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ABSTRACT We propose a Generative Adversarial Network (GAN) optimized for noise reduction in
CT-scans. The objective of CT scan denoising is to obtain higher quality imagery using a lower radiation
exposure to the patient. Recent work in computer vision has shown that the use of Charbonnier distance as a
term in the perceptual loss of a GAN can improve the performance of image reconstruction and video super-
resolution. However, the use of a Charbonnier structural loss term has not yet been applied or evaluated
for the purpose of CT scan denoising. Our proposed GAN makes use of a Wasserstein adversarial loss,
a pretrained VGG19 perceptual loss, as well as a Charbonnier distance structural loss. We evaluate our
approach using both applied Poisson noise distribution in order to simulate low-dose CT imagery, as well
as using an anthropomorphic thoracic phantom at different exposure levels. Our evaluation criteria are Peek
Signal to Noise (PSNR) as well as Structured Similarity (SSIM) of the denoised images, and we compare
the results of our method versus recent state of the art deep denoising GANs. In addition, we report global
noise through uniform soft tissue mediums. Our findings show that the incorporation of the Charbonnier
Loss with the VGG-19 network improves the performance of the denoising as measured with the PSNR and
SSIM, and that the method greatly reduces soft tissue noise to levels comparable to the NDCT scan.

INDEX TERMS CT-scan denoising, machine learning, computed tomography, medical diagnostic imaging,
generative adversarial network.

I. INTRODUCTION
Computed Tomography (CT) is an x-ray imaging procedure
where a narrow beam of x-rays enters the patient’s body
frommany angles and offsets; these are reconstructed to form
cross-sectional images or ‘‘slices’’ of the body. Then these
slices are in turn analyzed for diagnostic purposes. The scans
capture detailed images of internal organs, bones, soft tissue,
and blood vessels. CT has an advantage over the x-ray modal-
ity in that the 3D volume can allow the radiologist to look
around bones and other anatomical structures that might dis-
rupt the view of important regions. However, a disadvantage
of CT scanning is that the requirement of taking slices from
so many different angles increases the overall amount of radi-
ation exposure. As such, techniques to improve the quality of
the CT scan while simultaneously decreasing the radiation
exposure of the patient are an important area of research.

The simplest way to reduce image noise and improve
quality is to increase the radiation exposure to the patient,
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either by increasing tube current and/or exposure time.
However, increased radiation exposure carries health risks,
including a long-term increased risk of developing cancer.

Alternatively, it is possible to reduce image noise without
increasing exposure through the use of sophisticated Tomo-
graphic Reconstruction (TR) algorithms. The choice of TR
algorithm can greatly affect the perceivable image noise even
if the raw sinogram data is exactly the same.

In recent years, there has been much research interest
in deep reconstruction algorithms. A major branch of deep
reconstruction is image-to-image deep denoising. These algo-
rithms take as input an already reconstructed CT-scan image
and output an improved image with higher quality and lower
noise. At the time of writing, Generative Adversarial Net-
works (GANs) are the prevailing deep learning technique
for image-to-image CT-scan denoising. A challenge with
deep denoising techniques, in general, is that the generated
scans are often excessively blurry. The need to reduce this
excessive blur has led to many innovations in the design
of CT-scan denoising GANs, notably improvements to the
Adversarial loss and introduction of Perceptual loss and
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FIGURE 1. Result obtained from CL-GAN (ours), PL-GAN, SSL-GAN, L1-GAN and MSE-GAN on simulated dataset. Display window [−1024, 1024].

Structural loss terms. We present a novel GAN architecture
for image-to-image deep denoising that incorporates Char-
bonnier distance as a Structural loss term. Figure 1 (right)
shows an example generated slice from our method using
a simulated Low Dose CT (LDCT) slice (left) as input in
comparison with the ground truth Normal Dose CT (NDCT)
slice (center). We demonstrate that our proposed CL-GAN
architecture improves the overall quality of CT scan images
and compares favorably against related deep denoising GANs
that have been developed for this task.

A. CONTRIBUTIONS
• We introduce the Charbonnier distance as a structural
loss term for a CT denoising GAN. Although the Char-
bonnier loss term has been recently demonstrated for
related video-superresolution [1], to the best of our
knowledge we are the first to evaluate this approach for
CT-scan denoising.

• We analyze the L1 and L2 norms and describe a
variance-bias tradeoff for denoising of bimodal distribu-
tions which is a theoretical justification for hybrid loss
functions that such as Charbonnier that combine their
advantages.

• We compare the results of our CT-scan denoising algo-
rithm against two state-of-the-art CT-denoising GANs
from literature and demonstrate that the proposed
CL-GAN outperforms these techniques in terms of
PSNR and SSIM.

• We evaluate the performance of the CL-GAN using pub-
lished soft-tissue and smooth region noise metrics from
Radiology literature in addition to PSNR and SSIM.

• We evaluate performance of CL-GAN and other meth-
ods using both simulated Poisson noise added, as well
as a Phantom FDA dataset with scans obtained at higher
and lower radiation exposure levels.

II. BACKGROUND
A. IMAGE QUALITY AND RADIATION EXPOSURE
The quality of CT-scans is a complex topic, although it is
highly dependent on four basic factors: image contrast, spatial
resolution, noise, and artifacts. Denoising algorithms attempt
to reduce noise without introducing artifacts. The graininess
in a LDCT is due to the limited number of photons that
reach the photodetector [2]. Radiographic quantum mottle is
fundamentally similar to the Poisson Distribution. As such,
most studies of CT-scan denoising, including ours, attempt to
simulate LDCT for evaluation purposes by applying Poisson
noise to the image. The application of Poisson noise enables
the investigator to simulate the appearance of an LDCT
scan while retaining a ground truth image obtained from a
higher dose. In addition to applied Poisson noise, we also
perform analysis of the denoising capability of CL-GAN
versus related techniques over a chest Phantom as scanned at
different exposure levels. Image noise makes it particularly
difficult to visualize small as well as low-contrast structures.
As such, Radiologists prefer CT-scanswith lower image noise
when attempting to identify low-contrast structures for diag-
nostic purposes.

CT dose index (CTDI) is the most commonly used dose
descriptor, which represents the dose to a location in a
scanned volume. There are various versions of the descrip-
tor such as CTDI100 which takes a linear measure of dose
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distribution over a pencil ionization chamber and hence does
not take into account the topographical variation of a human
body, CTDIw is a weighted dose index for periphery and cen-
ter this makes it more relatable to the human body structure
and is used in CT-scan instruments. CTDIvol is a type of
dose index which performs similar to the weighted version
but divides CTDIw by a pitch factor. Any form of CTDI is
an estimate of radiation dose per body-mass expressed in
the units of Gray, (Gy) which simplifies to Joules/kilogram,
(J/kg).

CTDI does not however take into account additional risks
associated with distributing more radiation exposure over a
larger region of the body. In order to capture these additional
risks, another metric for radiation dose titled Dose-length
product (DLP) is also measured as follows,

DLP = L × CTDIvol (1)

Here L is the total z-direction length of the examination
which gives it the relationship with the level of depth as well.
Some CT scanners also display DLP alongside the CTDI for
operators.

B. TOMOGRAPHIC RECONSTRUCTION
The raw CT-scan is collected in the form of a sinogram
which is aRadon transform of the actual volume radiodensity.
This is because the device measures the X-ray attenuation
from a series of beampaths from different angles and offsets
around the body. The observed X-ray attenuation for a given
beampath with angle ρ and offset θ , is given by the following
equation:

pρ,θ =
∫
∞

−∞

∫
∞

−∞

f (x, y)δ(xcosθ + ysinθ − ρ)dxdy (2)

This represents a line integral of radiometric density over
a pencil beam. In order to reconstruct a 2D slice of radioden-
sities, it is necessary to invert this equation. Exact evaluation
of the inverse of this integral forms the branch of Iterative
Reconstruction (IR) algorithms. The first CT scanners
employed a variant of IR called Algebraic Reconstruction
Technique (ART) in which the intersection of every grid
cell and beampath form a system of linear equations of the
canonical form, [3], [4].

Ax = b (3)

It is computationally expensive to solve this linear system
directly for high-resolution scans. Furthermore, it is possible
for this linear system to be ill-posed if the number of grid
cells exceeds the number of beam paths for a slice. Finally,
ART does not take into account the statistical distribution of
radiographic quantum noise, because least-squares assume a
Gaussian distribution but photon counts follow more closely
the Poisson distribution.

Due to performance considerations, the industry-standard
Tomographic Reconstruction (TR) algorithm is a variant of
back-projection called Filtered Back-Projection (FBP) [5].
Backprojection approximates this inverse problem by smear-
ing the line integrals over each of their contributing pixels, but

reconstructs a 2D slice that is excessively blurry. FBP reduces
this excessive blur by performing a variation of highpass
filtering in order to sharpen the image. This highpass filter
magnifies high-frequency noise thereby leading to the exces-
sive graininess of the image. As such, FBP images, although
computationally cheap, are excessively grainy.

C. SINOGRAM FILTRATION AND ITERATIVE ALGORITMS
How can we achieve the best CT-scan image quality in a
computationally efficient manner? This has been a hot topic
for the past 50 years. Although our investigation has focused
on image-to-image Deep denoising, it is important to recog-
nize that alternative approaches exist and have been heavily
studied. Two such broad categories of algorithms include
Sinogram Filtration (SF) as well as IR.

IR spans a diverse set of methods that iterate between
back-projection and forward projection thereby allowing the
algorithm to take into account additional apriori informa-
tion of the physical system [6]. The original TR algorithm
was ART which is technically an IR algorithm [3], [4].
Today, IR comprises a wide variety of methods including
major branches of statistical and model-based reconstruc-
tion. Statistical noise models [7]–[9] incorporate additional
knowledge of quantum mottle distribution. Other explored
techniques include Total Variation [10] and dictionary learn-
ing [11]. An underlying theme of these approaches, however,
is their large computational overhead which has led to the
investigation of alternate methods including deep denoising.

Another heavily studied approach involves filtering the
sinogram in order to estimate and subtract the contribution of
Poisson noise prior to TR [12], [13]. As such one might view
SF as an attempt to improve the quality of the sinogram itself,
although a limitation of these approaches is the possibility
that filtration might reduce signal in addition to noise. One
popular approach for sinogram filtration is the use of bilateral
filtering [13] which has some ability to retain sharp edges.
A recent approach by Karimi et al. [12] has shown that it
is also possible to perform filtration using the sinogram data
after the image reconstruction has been performed.

III. RELATED WORK
We now turn our attention to related works that have inves-
tigated the use of deep learning to improve CT-scan recon-
struction through image-to-image denoising.

A. DENOISING NETWORKS
Deep reconstruction has a short history, with the first
published method in 2017 (preprinted in 2016) by
Kang et al. [14], which developed a customized denoising
autoencoder to produce wavelet coefficients. In the same
year, additional Neural Network architectures were explored
including pure convolutional approaches for artifact reduc-
tion [15], residual, and U-net based architectures [16], as well
as persistent homology-based approaches [17]. The first
methods were based loosely on denoising autoencoders with
additional structural terms and did not make use of GANs.
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Some researchers, such as Chen et al. [18], have followed
an encoder/decoder approach of using residual networks. The
network has two parts, Encoder, and Decoder. The Encoder
consists of multiple layers of Convolutional kernels, while the
Decoder consists of multiple layers of the De-convolutional
kernels. These components have a residual connection
between them. Their evaluation is shown using the Peak
Signal-to-Noise ratio (PSNR) and Structural Similarity
Index (SSIM) for the task of low-dose CT image denois-
ing [18]. Shan et al. [19] improves on the convolutional
encoder-decoder approach by incorporating 3D convolution
and leveraging transfer learning from 2D CNNs for deep
denoising. There is also a recent branch of denoising net-
works which attempt to incorporate Neural Networks as a
regularization term for iterative reconstruction algorithms
[20], [21].

B. DENOISING GANs
Recently, GAN based approaches are beginning to displace
denoising autoencoders for image-to-image deep denoising.
Much innovation in these areas has involved the develop-
ment of structural and perceptual loss terms to improve the
image quality and reduce excessive blur in the reconstruc-
tion [22]–[27]. The determination of the best perceptual and
structural loss functions remains an open problem.

Wolterink et al. [22] were the first authors to build a GAN
for Low-Dose CT-scan denoising. The GAN constructed by
them incorporates voxelwise loss. The authors compared
three novel loss functions: only voxelwise loss, voxelwise and
adversarial loss, and only adversarial loss. It was reported that
they were able to achieve the highest PSNR ratio with only
voxelwise loss, but the addition of adversarial loss was able
to capture the image statistics of normal dose scans.

Another innovation was the development of a sharpness
detection network by Yi et al. [28]. Their GAN is a Sharpness
Aware GAN, in the sense that the authors include an addi-
tional network to penalize the GAN for producing excessively
blurry images. Reducing excessive blur is a focus of many
new GAN architectures for this problem [23]–[27].

You et al. [24] proposed a deep denoising GAN based
on a ResNet architecture with Wasserstein loss [23], [29].
The generator G proposed by the authors contains a Feature
Extraction Network and a Reconstruction Network following
an encoder/decoder model. The authors use the L1 loss
function combined with Wasserstein adversarial loss and
gradient penalty. This approach was later extended and
modified to include a perceptual loss using the multi-scale
Structural Similarity (SSIM) [25], [26]. At the time of writ-
ing the SL-GAN is considered a state-of-art method for
image-to-image denoising.

Yang et al. [30] proposed a Wasserstein adversarial loss as
combinedwith a pre-trainedVGG-19 perceptual loss for deep
denoising. The VGG19 network works as a feature extraction
network with the intent of penalizing perceivable differences
between the denoised and ground truth images [30]. The
evaluation provided by the authors mainly consists of using

Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index (SSIM).

IV. METHODOLOGY
A. NETWORK ARCHITECTURE
The architecture for the proposed CL-GAN consists of three
main parts: A Generator Network, a Discriminator Network,
as well as a Perceptual and Structural Loss. Our Perceptual
and Structural Loss is composed of a pretrained VGG net-
work (VGG Loss) and additionally includes the Charbonnier
distance as a structural loss term. A diagram of the overall
network architecture is shown in Figure 2.

The generator G is a convolutional neural network with
8 layers each based on 3 × 3 kernels. Each of the first seven
layers of the Generator have 32 filters and only the last layer
generates the feature map with a single 3 × 3 filter. The
Rectified Linear activation unit is applied after each of these
layers [31].

The discriminator D as seen in figure 3. has 6 convolu-
tional layers and is similar to the discriminator architecture
of several recent works [25], [30], [32]. Here the first two
layers have 64 filters, then the next have 128 filters, and
the last two have 256 filters each. Among the convolutional
layers, we also have added three batch normalization layers
for stabilizing/optimizing the training for GAN. Similarly to
the generator, the convolutional layers employ 3× 3 kernels.
The head exhibits two fully connected layers with 1024 and
512 outputs each. As we are using the Wasserstein GAN,
and following the convention from the original authors [33],
we do not employ a sigmoid cross entropy layer at the end of
the discriminator.

The perceptual and structural loss block is shown in the
top right of figure 2, consisting of the VGG perceptual loss
as well as the Charbonnier structural loss. The incorporation
of perceptual and structural loss terms greatly improves the
performance of deep denoising GANs.

B. WASSERSTEIN GAN
The Wasserstein loss is an adversarial loss proposed by
Arjovsky et al. [33] that greatly improves the stability
of GANs relative to the original adversarial loss term of
Goodfellow et al. [34]. The equation forWasserstein distance
is as follows,

W (Pr ,Pg) = inf
γ∈5(Pr ,Pg)

E(x,y)∼γ [‖ x−y ‖] (4)

Wasserstein loss is based on the Earth-Mover (EM) dis-
tance between two probability density functions. Here, for the
distance, we would be using a set of joint distributions whose
marginals are Pr and Pg. Here γ (x, y) represents how much
‘‘mass’’ is required to transport from x to y so that the dis-
tribution Pr is transformed into the distribution Pg [33]. The
EMdistance then becomes the ‘‘cost’’ of the optimal transport
plan. The authors [33] also describe that eq 4 is equivalent to
the following due to the Kantorovich-Rubinstein duality [35],

W (Pr ,Pθ ) = sup
‖f ‖L≤1

Ex∼Pr [f (x)]− Ex∼Pθ [f (x)] (5)
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FIGURE 2. Overall architecture of the proposed CL-GAN network network.

FIGURE 3. Discriminator has 6 blocks of convolution followed by 3 FC layers.

As such, the loss function is as follows [33], [36]:

min
G

max
D

LWGAN (D,G) = −Ex[D(x)]+ Ez[D(G(z))]

+λEx̂[(‖Ox̂ D(x̂)‖2 − 1)2] (6)

The first two terms perform the EM distance [35], and
the last term is added for network regularization which is
a gradient penalty term suggested by Gulrajani et al. [36].
x̂ is uniformly sampled along straight lines connecting pairs
of generated and real samples and λ is a constant weighting
parameter [30]. From the equation, we can see that W-GAN
removes the log function which can grow to infinity if the
Discriminator learns to perfectly predict the samples, thereby
leading to mode collapse.

C. VGG PERCEPTUAL LOSS
We employ VGG19 as a perceptual loss in order to maintain
the low-contrast structures in the CT-scan [37]. VGG loss
describes the square distance betweenVGG19 feature vectors
of a pair of images as follows,

LPL = `
φ,j
feat (ŷ, y) =

1
CjHjWj

‖φj(ŷ)− φj(y) ‖22 (7)

VGG loss employs Mean Squared Error (MSE) over a
pre-trained VGG19 feature vector rather than MSE directly

over the pixels. This approach was recently introduced to
image-to-image denoising by Yang et al. [30].

In equation 7 C , H , and W represents depth, height and
width respectively. ŷ represents the result obtained from the
generator and y represents the image patch from the real data
distribution which for us would be the NDCT ground truth
distribution over the training data. φj represents the feature
extractor, here VGG-19 would be used as a feature extractor.

The VGG-19 network here works as a feature extractor.
The pre-trained VGG model takes color images as input, but
since CT-images are grayscale, we duplicate the CT slices
to make RGB channels before feeding to VGG as input.
VGG-19 has 16 convolutional layers and 3 fully connected
layers [30]. The output obtained from the last convolutional
layer is the feature that is extracted by the VGG network and
is used in the perceptual loss function.

D. CHARBONNIER STRUCTURAL LOSS
We incorporate a Charbonnier structural loss term in order to
pixelwise constrain the generated images to approximate the
ground truth. Using only the adversarial loss of the GAN can
construct artifacts in the images and show ringing patterns or
unnecessary edges as investigated by Lucas et al. [1]. Such
patterns can be reduced in GANs by incorporating a pixelwise
structural loss function.

VOLUME 9, 2021 84097



B. Gajera et al.: CT-Scan Denoising Using Charbonnier Loss Generative Adversarial Network

FIGURE 4. Comparison of MSE loss (blue) Charbonnier loss (green).

The proposed Charbonnier loss is a smooth approxima-
tion of the Huber loss. The Huber loss is an M-estimator
which is quadratic for small deviations, but approximates
L1 loss for larger deviations. As such, Huber loss (and fur-
thermore Charbonnier loss) are able to exhibit the advantages
of MSE over low variance regions (such as soft tissue),
as well as the advantages of L1 over high variance regions
(such as edges). A comparison of Charbonnier versus MSE
is shown in figure 4. The Charbonnier loss can be written as
follows [38],

LCL = C(x̂, x) =
∑
i

∑
j

√
(x̂i,j − xi,j)2 + ε2 (8)

where i, and j refer to pixel coordinates, x̂ represents the
estimated image obtained from the last layer of the gener-
ator and x represent the ground truth NDCT image. ε is
the region for which the loss function changes from being
approximately quadratic to approximately linear, and for our
model this parameter was set to 0.001. The MSE as well
as L1 and loss functions are common choices. However,
neither is ideal for this task, and we show in Appendix A that
there exists a variance/bias tradeoff between these estimators.
MSE grows quadratically, which would overly penalize the
model for large incorrect predictions. In practice MSE loss
can lead to blurry edges, because the Maximum Likelihood
Estimator (MLE) for MSE is the arithmetic mean but edges
are bimodal: For example, consider an edge between air
(−1000 HU) and soft tissue (−300 HU), the arithmetic mean
would lie somewhere inbetween the two causing the model to
favor overly blurring the boundary.

The use of the Charbonnier structural loss is justified by
sampling theory, as it has the ability to improve the denoising
capability over bimodal distirbutions (edges) without sacri-
ficing accuracury over unimodal distributions (tissue inte-
rior). We show in Appendix A, that both the L1 and L2
norms suffer from a variance/bias tradeoff when sampling
over bimodal distributions of the following form,

s

Xi ∼ αN (µ1, σ )+ (1− α)N (µ2, σ ) (9)

Variance and Bias are directly proporptional to MSE as
follows,

MSE = E(m̂u− µ1)2 = B2 + V + σ 2 (10)

We show in Appendix A, that when sampling from this dis-
tribution, under reasonable assumptions such that the sample
is sufficiently bimodal, more specifically N is large, α > 4

7
and µ2 − µ1 ≥ 2σ , that a variance bias tradeoff between
L1 and L2 estimators occurs analytically. Specifically, the L1
estimator has greater variance as follows,

π

2
VL2 ≤ VL1 ≤ 2.21 VL2 (11)

whereas the L2 estimator has greater bias as follows,

BL2 ≈
√
2 BL1 (12)

It is well known that when a variance/bias tradeoff is
observed between estimators, that some combination of the
estimators is justified to improve sampling performance.
This formalizes our intuition that the MLE for L1 loss is
the median which is typically a better estimator of popula-
tion mode over bimodal distributions (i.e. edges). However,
the median may be less accurate than the mean if the prob-
ability distribution is sufficiently Gaussian, which is likely
to occur over the interior of uniform regions such as air and
smooth muscle. In uniform regions one might expect MSE
loss to outperform L1 loss. As such, Charbonnier loss which
is a smooth approximation of the Huber loss is likely to
perform well under these circumstances by combining the
best attributes of both the L1 and L2 norms.

E. COMBINED LOSS
Overall using the equation 6 and 7 and 8 we formulate a
combined equation that represents the complete loss function
for our W-GAN network as follows,

min
G
{λ1[max

D
LWGAN (D,G)]+ λ2LPL(G)

+(1− λ1 − λ2)LCL(G)} (13)

Here λ1 and λ2 are used as weighting parameters to control
the trade-off between the three loss functions, that is, between
W-GAN adversarial loss LWGAN and the Perceptual loss from
VGG LPL and the Charbonnier Loss LCL . The weights λ1 > 0
and λ2 > 0 with λ1 + λ2 < 1 are hyper-parameters.

V. DATA AND EXPERIMENTAL DESIGN
We evaluate the proposed deep denoising algorithm using two
Thoracic CT datasets: the Kaggle Super Bowl 2017 [39] with
simulated Poisson noise, as well as the Phantom FDA dataset
fromTheCancer ImagingArchive (TCIA) [40]. The Phantom
FDA dataset contains scans of a anthropomorphic thoracic
phantom at different exposure levels, thereby enabling us to
evaluate the denoising performance over observational noise
returns with minimal non-rigid motion.

A. SIMULATED POISSON NOISE DATASET
For evaluation purposes, we employ the Kaggle Super
Bowl 2017 Data Science competition [39]. The dataset con-
tains 1200 high-resolution DICOM chest CT-scans which
were originally obtained from the National Cancer Institute
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(NCI). All of the scans are obtained from high-risk individ-
uals for lung cancer screening (60+, 30 pack years). Each
image in the dataset contains a variable length series of 2D
axial slices of the chest cavity, for which we uniformly select
20 axial slices per examination for inclusion in the dataset.

We randomly selected 75 patients out of 1200 as our train
and test datasets. Of these 75 patients’ examinations, 65 have
been used for training, 6 for validation, and 4 patient’s for
testing. For each examination, we uniformly extract 20 or
21 slices. Separating the train and test datasets at the exam
level, rather than the slice level, is necessary to ensure the
train and test sets are fully decoupled.

FIGURE 5. Simulated Low-Dose CT using Poisson Distribution.

We apply Poisson noise to the NDCT slices in order to
simulate how they might appear if captured at a lower dose.
We call this simulated LDCT imagery. The poisson distribu-
tion gives the probability that k events would occur given a
mean of λ is described as follows,

f (k; λ) =
λke−k

k!
(14)

For sufficently large values of λ, the Poisson distribution
is approximately Gaussian as follows,

f (k; λ) ≈ N (µ = λ, σ =
√
λ) (15)

For which σ is described as the noise power. We label the
slices with Poisson noise added as the simulated Low Dose
CT (LDCT) imagery, and the unmodified slices as Normal
Dose CT (NDCT). The simulated LDCT is created with the
interval value of adding noise with the power of 50 HU
leading to SNR of approximately 20 db. Application of Pois-
son noise is standard practice in order to simulate LDCT
images while maintaining ground truth NDCT images for the
evaluation of denoising algorithms.

B. PHANTOM DATASET
In order to evaluate the performance of the denoising GAN
algorithm we employed the Phantom FDA dataset from
TCIA [40]. This dataset uses an anthropomorphic thoracic
phantom scanned at varying radiation exposure levels ranging
from 25mAs to 200 mAs. The Phantom FDA dataset consists
of scans from two CT scanners a Philips 16-row scanner as
well as a Siemens 64-row scanner.

FIGURE 6. Directory tree for training data.

Utilizing the Phantom FDA dataset for deep denoising
presents several challenges, most notably scans acquired at
different noise levels may have slight rigid movement which
makes subtraction of images to determine noise quality a
nontrivial task. The use of an inanimate Phantom eliminates
non-rigid movement between scans, but rigid-body motion
may exist in the event that the positioning of the Phantom
shifts slightly between successive scans. We correct for this
rigid-body shift in two ways: (a) image registration of slices
using rotation and translation, (b) the physical acquisition of
scans on the same day.

We noticed that imagery collected on the same day using
the same scanner had far fewer image registration artifacts
than imagery collected on different days. A likely explanation
is that the Phantom was scanned in place at varying settings
within a single day, but the Phantom was likely replaced
inbetween successive days of data acquisition.

To compare the performance of different denoising GANs,
we used phantom scans of exposure 25 mAs and 100 mAs
with pitch 1.2, and slice thickness 2 mm utilizing the Philips
16 row scanner. We utilize the 100 mAs scan as our ground
truth NDCT scan, and the 25 mAs as the noisy LDCT scan
in our comparison. These settings and exposure levels were
selected after an investigation of the timestamps reveled these
scans to be the largest discrepancy in exposure levels col-
lected in the same day of observation without variation of
other parameters. Utilization of scans acquired in the same
day was necessary to enable high quality intercomparison of
the denoising techniques because rigid-body motion between
scans is nearly negligible and can be removed with basic
image registration techniques.

C. PREPROCESSING AND TRAINING
We apply several preprocessing steps in order to facilitate the
training of the GAN model. Firstly, we normalize the slices
from Houndsfield units (−4096 to 4095) to a standard range
of (−1.0 to 1.0). Secondly, we randomly select patches of
size 64 × 64 in order to train the model. Selecting patches
is technically a form of augmentation (random cropping),
and increases the number of images available for training.
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The validation and testing images were performed on whole
images.

During training, the model is optimized using the Adam
optimizer [41]. Using the validation data, we manually tuned
the model over a variety of hyper-parameters, and con-
sider the values in table 1 to be adequate. We also consid-
ered several patch sizes but suggest the size of 64 × 64.
The gradient penalty weight is chosen as 10 suggested by
Gulrajani et al. [36].

TABLE 1. Hyper parameters for training.

D. EVALUATION METRICS
In order to evaluate the model in comparison with ground
truth we make use of two standard evaluation metrics: Peek
Signal to Noise (PSNR), and Structured SIMilarity (SSIM).
We also report the level of soft tissue noise using the method
of Samei et al. [42]. As suggested by National Instruments
[43], the PSNR ratio can be considered as a good image qual-
ity metric. PSNR is the ratio between the maximum power
of a signal and the power of distorting noise that affects the
quality [43], and is typically reported in decibels as follows,

PSNR = 10 log

(
MAX2

I

MSE

)
(16)

where MAX2
I is the maximum intensity of the image in HU,

and MSE is the mean square error between denoised and
ground truth images.

We also make use of SSIM as a image quality assessment
metric. SSIM is a perceptual distance metric proposed by
Wang et al. [26]. SSIM is defined between−1 and 1, in which
0 indicates no similarity between the denoised and ground
truth images. The SSIM metric is defined as follows,

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ 2

x + σ
2
y + c2)

(17)

where µx and µy are the means of images x and y for
comparison, σxy is the covariance of the images, and σ 2

x and
σ 2
y are the individual pixel variances.

E. SOFT TISSUE NOISE
In addition to the PSNR and SSIM metrics, we also report
the Soft tissue noise, using the method as proposed by
Kamalanathan et al. which is largely similar to the method
of Samei et al. [42], [44]. The purpose of this method is to
calculate the standard deviation of the pixels over a soft tissue
medium which is anatomically very smooth.
Soft tissue noise has been shown to be highly anticorrelated

with CTDI and DLP, although it is an imperfect measure.
In particular, the metric will not be able to detect if an

image blurs the tissue boundaries, as this metric discards
edges in order to calculate the noise over uniform material
only. As such, we do not consider soft tissue noise to be an
evaluation metric, but rather a descriptive estimate of global
image noise over uniform material.

Figure 7 shows how the uniform regions of soft tissue are
selected by the algorithm of Kamalanathan et al. [42] which
is largely similar to that of Samei et al. [44]. We see that
non-overlapping boxes of 30× 30 pixels are selected if these
boxes have a low standard deviation, and lie within a range
of radiodensities associated with smooth muscle. Smooth
muscle is associated with roughly 300 HU .

FIGURE 7. ROIs obtained for calculation of soft tissue noise.

We determine the regions of uniform air and smooth
muscle over the NDCT scan, but then apply these same
regions to the denoised scan for each of the algorithms in our
comparison. This is seen in figure 7 in which the denoised
image has the same regions of interest as calculated over the
original NDCT scan. The reported Air noise and Soft tissue
noise are standard deviations in HU over the smooth Regions
of Interest (ROI), and serve as an estimate of global image
noise.

VI. RESULTS
In this section, we present the results obtained using the
proposed CL-GAN model in comparison with other models,
including two state-of-the-art published methods. We present
results both in comparison with simulated Poisson noise as
well as the Phantom FDA returns.

For both the Qualitative and Quantitative results, we com-
pare our proposed CL-GAN model versus 5 alternative GAN
methods. Two of these methods are considered state-of-
the-art CT denoising GANs from recent literature [25], [30].
We also compare against a L1 structural loss GAN, the MSE
structural loss GAN, and the Wasserstein adversarial loss
GAN. Finally, as a naive baseline, we compare against the
original noisy LDCT scan. We find that CL-GAN achieves
the highest PSNR on the test dataset of any of the methods in
this comparison as seen in Fig. 13 and Fig. 15.
We describe each of thesemethods as follows, SSL-GAN is

the structurally sensitive loss SSIM equation as proposed by
You et al. [25]. PL-GAN is theWasserstein GAN architecture
as proposed by Yang et al. [30]. W-GAN is a baseline GAN
using Wasserstein adversarial loss but without the use of any
perceptual loss term. L1-GAN and MSE-GAN represent the
Wasserstein GANwith L1 loss as well as the MSE perceptual
loss functions respectively. LDCT represents the original test
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image scan with Poisson noise and is expected to be lower
than the rest of the models.

A. QUALITATIVE RESULTS
Figures 8, 9, and 10 show example denoising results of dif-
ferent slices from the test dataset with added Poisson noise.
Figure 8 shows an example slice with highlighted regions,
whereas 9 and 10 show zoomin details of the denoising

output over pulmonary vessels and spinal cord respectively.
Figures 11 and 12 show example denoising results using the
Phantom FDA dataset, where 11 shows whole CT clides,
and 12 show zoom-in results over a specific region containing
bone, soft tissue and lung anatomy.

All images are shown using a display window of
[−1024, 1024] Houndsfield Units, and compare the LDCT,
NDCT, L1-GAN, MSE-GAN, CL-GAN (ours), PL-GAN,

FIGURE 8. Result obtained from PL-GAN, SSL-GAN, CL-GAN (ours) on simulated dataset. Display window [−1024, 1024].

FIGURE 9. Enlarged view of blood vessels (blue bounding box in figure 8) and comparison of result obtained from PL-GAN,
SSL-GAN, CL-GAN (ours) on simulated dataset. Display window [−1024, 1024].
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FIGURE 10. Enlarged view of spinal cord (red bounding box in figure 8) and comparison of result obtained from PL-GAN, SSL-GAN, CL-GAN (ours)
on simulated dataset. Display window [−1024, 1024].

FIGURE 11. Denoising result of axial slice over phantom dataset. Display window [−1024, 1024].

SSL-GAN, and W-GAN. For the Kaggle dataset with sim-
ulated Poisson noise, the LDCT represents the NDCT image
with added noise. Over the Phantom FDA dataset, the LDCT
represents the image as acquired at 25 mAs, whereas the
NDCT represents the most similar slice at 100 mAs after
sub-pixel image registration with translation and rotation was
performed

We can see in all figures that the GAN algorithms have sub-
stantially lower noise and better represent the true NDCT per-
formance relative to the LDCT for both the simulated noise,
as well as the true noise Phantom scans. However, we see
that there is subtle variation in image quality amongst the

different GAN algorithms, qualitatively we believe CL-GAN
to produce the highest quality resulting image relative to the
other algorithms in comparison.

We see in figures 9 and 10 that CL-GAN has greater
textural detail than MSE-GAN, while achieving smoother
returns on uniform structures than L1-GAN, although varia-
tion amongst GAN denoising results is relatively subtle over
the simulated noise imagery.

In Figure 12 we see that over the phantom vessels, that the
CL-GAN is highly accurate at determining both the shape
and size of the blood vesses, and reproduces much of the
bone structure.We see thatMSE-GAN andW-GAN appear to
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FIGURE 12. Enlarged view of denoising result over axial slice in phantom dataset. Display window [−1024, 1024].

qualitatively over-blur the resulting image, and that PL-GAN
and SSL-GAN appear to have less ability to reconstruct
high-contrast details of the spinal cord relative to CL-GAN.
Although all GAN algorithms in this comparison achieve
greater quality than LDCTwithout increasing radiation expo-
sure, we see that the quality improvement is easier to discern
over the Phantom slices potentially due to the higher quality
of the LDCT imagery providing more apriori information to
the GANs of small scale structures.

Qualitatively, we see that over the simulated imagery,
all GAN algorithms appear to improve the image quality,
whereas over the Phantom imagery the LDCT scan is rel-
atively higher quality and as such we see that overblurring
of edges may cause image qualty to decrease slightly with
several GAN algorithms, although the CL-GAN appears
able to suppress noise without overblurring the edges or
high-contrast features.

B. QUANTITATIVE ANALYSIS AND COMPARISON
Figures 13 and 14 show the PSNR and SSIM metrics respec-
tively of the generated images for 82 test slices from 4 dif-
ferent patients for each model in the comparison. Figures 15
and 16 show the PSNR and SSIM metrics respectively for
300 slices taken from Phantom dataset.

It can be seen that the proposed CL-GAN outperforms
all other GAN algorithms in terms of PSNR on both the
simulated noise dataset as well as the Phantom FDA scans.
We also see that the CL-GAN outperforms all other GAN
algorithms in SSIMon the simulated dataset, and outperforms
all other GAN algorithms except possibly L1-GAN in terms
of SSIM on the Phantom dataset.

We see that on the Simulated noise dataset in Figures 13
and 14 that the that L1-GAN and MSE-GAN are not
competitivewith themore sophisticated algorithmsCL-GAN,
PL-GAN and SSL-GAN. In figure 13 we can see that
the proposed CL-GAN was able to produce the highest
PSNR when compared to these other methods, followed by
PL-GAN [30], SSL-GAN [25], andW-GAN. TheMSE-GAN
and L1-GAN achieved a lower PNSR. Figure 14 shows
the comparison of the Structural Similarity Index (SSIM)
which is a perceptual metric for image quality over the
simulated noise dataset. We see that the proposed CL-GAN
outperforms the other methods in accordance with this metric
as well. Overall, the ordering of the results with SSIM is
largely similar to the PSNR results, although we see that
W-GAN performs more competitively in comparison to the
PL-GAN [30] and SL-GAN [25] models for this evaluation
metric.

Figure 15 shows the resulting PSNR over the Phantom
FDA imagery, for which the 25 mAs scan was used as LDCT,
and 100 mAs scan was used as NDCT. We see that CL-GAN
is the highest performing algorithm followed by SSL-GANad
L1-GAN, then PL-GAN, MSE-GAN, and W-GAN achieve
lower performance. This ordering is similar to that of the Sim-
ulated datset, except that the L1-GAN achieves comparably
higher relative performance than on the Simulated dataset, but
still below that of CL-GAN. We see similar results when we
apply the SSIM metric to the Phantom FDA imagery as seen
in Figure 16 with two notable exceptions, firstly the LDCT
scan itself achieves higher SSIM than the lower performing
MSE-GAN andW-GAN, and this can be attributable because
the LDCT scan at 25 mAs has much lower noise than the
simulated imagery. A second difference is that, although

VOLUME 9, 2021 84103



B. Gajera et al.: CT-Scan Denoising Using Charbonnier Loss Generative Adversarial Network

FIGURE 13. PSNR obtained during testing on simulated dataset for four patients.

FIGURE 14. SSIM obtained during testing on simulated dataset for four patients.

CL-GAN achieves higher performance than the other meth-
ods in terms of SSIM, the L1-GAN and SSL-GAN are com-
petitive. As SSIM is a perceptual metric, it is possible that the

noise within the LDCT scan is relatively less perceptable than
other artifacts such as overblurring of edges which occurs in
the MSE-GAN and W-GAN techniques.
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FIGURE 15. PSNR obtained during testing on Phantom Dataset.

FIGURE 16. SSIM obtained during testing on Phantom Dataset.

MSE loss in particular has been shown by several
researchers to produce overly blurry images, particularly
over edges [22], [30], thereby reducing PSNR and SSIM.

CL-GAN improves this performance because Charbonnier
loss is an M-estimator that approximates MSE over small
deviations.
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C. SOFT TISSUE NOISE METRICS
We now report the soft tissue noise using the method of
Kamalanathan et al. based on the work of Samei et al. [42],
[44]. These results are consistent with the quantitative results
obtained using PSNR and SSIM as shown in the previous
sub-sections.

TABLE 2. Noise Algorithm results on figure 8.

In table 2 we see the soft tissue noise over the slice pre-
sented in Fig. 8. In an ideal scenario, a denoising algorithm
should achieve the soft tissue noise which is as close as
possible to that of the NDCT ground truth slices. As it can
be seen in table 2, CL-GAN provides the lowest soft tissue
noise estimate in this comparison without going lower than
the original NDCT image. For completeness, the original
LDCT slice with simulated noise is also shown exhibiting
a much higher value of soft-tissue noise. The next lowest is
the SSL-GAN does not provide close results to us relatively
for PSNR and SSIM L1-GAN produces very close results
to MSE-GAN. We see that PL-GAN produces higher soft
tissue noise estimates than the other models tested. Finally,
W-GAN appears producing values lower than that of the
ground truth image which means that the generated images
from only using the adversarial loss are over-smoothed which
also supports our visual observation.

VII. CONCLUSION
We present an image-to-image deep denoising GAN that
improves performance over related methods by incorporating
a Charbonnier structural loss term. Image-to-image denoising
is the most heavily studied approach to deep reconstruc-
tion, and denoising GANs are at present the most accurate
technique. The proposed CL-GAN makes use of Charbon-
nier structural loss in combination with Wasserstein adver-
sarial loss and VGG perceptual loss. The Charbonnier loss
is a variant of Huber loss known as pseudo-Huber loss.
It acts as a pixelwise regularizer to constrain the generated
images to closely approximate the ground truth over the
training dataset. Charbonnier structural loss is less sensitive
to bimodal distributions that can occur over tissue boundaries
as compared to MSE pixelwise loss. This property thereby
results in a greater ability to suppress noise without compro-
mising structural detail. In conclusion, we demonstrate that
the CL-GAN architecture which incorporates Charbonnier
structural loss is a state of the art approach for the purposes
of improving the signal to noise ratio of CT-scans without
increasing radiation exposure to the patient.

APPENDIX A
VARIANCE/BIAS TRADEOFF OF CT DENOISING FILTERS
We now describe a theoretical variance/bias tradeoff between
the use of the popular L1 and L2 norms for CT denoising,
and which justifies the use of a hybrid Charbonnier loss in
order to achieve a balance between these factors to reduce
reconstruction error. Our intent for this analysis not to model
the complexities of neural architectures or GANs, but rather
to formalize our argument that under basic assumptions a
simple non-linear Charbonnier filtering kernel would outper-
form a L1 (median) kernel, or L2 (mean) filtering kernel
for the purposes of image denoising. In particular we wish
to demonstrate that a Charbonnier loss filter would produce
lower MSE over edges than L2 loss, and lower MSE over
smooth regions than L1 loss, and furthermore would produce
good values in both situations. Finally, we demonstrate that
a properly tuned Charbonnier loss kernel has the ability to
outperform even the L1 loss kernel over edge boundaries.

We assume a piecewise smooth model of a CT image
with white gaussian noise. Gaussian noise is a reasonable
first order approximation of Poisson noise due to the normal
approximation of the Poisson distribution for photon counts
greater than 20. The piecewise smooth model is reasonable
to first order because signal variation within tissue regions is
often of comparable magnitude to noise power. We consider
cases of pixels within a smooth region, as well as pixels that
cross the edge boundaries between regions.

We define the unobserved true radiodensity of the target
pixel as µ1, and define the radiodensity estimate of the
denoising filter as µ̂. We assume that the denoising filter
must estimate µ1 as closely as possible given a sample of
N surrounding radiodensities X1 . . .XN . The N pixels follow
bimodal Normal distribution between two regions of nominal
radiodensities µ1 and µ2 with noise power σ as follows.

Xi ∼ αN (µ1, σ )+ (1− α)N (µ2, σ ) (18)

Equation 18 simplifies to a unimodal Normal distribution
in the special case when α = 1. The unimodal case is
anticipated when sampling over the interior of smooth tissue,
whereas the bimodal case 0.5 < α < 1 is anticipated when
sampling over edge boundaries. We constrain α > 0.5, such
that the true radiodensity µ1 is the population mode.

When sampling over edge boundaries, we define K as
the number of sample inliers as drawn from N (µ1, σ ) and
N − K as the number of outliers drawn from N (µ2, σ )
due to contamination of the sample by the adjacent smooth
region. The value K varies from region to region, but does
not vary from denoising kernel to denoising kernel. i.e. the
L1 filter, L2 filter, and Charbonnier filters all encounter the
same number of outliers when sampling the same region of
tissue. As such, we can reorder this sample such that the first
K samples are the inliers drawn from the target smooth region
and the remainingN−K are drawn from the adjacent smooth
region as follows,

X1 . . .XK ∼ N (µ1, σ )
XK+1 . . .XN ∼ N (µ2, σ ) (19)
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A denoising kernel must attempt to estimate population
mode µ1 given K observed samples X1..XK . This kernel will
produce a sample estimate µ̂, which minimizes the loss L to
K candidate values as follows,

argmin
µ̂

K∑
i=1

L(µ− Xi) (20)

The loss L could be either the L1, L2, or Charbonnier
functions. It is well known that for the L1 loss, µ̂ simplifies
to the sample median, whereas for the L2 loss µ̂ becomes
the sample mean. However, for the Charbonnier loss, esti-
mation of µ̂ to minimize equation 20 does not have explicit
form. Rather, this minimum must be calculated with convex
numerical methods.

We must quantify and compare the bias and variance of
each of the proposed kernel loss functions for estimating
the true tissue radiodensity µ1. Bias B is defined as the
expected difference between the sample estimate and the true
radiodensity as follows,

B = E(µ̂)− µ1 (21)

Variance V is defined as the square error of the sample
estimate relative to the sample mean as follows,

V = E(µ̂− E(µ̂))2 (22)

A suitable estimator should strive to reduce bias and vari-
ance simultaneously. The expected MSE of an estimator is
equally affected by the sample square bias as well as the
sample variance as follows.

MSE = E(m̂u− µ1)2 = B2 + V + σ 2 (23)

For any given value of K > 0, the L1 norm has lower
bias whereas the L2 norm has lower variance. For K = 0 the
L1 and L2 norms have zero bias but the L2 norm has lower
variance. Given K , the samples X1 . . .XK and XK+1 . . .XN
can be seen as drawn from two unimodal distributions with
means µ1 and µ2.

A. BIAS OF L1 AND L2 NORMS
The L2 norm has a relatively high bias as it is influenced
by the N − K outliers as drawn from the adjacent tissue as
follows.

BL2 =
N − K
N

(µ2 − µ1) (24)

The L1 norm is a robust estimator and is therefore not
heavily influenced by outliers so long as K > N/2. The
expected value of µ̂L1 is the sample median, but in the
presence of outliers even the median is biased relative to the
population mode µ1. The expected value of the median is the
50th percentile of a bimodal PDF as follows,∫ E(µ̂)

−∞

b(x)dx =
1
2

(25)

where,

b(x) =
K
N
f (x, µ1, σ )+

N − K
N

f (x, µ2, σ ) (26)

Assuming that µ2 > µ1+ 2σ , the bias of the L1 estimator
is well approximated by adjusting the percentile of the dom-
inant distribution as follows,∫ E(µ̂)

−∞

f (x, µ1, σ )dx ≈
N
2K

(27)

Under this approximation the bias of the L1 estimator
simplifies to the following which depends only on σ and is
robust to large differences in the value of µ2.

BL1 ≈ σ
√
2 erf−1

(
N − K
K

)
(28)

In order to compare bias, note that erf−1(λ) ≈ λ for
−

3
4 ≤ a ≤ 3

4 . Therefore, for K > 4
7N and for µ2 − µ1 >

2σ , we arrive at the following ratio of bias between L2 and
L1 norms,

BL2
BL1
≈
µ2 − µ1

σ
√
2

In the caseµ2−µ1 ≈ 2σ , then the bias between the L2 and
L1 norms differ by approximately a factor of

√
2 as follows,

BL2 ≈
√
2 BL1 (29)

B. VARIANCE OF L1 AND L2 NORMS
Variance of the L1 and L2 norms is straightforward to cal-
culate due to our decomposition of the sample into two
unimodal normal distributions of equal variance. As their
are X1 . . .XK N (µ1, σ ) and XK+1..XN N (µ2, σ ), the sample
variance follows a t distribution that is approximately normal
for large N as follows,

VL2 =
σ2

N
(30)

We now proceed to show that under basic assumptions VL2
is proportional yet larger than VL1. We assume as before that
K > 4

7N , and µ2 −µ1 > 2σ such that the sample median of
the bimodal distribution is well approximated by a sample N

2K
percentile of the dominant unimodal distribution. For large
K we may apply the central limit theorem of medians and

percentiles, in that in which the variance of the q = N
2K

th

percentile converges to

VL1 =
N
2K

2K − N
2K

1
Kf 2(xq, µ1, σ )

where xq = µ1 + σ
√
2 erf −1(

N − K
K

) (31)

Note again that due to Taylor expansion erf −1(λ) ≈ λ

for − 3
4 ≤ λ ≤ 3

4 which holds when K > 4
7N as assumed.

As such, the above equation simplifies to the following,

VL1 ≈
(2KN − N 2)σ 22π

4K 3e−2(
N−K
K )

2 (32)
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We may substitute K = βN where 4
7 < β < 1. In doing

so, the asymptotic variance of the L1 estimator simplifies to
a constant function of β times the asymptotic variance of the
L2 estimator as follows,

VL1 ≈
(2β − 1)π

2β3e−2(1−β)2
VL2 (33)

Numerical evaluation of this coefficient over the valid
interval 4

7 < β < N demonstrates that the L1 denoising
kernal exhibits proportional yet greater variance than the L2
kernel as follows,

π

2
VL2 ≤ VL1 ≤ 2.21 VL2 (34)
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