. Although both of the look-ahead
and the CVP strategies consider exploitation in terms of
immediate revenue maximization, they entirely differ in
performing exploration. The look-ahead approach per-
forms exploration automatically by incorporating future
revenues as indicated in Eq. (24) (see Section V). How-
ever, the CVP method executes exploration by choosing
diverse prices without considering their profitability.
Consequently, the proposed look-ahead approach out-
performs the CVP method in terms of revenue gain.

• Figure 1 and Figure 3 represent two examples of a
synthetic and a real dataset, respectively, in the high error
setting σ = 40%. These two figures show the behavior
of cumulative discounted revenue of different pricing
methods over the time horizon T . It can be observed
from these figures that the look-ahead methods are the
top-performing methods for synthetic and real datasets.
These results agree with the average results presented
in Table 2 and Table 6.

• Concerning the demand model estimation error, Table 3
and Table 7 demonstrate that the random-myopic
two-phase benchmark obtains the most accurate model
estimates in case of both synthetic and real datasets. The
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random-myopic pricing policy yields accurate param-
eter estimates since it devotes a whole long phase for
exploration. However, this pricing policy compromises
the gained revenue as indicated in Table 2 and Table 6.

• The proposed look-ahead pricing policies are compara-
ble to the CVP method with respect to demand model
estimation as presented in Table 3 and Table 7, for
synthetic and real datasets, respectively. In particular,
the look-ahead methods outperform the CVP method
in case of real datasets, and the CVP method leads
to less estimation error for synthetic datasets. Both of
the look-ahead and the CVP methods outperform the
myopic pricing. Accordingly, the proposed look-ahead
approach boosts the revenue gain which is basically the
main objective of pricing, without sacrificing demand
model estimation.

• In addition to revenue gain and model estimation error,
we evaluate the final price deviation from the optimal
price. The random-myopic benchmark yields the least
price deviation as shown in Table 4 and Table 8. These
results are intuitive since random-myopic is the most
accurate method in demand model estimation due to its
long exploration phase. Therefore, its final price is close
to the optimal price since it obtains accurate estimates of
the demandmodel parameters. However, this is achieved
at the expense of the gained revenue. As presented
in Table 2 and Table 6, the random-myopic benchmark
is the worst performing method in terms of the achieved
revenue.

• The chosen prices by different pricing strategies over the
time horizon T are shown in Figure 2 and Figure 4, for
two examples of a synthetic and a real dataset, respec-
tively. As previously illustrated, the random-myopic
benchmark achieves the best convergence to the optimal
price, at the expense of the gained revenue. Figure 2 and
Figure 4 indicate that the two-step look-ahead method
outperforms the remaining pricing strategies.

• One can conclude from Table 3 and Table 7 that the
CVP method and the look-ahead methods achieve com-
parable performance in terms of model estimation error.
Similarly, the look-ahead and the CVPmethods have the
same relative ranks with respect to price deviation from
the optimal price. They both have comparable results for
synthetic and real datasets as presented in Table 4 and
Table 8, respectively.

VIII. CONCLUSION
Dynamic pricing with unknown demand function is a chal-
lenging problem. Firms seek to set prices that maximize their
revenues. However, the demand-price relation is originally
not known and it should be learned from the data as the
firm continually carries out sales transactions. It is important
to have estimates of the demand-price relation as accurate
as possible, otherwise the revenues can be significantly
impacted. In this work, we propose a look-ahead pricing
approach for revenue maximization in case of unknown

demand. The proposed approach considers not only the
immediate revenue but also the revenues of future steps.
Furthermore, the presented look-ahead approach automat-
ically incorporates exploration by considering less myopic
profitable prices to enhance future revenues. We implement
two variants of the proposed approach: one-step and two-step
look-ahead methods. We compare the proposed look-ahead
methods to different benchmarks and popular methods in
literature with respect to several performancemetrics such as:
revenue gain, model estimation accuracy, and price conver-
gence to the optimal price. We conduct experiments applying
our methods, in addition to the benchmark pricing poli-
cies, using different twenty synthetic datasets with different
parameters and error settings, and five different real datasets.
The experiments demonstrate a considerable improvement
of the proposed look-ahead pricing methods in terms of
the gained revenue over the other methods. For demand
model estimation, the look-ahead approach achieves com-
parable performance to other pricing strategies. In addition,
the proposed look-ahead pricing formulation is simple, easy
to analyze and implement, and computationally efficient.
The proposed approach mainly handles the case of the linear
demand price curve, but it would also be beneficial to extend
this work to the case of non-linear demand functions such as
negative exponential and the power function.

IX. FUTURE WORK
We believe that the multi-step ahead approach is a promising
methodology for the dynamic pricing problem, and that it
can be developed further. Thus, there are several potential
research directions for extending the proposed methods. For
example, one can incorporate other factors that could affect
the demand including: seasonality, competition, etc. Further-
more, one can explore different problem settings such as:
having a finite inventory or pricingmultiple products. Finally,
we could investigate the density estimates of the quantities in
question [70], in order to take into account non-Gaussian sit-
uations. By progressively adding more factors, the model can
closelymimic real-world applications. In order to tackle these
factors, perhaps the approach should involve some aspect of
Monte Carlo simulation, so as to preserve the flexibility of
the modeling.

APPENDIX
DETAILED FORMULATIONS
A. ONE-STEP LOOK-AHEAD FORMULATION
As presented in Section V-B, the expected one-step
look-ahead revenue is evaluated as:

E[R(Dn)|Dn−2, xn−1]

= R(Dn−2)+ pn−1E[yn−1|xn−1,Dn−2]

+ γr

∫
yn−1

−a2n−1
4bn−1

Pr[yn−1|Dn−2, xn−1]dyn−1 (43)

In order to express the demand model parameters an−1 and
bn−1 in Eq. (43) in terms of βn−2, pn−1, and yn−1, i.e. the
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available information so far using Dn−2, substitute for βn−1
from Eq. (7) as described in Section IV.
Accordingly, the demand model parameters an−1 and bn−1

are evaluated using Eq. (44) and Eq. (45), respectively:

an−1 = an−2 + (σ 2
an−2 + σabn−2pn−1)

×

(
yn−1 − xT n−1βn−2

γ σ 2
n−2 + x

T
n−16βn−2xn−1

)
(44)

bn−1 = bn−2 + (σabn−2 + σ
2
bn−2pn−1)

×

(
yn−1 − xT n−1βn−2

γ σ 2
n−2 + x

T
n−16βn−2xn−1

)
(45)

Let the covariance matrix 6βn−2 be:

6βn−2 =

(
σ 2

an−2 σabn−2
σabn−2 σ 2

bn−2

)
(46)

Using Eq. (46) and the definition of xn−1 as xn−1 =
[1 pn−1]T , the demand model parameters an−1 and bn−1
are expressed in terms of the previous estimates as the two
following equations:

an−1 = an−2 + (σ 2
an−2 + σabn−2pn−1)

×

(
yn−1 − an−2 + bn−2pn−1

γ σ 2
n−2 + σ

2
an−2 + 2σabn−2pn−1 + σ

2
bn−2

p2n−1

)
(47)

bn−1 = bn−2 + (σabn−2 + σ
2
bn−2pn−1)

×

(
yn−1 − an−2 + bn−2pn−1

γ σ 2
n−2 + σ

2
an−2 + 2σabn−2pn−1 + σ

2
bn−2

p2n−1

)
(48)

Then, evaluating the expectation E[yn−1|xn−1,Dn−2] from
Eq. (14), and substituting for an−1 and bn−1 using Eq. (47)
and Eq. (48), respectively, Eq. (43) turns to Eq. (49) as
follows:

E[R(Dn)|Dn−2, xn−1]

= R(Dn−2)+ an−2pn−1 + bn−2p2n−1

+ γr

∫
yn−1

Pr[yn−1|Dn−2, xn−1]

×

(−(an−2 + (σ 2
an−2 + σabn−2pn−1)

4
(
bn−2 + (σabn−2 + σ

2
bn−2

pn−1)

)

×

(( yn−1−an−2+bn−2pn−1
γ σ 2n−2+σ

2an−2+2σabn−2pn−1+σ
2
bn−2

p2n−1

))2
( yn−1−an−2+bn−2pn−1
γ σ 2n−2+σ

2an−2+2σabn−2pn−1+σ
2
bn−2

p2n−1

)) )dyn−1
(49)

Simplifying Eq. (49) results in Eq. (50), as shown at the
bottom of the next page, where z(pn−1) is defined as:

z(pn−1) = γ σ 2
n−2 + σ

2
an−2 + 2σabn−2pn−1 + σ

2
bn−2p

2
n−1

(51)

Rearranging Eq. (50) according to the integration variable
yn−1 results in the following equation (Eq. (52)), as shown at
the bottom of the next page.

Substituting for the probability distribution of yn−1,
Pr[yn−1|Dn−2, xn−1] from Eq. (13) results in Eq. (53) as
shown at the bottom of the next page, where the expectation
µyn−1 and the variance σ

2
yn−1 are evaluated using Eq. (14) and

Eq. (15) as presented in Section IV.
Thus, the expectation of yn−1 is evaluated as:

µyn−1(pn−1) = xn−1Tβn−2 = an−2 + bn−2pn−1 (54)

The variance of yn−1 is defined as:

σ 2
yn−1 (pn−1) = xn−1T6βn−2xn−1 + σ

2
n−2 (55)

which can be expressed as:

σ 2
yn−1(pn−1) = σ

2
n−2 + σ

2
an−2 + 2σabn−2pn−1 + σ

2
bn−2p

2
n−1

(56)

Then, the integration in the last term of Eq. (53) can be
formulated as:

E[R(Dn)|Dn−2, xn−1]
= R(Dn−2)+ an−2pn−1 + bn−2p2n−1

+ γr

∫
yn−1

Pr[yn−1|Dn−2, xn−1]

×
−
(
A(pn−1)yn−1 + B(pn−1)

)2
4
(
C(pn−1)yn−1 + D(pn−1)

) dyn−1 (57)

where:

A(pn−1) = σ 2
an−2 + σabn−2pn−1

B(pn−1) = (σ 2
an−2 + σabn−2pn−1)(bn−2pn−1 − an−2)

+ an−2
(
γ σ 2

n−2 + σ
2
an−2 + 2σabn−2pn−1

+ σ 2
bn−2p

2
n−1

)
This can be expressed as a second order polynomial of pn−1

as follows:

B(pn−1) =
(
bn−2σabn−2 + an−2σ

2
bn−2

)
p2n−1

+
(
an−2σabn−2 + bn−2σ

2
an−2

)
pn−1 + γ an−2σ 2

n−2

C(pn−1) = (σabn−2 + σ
2
bn−2pn−1)

×
(
γ σ 2

n−2 + σ
2
an−2 + 2σabn−2pn−1 +σ

2
bn−2p

2
n−1

)
Then, C(pn−1) could be further simplified as a third order

polynomial of pn−1:

C(pn−1)
= σ 4

bn−2p
3
n−1 + 3σabn−2σ

2
bn−2p

2
n−1

+
(
2σ 2

abn−2 + σ
2
bn−2 (γ σ

2
n−2 + σ

2
an−2)

)
pn−1

+ σabn−2 (γ σ
2
n−2 + σ

2
an−2)

D(pn−1)
=
(
γ σ 2

n−2 + σ
2
an−2 + 2σabn−2pn−1

+ σ 2
bn−2p

2
n−1

)(
(σabn−2 + σ

2
bn−2pn−1)(bn−2pn−1 − an−2)

+ bn−2
(
γ σ 2

n−2 + σ
2
an−2 + 2σabn−2pn−1 + σ

2
bn−2p

2
n−1

))
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This can be expressed as a fourth order polynomial of pn−1
as follows:

D(pn−1)

= 2bn−2σ 4
bn−2p

4
n−1 +

(
7bn−2σ 2

bn−2σabn−2

− an−2σ 4
bn−2

)
p3n−1 +

(
4bn−2σ 2

abn−2 + 3bn−2σ 2
bn−2 (γ σ

2
n−2

+ σ 2
an−2)+ 2bn−2σ 2

abn−2 − 3an−2σabn−2σ
2
bn−2

)
p2n−1

+
(
(5bn−2σabn−2 − an−2σ

2
bn−2)(γ σ

2
n−2 + σ

2
an−2)

− 2an−2σ 2
abn−2

)
pn−1 +

(
bn−2(γ σ 2

n−2 + σ
2
an−2)

− an−2σabn−2
)
× (γ σ 2

n−2 + σ
2
an−2 )

Since the key objective of the one-step look-ahead formu-
lation is to choose the pricing point pn−1 maximizing the
expected revenue at time step n. Using Eq. (57), the under-
lying optimization objective can be formulated as:

p∗n−1 = argmaxpn−1 R(Dn−2)+ an−2pn−1 + bn−2p2n−1

+ γr

∫
yn−1

N (yn−1;µyn−1(pn−1), σ
2
yn−1(pn−1))

×
−
(
A(pn−1)yn−1 + B(pn−1)

)2
4
(
C(pn−1)yn−1 + D(pn−1)

) dyn−1
However, the term R(Dn−2) is constant, then:

p∗n−1 = argmaxpn−1 an−2pn−1 + bn−2p
2
n−1

+ γr

∫
yn−1

N (yn−1;µyn−1(pn−1), σ
2
yn−1(pn−1))

×
−
(
A(pn−1)yn−1 + B(pn−1)

)2
4
(
C(pn−1)yn−1 + D(pn−1)

) dyn−1
Assume price bounds: pl and pu such that any potential

price should belong to the range [pl, pu].

Then, the problem can be formulated as a constrained
optimization problem as follows:

p∗n−1 = argmaxpn−1, pl≤pn−1<pu an−2pn−1 + bn−2p2n−1

+ γr

∫
yn−1

N (yn−1;µyn−1(pn−1), σ
2
yn−1(pn−1))

×
−
(
A(pn−1)yn−1 + B(pn−1)

)2
4
(
C(pn−1)yn−1 + D(pn−1)

) dyn−1
B. TWO-STEPS LOOK-AHEAD FORMULATION
As presented in SectionV-B, the two-step look-ahead revenue
is formulated as:

E[R(Dn+1)|xn−1,Dn−2]

= E[R(Dn)|xn−1,Dn−2]

+ γr
2
∫
yn
pn+1Pr[yn|xn,Dn−1]

×E[yn+1|xn+1, xn, yn,Dn−1] dyn (58)

Substituting for the first term of the above equation from
Eq. (29), and using the dataset Dn definition, then:

E[R(Dn+1)|xn−1,Dn−2]

= R(Dn−2)+ an−2pn−1

+ bn−2p2n−1+γr

∫
yn−1

N (yn−1;µyn−1(pn−1), σ
2
yn−1(pn−1))

×
−
(
A(pn−1)yn−1 + B(pn−1)

)2
4
(
C(pn−1)yn−1 + D(pn−1)

) dyn−1
+ γr

2
∫
yn
pn+1Pr[yn|xn,Dn−1]E[yn+1|xn+1,Dn] dyn

(59)

E[R(Dn)|Dn−2, xn−1]

= R(Dn−2)+ an−2pn−1 + bn−2p2n−1

+ γr

∫
yn−1

Pr[yn−1|Dn−2, xn−1]
−

(
an−2z(pn−1)+ (σ 2

an−2 + σabn−2pn−1)
(
yn−1 − an−2 + bn−2pn−1

))2
4z(pn−1)

(
bn−2z(pn−1)+ (σabn−2 + σ

2
bn−2

pn−1)
(
yn−1 − an−2 + bn−2pn−1

))dyn−1 (50)

E[R(Dn)|Dn−2, xn−1]

= R(Dn−2)+ an−2pn−1 + bn−2p2n−1 + γr

∫
yn−1

Pr[yn−1|Dn−2, xn−1]

×

−

(
(σ 2
an−2 + σabn−2pn−1)yn−1 + (σ 2

an−2 + σabn−2pn−1)(bn−2pn−1 − an−2)+ an−2z(pn−1)
)2

4z(pn−1)
(
(σabn−2 + σ

2
bn−2

pn−1)yn−1 + (σabn−2 + σ
2
bn−2

pn−1)(bn−2pn−1 − an−2)+ bn−2z(pn−1)
)dyn−1 (52)

E[R(Dn)|Dn−2, xn−1]

= R(Dn−2)+ an−2pn−1 + bn−2p2n−1 + γr

∫
yn−1

N (yn−1;µyn−1(pn−1), σ
2
yn−1(pn−1))

×

−

(
(σ 2
an−2 + σabn−2pn−1)yn−1 + (σ 2

an−2 + σabn−2pn−1)(bn−2pn−1 − an−2)+ an−2z(pn−1)
)2

4z(pn−1)
(
(σabn−2 + σ

2
bn−2

pn−1)yn−1 + (σabn−2 + σ
2
bn−2

pn−1)(bn−2pn−1 − an−2)+ bn−2z(pn−1)
)dyn−1 (53)
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The probability Pr[yn|xn,Dn−1] is evaluated using
Eq. (13), and the expectation E[yn+1|xn+1,Dn] is evaluated
using Eq. (14). Thus, Eq. (59) can be formulated as:

E[R(Dn+1)|xn−1,Dn−2]

= R(Dn−2)+ an−2pn−1

+ bn−2p2n−1+γr

∫
yn−1

N (yn−1;µyn−1(pn−1), σ
2
yn−1(pn−1))

×
−
(
A(pn−1)yn−1 + B(pn−1)

)2
4
(
C(pn−1)yn−1 + D(pn−1)

) dyn−1
+ γr

2
∫
yn
(anpn+1 + bnp2n+1)

×N (yn;µyn (pn), σ
2
yn (pn)) dyn (60)

Similar to Eq. (54) and Eq. (56), the expectation µyn and
the variance σ 2

yn of yn, are evaluated as follows:

µyn (pn) = an−1 + bn−1pn (61)

σ 2
yn (pn) = σ

2
n−1 + σ

2
an−1 + 2σabn−1pn + σ

2
bn−1p

2
n (62)

It can be observed from Eq. (60), Eq. (61) and Eq. (62)
that the future revenue at step n + 1 is a function of βn−1,
6βn−1, and σn−1. Since the true value of yn−1 is not known,
we assume that the model’s parameter vector βn−1 is approx-
imately equal to βn−2. Similarly, we assume that the standard
deviation σn−1 of the error term is approximately equal to
σn−2. However, we can evaluate the covariance matrix of
model parameters 6βn−1 since it is not a function of yn−1
as indicated in Eq. (8). Consequently, the elements of the
covariance matrix 6βn−1 are evaluated in terms of 6βn−2
elements as follows:

σ 2
an−1 =

1
γ
σ 2

an−2 −
1

γ z(pn−1)
(σ 2

an−2 + σabn−2pn−1)
2

(63)

σ 2
bn−1 =

1
γ
σ 2

bn−2 −
1

γ z(pn−1)
(σabn−2 + σ

2
bn−2pn−1)

2

(64)

σabn−1 =
1
γ
σabn−2 −

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1) (65)

Then, substituting from Eq. (63), Eq. (64), and Eq. (65)
into Eq. (62) results in:

σ 2
yn (pn)

= σ 2
n−2 +

1
γ
σ 2

an−2 −
1

γ z(pn−1)
(σ 2

an−2 + σabn−2pn−1)
2

+ 2
( 1
γ
σabn−2 −

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

)
pn

+

( 1
γ
σ 2

bn−2 −
1

γ z(pn−1)
(σabn−2 + σ

2
bn−2pn−1)

2
)
p2n

(66)

Similar to the one-step look-ahead formulation, the price
pn+1 is set so as to maximize the immediate revenue at step
n+ 1. Accordingly, the price pn+1 is evaluated in terms of βn
as follows:

pn+1 =
−an
2bn

(67)

Substituting from Eq. (67) into Eq. (60):

E[R(Dn+1)|xn−1,Dn−2]

= R(Dn−2)+ an−2pn−1 + bn−2p2n−1

+ γr

∫
yn−1

N (yn−1;µyn−1(pn−1), σ
2
yn−1(pn−1))

×
−
(
A(pn−1)yn−1 + B(pn−1)

)2
4
(
C(pn−1)yn−1 + D(pn−1)

) dyn−1
+ γr

2
∫
yn

−a2n
4bn

N (yn;µyn (pn), σ
2
yn (pn)) dyn (68)

The model parameters an and bn are evaluated recursively
using an−1 and bn−1 according to Eq. (44) and Eq. (45),
respectively.

Then, similar to the one-step look-ahead case, substituting
for the immediate revenue at time step n + 1, −a

2
n

4bn
in the

third term of Eq. (68), the two-step look-ahead revenue can
be expressed in terms of pn as follows:

E[R(Dn+1)|xn−1,Dn−2]

= R(Dn−2)+ an−2pn−1 + bn−2p2n−1

+ γr

∫
yn−1

N (yn−1;µyn−1(pn−1), σ
2
yn−1(pn−1))

×
−
(
A(pn−1)yn−1 + B(pn−1)

)2
4
(
C(pn−1)yn−1 + D(pn−1)

) dyn−1
+ γr

2
∫
yn
N (yn;µyn , σ

2
yn )
−
(
J (pn)yn + F(pn)

)2
4
(
G(pn)yn + H (pn)

) dyn

(69)

where the four polynomials: J (pn), F(pn), G(pn), and H (pn)
are similar to the four polynomials used to evaluate the
one-step look-ahead revenue. However,the four polynomials:
J (pn), F(pn), G(pn), and H (pn) are evaluated in terms of
pn, βn−2, 6βn−1, and σn−2. The equations below represent
the four polynomials first as functions of 6βn−1, then as
functions of6βn−2 after substituting from Eq. (63), Eq. (64),
and Eq. (65).

J (pn)

= σ 2
an−1 + σabn−1pn (70)

J (pn)

=
1
γ
σ 2

an−2 −
1

γ z(pn−1)
(σ 2

an−2 + σabn−2pn−1)
2

+

( 1
γ
σabn−2 −

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

)
pn (71)
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F(pn)
=
(
bn−1σabn−1 + an−1σ

2
bn−1

)
p2n

+
(
an−2σabn−1 + bn−1σ

2
an−1

)
pn + γ an−1σ 2

n−1 (72)

F(pn)

=
(
bn−2

( 1
γ
σabn−2 −

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

)
p2n

+ an−2
( 1
γ
σabn−2 −

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

)
p2n

+ an−2
( 1
γ
σabn−2 −

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

)
pn

+ bn−2
( 1
γ
σ 2

an−2−
1

γ z(pn−1)
(σ 2

an−2 + σabn−2pn−1)
2
)
pn

+ γ an−2σ 2
n−2 (73)

G(pn)

= σ 4
bn−1p

3
n + 3σabn−1σ

2
bn−1p

2
n

+
(
2σ 2

abn−1 + σ
2
bn−1 (γ σ

2
n−1 + σ

2
an−1)

)
pn

+ σabn−1(γ σ
2
n−1 + σ

2
an−1 ) (74)

G(pn)

=

( 1
γ
σabn−2 −

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

)2
p3n

+ 3
[( 1
γ
σabn−2 −

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

)
×

( 1
γ
σ 2

bn−2 −
1

γ z(pn−1)
(σabn−2 + σ

2
bn−2pn−1)

2
)]

× p2n + 2
( 1
γ
σabn−2 −

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

)2
pn

+

( 1
γ
σ 2

bn−2 −
1

γ z(pn−1)
(σabn−2 + σ

2
bn−2pn−1)

2
)

×

(
γ σ 2

n−2 +
1
γ
σ 2

an−2 −
1

γ z(pn−1)

× (σ 2
an−2 + σabn−2pn−1)

2
)
pn

+

( 1
γ
σabn−2 −

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

)
×

(
γ σ 2

n−2 +

( 1
γ
σ 2

an−2 −
1

γ z(pn−1)

× (σ 2
an−2 + σabn−2pn−1)

2
))

(75)

H (pn)

= 2bn−1σ 4
bn−1p

4
n +

(
7bn−1σ 2

bn−1σabn−1 − an−1σ
4
bn−1

)
p3n

+
(
4bn−1σ 2

abn−1 + 3bn−1σ 2
bn−1 (γ σ

2
n−1 + σ

2
an−1)

+ 2bn−1σ 2
abn−1 − 3an−1σabn−1σ

2
bn−1

)
p2n

+
(
(5bn−1σabn−1 − an−1σ

2
bn−1)(γ σ

2
n−1 + σ

2
an−1)

− 2an−1σ 2
abn−1

)
pn

+
(
bn−1(γ σ 2

n−1 + σ
2
an−1)− an−1σabn−1

)
× (γ σ 2

n−1 + σ
2
an−1) (76)

H (pn)

= 2bn−2
( 1
γ
σ 2

bn−2 −
1

γ z(pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

2
)2
p4n

+ 7
[
bn−2

( 1
γ
σ 2

bn−2−
1

γ z(pn−1)
(σabn−2 + σ

2
bn−2pn−1)

2
)

×

( 1
γ
σabn−2−

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

)]
p3n

− an−2
( 1
γ
σ 2

bn−2−
1

γ z(pn−1)
(σabn−2+σ

2
bn−2pn−1)

2
)2
p3n

+
(
4bn−2

( 1
γ
σabn−2 −

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

)2
p2n

+ 3bn−2
( 1
γ
σ 2

bn−2 −
1

γ z(pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

2
)

×

(
γ σ 2

n−2 +

( 1
γ
σ 2

an−2 −
1

γ z(pn−1)

× (σ 2
an−2 + σabn−2pn−1)

2
))

× p2n+2bn−2
( 1
γ
σabn−2−

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

)2
p2n

− 3an−2
( 1
γ
σabn−2 −

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

)
×

( 1
γ
σ 2

bn−2 −
1

γ z(pn−1)
(σabn−2 + σ

2
bn−2pn−1)

2
)
p2n

+

[(
5bn−2

( 1
γ
σabn−2 −

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

)
− an−2

( 1
γ
σ 2

bn−2

−
1

γ z(pn−1)
(σabn−2 + σ

2
bn−2pn−1)

2
))(

γ σ 2
n−2
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+
1
γ
σ 2

an−2 −
1

γ z(pn−1)
(σ 2

an−2 + σabn−2pn−1)
2
)]
pn

− 2an−2
( 1
γ
σabn−2 −

1
γ z(pn−1)

(σ 2
an−2 + σabn−2pn−1)

× (σabn−2 + σ
2
bn−2pn−1)

)2
pn

+ bn−2

(
γ σ 2

n−2 +

( 1
γ
σ 2

an−2 −
1

γ z(pn−1)

× (σ 2
an−2 + σabn−2pn−1)

)2)2

− an−2
( 1
γ
σabn−2

−
1

γ z(pn−1)
(σ 2

an−2+σabn−2pn−1)(σabn−2+σ
2
bn−2pn−1))

×

(
γ σ 2

n−2 +

( 1
γ
σ 2

an−2 −
1

γ z(pn−1)

× (σ 2
an−2 + σabn−2pn−1)

2
))

(77)

Substituting from Eq. (47), Eq. (48), and Eq. (51) into
Eq. (26), the price pn can be expressed in terms of pn−1 and
βn−2 as follows:

pn =
M (pn−1)
N (pn−1)

(78)

whereM (pn−1) and N (pn−1) are defined as follows:

M (pn−1) = (σ 2
an−2 + σabn−2pn−1)yn−1+(σ

2
an−2+σabn−2pn−1)

× (bn−2pn−1 − an−2)+ an−2z(pn−1) (79)

N (pn−1) = 2z(pn−1)
(
(σabn−2 + σ

2
bn−2pn−1)yn−1

+ (σabn−2 + σ
2
bn−2pn−1)(bn−2pn−1 − an−2)

+ bn−2z(pn−1)
)

(80)

In Eq. (78), since the true value of yn−1 is not known,
we use its expected value as defined in Eq. (14).

Accordingly, substituting from Eq. (78) into Eq. (69)
results in:

E[R(Dn+1)|xn−1,Dn−2]

= R(Dn−2)+ an−2pn−1 + bn−2p2n−1

+ γr

∫
yn−1

N (yn−1;µyn−1(pn−1), σ
2
yn−1(pn−1))

×
−
(
A(pn−1)yn−1 + B(pn−1)

)2
4
(
C(pn−1)yn−1 + D(pn−1)

) dyn−1
+ γr

2
∫
yn
N (yn;µyn (W (pn−1)), σ 2

yn (W (pn−1))

×

−

(
(J (W (pn−1))yn + F(W (pn−1))

)2
4
(
G(W (pn−1))yn + H (W (pn−1))

) dyn (81)

Since the first term of Eq. (81) is constant, it is safely
ignored in optimization. Accordingly, the optimization prob-
lem of choosing the pricing point xn−1 maximizing the

two-step look-ahead revenue is formulated as:

p∗n−1
= argmaxpn−1, pl≤pn−1<pu an−2pn−1 + bn−2p2n−1

+ γr

∫
yn−1

N (yn−1;µyn−1(pn−1), σ
2
yn−1(pn−1))

×
−
(
A(pn−1)yn−1 + B(pn−1)

)2
4
(
C(pn−1)yn−1 + D(pn−1)

) dyn−1
+ γr

2
∫
yn
N
(
yn; (µyn ◦W )(pn−1), (σ 2

yn ◦W )(pn−1)
)

×

−

((
J ◦W )(pn−1)yn + (F ◦W )(pn−1)

)2
4
(
(G ◦W )(pn−1)yn + (H ◦W )(pn−1)

) dyn
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