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ABSTRACT Point clouds are subject to various distortions during point cloud processing missions, any
of which may lead to quality degradation. Consequently, predicting point cloud quality has attracted a lot
of attention. In this paper, a layered projection-based point cloud quality metric (LP-PCQM) is proposed.
We layer the distorted point cloud and its original version firstly and then extract the geometry and color
features of layers. The geometry feature is obtained using the projection-based method and the color features
are extracted upon RGB by using the point-based method. Finally, the LP-PCQM is a weighted linear
combination of an optimal subset of these pooled geometry and color features of layers. To verify the
performance of LP-PCQM, we compare it with other eight metrics including both point-based metrics
and projection-based metrics on the WPC, SJTU-PCQA, and ICIP2020 database respectively. Experimental
results show that the proposed metric exhibits better and more robust performance.

INDEX TERMS Layered projection, image quality assessment, 3D point cloud, point cloud quality
assessment.

I. INTRODUCTION
Thanks to the advancement of imaging technologies, more
and more formats are used to present visual content in
the immersive media field. Depending on the capturing
device, those formats can correspond to holograms [1], light
fields [2], or point cloud (PC) [3], etc. Among these, PCs
denote a practical content representation that allows users to
visualize static or dynamic scenes in a more immersive way
and can be directly exploited in systems aiming to provide
immersive experiences with higher degrees of freedom [4],
so PC recently becomes one of the first choices to represent
3D visual contents and has a wider variety of applications
with the development of VR/AR [5], [6].

Compared to 2D images, 3D PCs have their geometric
coordinates and other associated attributes that describe sur-
face properties. To describe accurately a 3D scene, PCs
require a large number of points, which limits their use
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in actual applications. Most PC processing missions, e.g.,
compression [7]–[9], transmission [10], display [11]–[13]
and other technologies [14], [15] will bring in various dis-
tortions and lead to quality degradation reducing the sat-
isfaction of the quality of experience (QoE) of end users.
For applications in which PCs are ultimate to be viewed
by human beings, the only ‘‘correct’’ method of quanti-
fying visual quality is the subjective evaluation. However,
the subjective evaluation is time-consuming and expensive,
and cannot be directly embedded into a practical system
as the optimization metric [16]. Naturally, the majority of
the efforts on quality assessment have been devoted to the
development of objective metrics [17], which is to develop
quantitative measures that can automatically predict per-
ceived PC quality. It is worth mentioning that objective PC
quality assessment (PCQA) methods can be used not only
to dynamically monitor and adjust PC quality to achieve
a good perceived quality for end-users but also to opti-
mize algorithms and parameter settings of PC processing
methods.
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FIGURE 1. Framework of layered projection-based point cloud quality metric (LP-PCQM). N represents the total number of layers.

Objective PCQA metrics are commonly classified as Full
Reference (FR) [17]–[28], Reduced Reference (RR) [29],
[30], and No Reference (NR), depending on the avail-
ability of reference information. Compared with RR and
NR metrics, people have more research on FR metrics
which can be classified as (a) point-based [18]–[25] and
(b) projection-based [17], [26]–[28]. Most studies in the
past had emphasized on the geometric distortion measure-
ment of PC object, such as the point-to-point (po2point),
point-to-plane (po2plane), point-to-mesh (po2mesh) [18] and
plane-to-plane (pl2plane) [19]. Recently, curvature statistics
which were initially introduced and applied on polygonal
meshes [31] have also been proposed to estimate the dis-
tortion of a PC concerning its reference [20] and they have
been extended to include color information [21]. Differ-
ent from the above methods, Yang et al. [22], Liu et al. [23],
Viola et al. [24], and Alexiou and Ebrahimi [25] developed
new research directions for PCQA from breakthroughs, such
as deep learning, histogram, or SSIM [32] and so on.

We propose a layered projection-based point cloud quality
metric (LP-PCQM). Fig. 1 shows the framework of the pro-
posed LP-PCQM. We firstly layer the reference PC (PCref )
and the distorted PC (PCdis) and then extract the layers of
features related to geometry and color respectively. Geometry
features are based on layered projection and image metrics
are employed. This process adopts the layered projection
method, which is to project the distorted PC layer (Ldis) and
its corresponding reference PC layer (Lref ) onto the plane
fitted by the Lref to obtain the information images of lay-
ers, instead of mapping onto six different planes. Extending
the definition in [21], color features of layers are extracted
from the RGB of points and their local neighborhoods. The
proposed metric is then computed as a linear combination
(computed through multiple linear regression analysis) of an
optimal subset of these pooled geometry and color features
of layers.

This paper is organized as follows: Section II is the related
work, which summarizes the existing PCQA metrics and
analyzes their advantages and disadvantages. We describe the
proposed method in section III. Section IV are experimental
results and analysis, including the determination of model
parameters and the performance comparison of the proposed
metric and others. Section V is the conclusion of this paper.

II. RELATED WORK
Inspired by the vast amount of previous works on
image/video quality assessment, these PCQA metrics are
mostly FR [17]–[28] meaning that a complete reference
content is assumed to be known and NR/RR [29], [30] PCQA
metrics are introduced recently.

RR and NR metrics can be usefully employed when little
to no information is known about the original content [30].
Liu et al. [29] proposed a RR model to accurately predict the
mean opinion score (MOS) of V-PCC compressed 3D PCs
from the quantization parameters of the geometry and color
encoders. Viola and Cesar [30] extracted a small set of fea-
tures from a given reference content based on both structure
and attribute domains. Such features were then transmitted
alongside the content, and were used at the receiver side to
predict the visual quality of the content under exam. More-
over, they combined the proposed features through a linear
optimization algorithm. In the following, we mainly study
two categories of FR PCQA metrics: point-based [18]–[25]
and projection-based [17], [26]–[28].

In the first category, the earliest researches, only consid-
ering geometric information, calculated the distance error,
normal vector, and tangent plane between the PCref and the
PCdis, which are classified as po2point, po2plane, po2mesh,
and pl2plane. The po2mesh metric is based on projected
distances between the PC under evaluation and the refer-
ence object. Considering that the objective scores heavily
depend on the selected surface reconstruction algorithm.
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Thus, the po2mesh metric is considered as a sub-optimal
solution for the quality assessment of PCs [4]. The po2point
metric is based on geometric distances of associated points
between the PCref and PCdis, but it does not consider the
fact that points in a PC usually represent surfaces on the
object. The po2plane metric is based on the projected error
along the normal of a reference point and, essentially, larger
costs are assigned to points that deviate from the underlying
surface [18]. The pl2plane metric is based on the angular
similarity of tangent planes. PC-MSDM [20] is based on local
curvature statistics and can be viewed as an extension for PCs
of the MSDM [33] metric suited for 3D meshes. However,
both of them are limited by the high complexity of searching
for the neighboring points to construct the normal or cur-
vature. The state-of-the-art point-based methods that assess
the color of a PCdis are based on conventional formulas used
in 2D content representations. In particular, points that belong
to the content under assessment are associated with points
that belong to the reference model, using typically the nearest
neighbor algorithm. And the total color degradation value is
based either on the color MSE, or the PSNR [17]. How-
ever, the metric only considers color information. Recently,
Meynet et al. introduced PCQM, which is an optimally
weighted linear combination of geometry-based and color-
based features [21]. Viola et al. incorporated color distortion
in geometry-based metrics, using luminance histogram infor-
mation [24]. However, the histogram works by introducing
spatial correlation as a way to describe changes in color statis-
tics. As such, it does not describe the distribution of colors in
the content, but rather the color distribution of points concern-
ing each other, which leads to a poorer correlation with close
neighbors results. Whereas Alexiou et al. proposed the usage
of local statistical features in order to obtain a global measure
of degradation, similarly to the Structural Similarity (SSIM)
in the image domain [25]. In [22], Yang et al. filtered the PC
firstly and then evaluated the quality prediction considering
the impact of color transformation on quality. However, this
model presents relatively high computation complexity due
to some operations, such as graph construction [27]. With
the proposal of PC deep learning networks [34] such as
PointNet [35], Liu et al. [23] used a mathematical model
of Artificial Neural Networks to evaluate the quality of PC.
It is based on the stack of sparse convolutional layers and
residuals, extracts hierarchical features, and pools them glob-
ally to obtain feature vectors. Finally, the subsequent network
sends the feature vectors to the regression module to predict
the final quality fraction. Although the metric has better
robustness to different distorted PCs, the performance may
be reduced due to insufficient training set on a small data set.
At present, the amount of data on the public PC databases is
not large enough, so this method has certain limitations.

The above point-based methods, considering geometry,
color, or geometry-plus-color, depend on individual errors
that are assigned to pairs of associated points. Conversely,
the projection-based methods [17], [26]–[28] are to trans-
form the 3D PC into 2D images through projecting and

then evaluate the PC quality, which not only are able to
capture both geometry and color distortions but also evaluate
the quality of PCs from the human eye perception. In the
projection-based approaches, Torlig et al. projected voxelized
PCs onto 2D planes and conventional 2D imaging metrics are
employed. Moreover, the number of projections to compute
the objective scores was set to six, while each view was
treated as of equal importance [28]. In principle, different
perspectives of a 3D model might be of different importance,
as they could be more or less representative or informative
regarding the presented content. So the projection-based
PCQA was extended by investigating the impact of apply-
ing different camera layouts to capture views of the mod-
els, as well as exploiting user interactivity data in [26].
Alexiou et al. [17] proposed that snapshots of the models are
typically acquired from the software used for consumption
in order to reflect the views observed by the users. However,
this method needs to consider additional influencing factors,
such as the distance between the content and the cameras,
the direction of the cameras, the lighting conditions, and the
type of projection (e.g., orthographic, perspective). So we
do not consider this method of capturing views. Yang et al.
chose to project the 3D PC onto six perpendicular image
planes of a cube for the color texture image and corresponding
depth image and aggregated image-based global and local
features (e.g., edge, depth, pixel-wise similarity, complexity)
among all projected planes for a final objective metric [27].
Compared with the previous one, this projection method does
not have to consider many additional influencing factors, but
it will lose detailed information (see Section III-A2). In short,
how to derive an effective PC quality assessment model over
2D planes requires further exploration.

III. A LAYERED PROJECTION-BASED POINT CLOUD
QUALITY METRIC
Considering that PCs have at least two types of information
per point (color and geometry), the main idea of the pro-
posed method is to extract color and geometry features from
the PCref and PCdis. The proposed method is divided into
the following stages: (1) Preprocessing of PCref and PCdis
respectively. We layer PCs firstly and then proceed in two
steps. One step is to project PC layers for extracting geometric
features, and another step is to establish local neighborhoods
among PC layers for extracting color features. (2) Geometry
and color quality assessment. (3) Overall quality assessment.

A. POINT CLOUD PRE-PROCESSING
1) LAYERING
We propose the concept of PC layering for two reasons. One
reason is to reduce time complexity. The PC data is scattered,
disorderly and huge. We have to traverse the entire PC for
each search when searching for the nearest neighbors of all
points. After layering, each point narrows the search range
to reduce time complexity when we extract color features.
The other reason is that it is beneficial for overcoming the

88110 VOLUME 9, 2021



T. Chen et al.: Layered Projection-Based Quality Assessment of 3D PCs

FIGURE 2. Schematic diagram of layering effect.

FIGURE 3. The multi-sides projection and layered projection.

shortcomings of multi-sides overall projection as seen in
Section III-B1.

The method of layering is as follows. A point in a PC has
its coordinates (x, y, z) and attributes, such as color values,
reflectivities and normal vectors. According to the coordi-
nates, the PC is divided into N layers and Zmax is the max-
imum value of z of PCref or PCdis:

d =
Zmax
N

. (1)

where d is the thickness of each layer. Then the layer number
of each point can be record as t ,

t = b
z
d
c. (2)

Fig. 2 shows the effect of dividing certain layer of the apple,
where Lref means the PCref layer, and Ldis means the PCref
layer. After layering, we project the PCs’ layers and construct
local neighborhoods.

2) LAYERED-PROJECTION
The multi-sides overall projection method is to project the
entire PC onmultiple different planes. The projection method
we mainly study in this paper is that each 3D PC is mapped to
six perpendicular 2D image planes via the orthographic pro-
jection. These image planes, e.g., referred to as the ‘‘front’’,
‘‘back’’, ‘‘left’’, ‘‘right’’, ‘‘top’’ and ‘‘bottom’’ planes, cor-
respond to six faces of a cube [27], as shown in Fig. 3 (a).
The color value of every point with spatial coordinates is

associated with an image pixel in the respective projected
image. During the projection, if another point with identical
coordinates and a smaller distance from the projection plane
is identified, the first point is ignored, and the color value
of the pixel is given by the second point [28]. This may
lose some detailed information for the part A appearing to
be surrounded as shown in Fig. 3 (b) because the part A is
not the closest to the projected planes. So the multi-sides
projection has some limitations to a certain extent. In order to
solve this problem, we propose the layered-based projection.
Only observing the PC layer as shown in Fig. 3 (b), the details
of part A are more obvious. Considering that only a certain
number of projection planes are used in practice and one
projection view could be enough to achieve high perfor-
mance [26], we project the PC on the fitting plane obtained
by the least-squares method [36] which is an optimization
process. The purpose of establishing the fitting plane is to
reduce the points that are projected on the same position
repeatedly and to better reflect the geometric structure on the
plane for considering all points. We perform PCs projection
via MATLAB and implement it as follows: Firstly, Lref and
Ldis project on the same fitting plane F obtained by

F = Ax + By+ Cz+ D, (3)

where A, B, C and D are the coefficients of the fitting equa-
tion, and x, y and z are the 3D coordinates of points of the
corresponding PC layer. Secondly, for projected points of
sample, we plot them on the plane as the information images
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FIGURE 4. The formation of layered projection.

FIGURE 5. Two local neighborhoods of the Lref and the Ldis.

storing the corresponding gray value of the PCs via its x
coordinates and y coordinates. If multiple points share same
x and y while different z, the associated information image
value is derived as the average of the gray values of the points.
This is the planarization process, where the Lref of 2D image
is Pref and the Ldis of 2D image is Pdis. The layered projection
process of PC is shown in Fig. 4.

3) NEIGHBORHOOD DETERMINATION
To establish a correspondence preparing for color features
extraction, for each point belonging to PCref , the existing
approach in [19] simply considers the nearest neighbor of
p belonging to PCdis. However, this will ignore the sur-
face structures leading to inaccurate correspondence. In [21],
Meynet et al. searched, for each p, the projection p̂ on the 3D
surface subtended by PCdis and established two local neigh-
borhoods with p and p̂ as the center, but it heavily tends to
rely on specific surface reconstructions. In order to establish

a more effective and simple correspondence, we propose a
new method combining the above two ideas. The same points
are found in the Lref and Ldis as the center to create local
neighborhoods using the K-nearest neighbor method [37] in
preparation for the establishment of color-related features as
shown in Fig. 5. To choose the best neighborhood compu-
tation parameters for the proposed metric, we tested differ-
ent neighborhood values (K=15 and k=20), but found no
major performance advantages. Therefore, K is set as 20 in
LP-PCQM.

B. GEOMETRIC AND COLOR QUALITY ASSESSMENT
1) GEOMETRIC QUALITY ASSESSMENT
In the field of 2D images, image quality metrics include
the mean squared error (MSE) [38], Peak Signal-to-Noise
Ratio (PSNR) [39], Structural Similarity (SSIM) [32], and
so on. MSE is computed by averaging the squared intensity
differences of distorted and reference image pixels, which
objectively quantifies the strength of the error signal. How-
ever, two distorted images with the same MSE may have
different types of errors, some of which aremuchmore visible
than others. And people often found it hard to understand the
MSE between multiple PCs. So PSNR appeared. Let xv and
yv be the vth pixel in the original image x and the distorted
image y, respectively. The MSE and PSNR between the two
images are given by

MSE =
1
V

V∑
v=1

(xv − yv)2, (4)

PSNR = 10log10(
L2

MSE
), (5)

where V is the total number of pixels in the image and L is
the maximum dynamic range. For 8 bits gray-scale images,
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L is 255. The PSNR value approaches infinity as the MSE
approaches zero. This shows that a higher PSNR value pro-
vides a higher image quality. At the other end of the scale,
a small value of the PSNR implies high numerical differences
between images [40]. However, the PSNR is based on the
error between the corresponding pixels, and the difference
value is not proportional to the subjective feelings of people.
Instead, SSIM considers to be correlated with the quality per-
ception of the human visual system (HVS) [41] and is based
upon separated comparisons of local luminance, contrast, and
structure between original and distorted images. Given two
images xv and yv, the SSIM can be calculated in the following
way:

SSIM(xv, yv) = l(xv, yv)c(xv, yv)s(xv, yv), (6)

l(xv, yv) =
2µxµy + C1

µ2
x + µ

2
y + C1

, (7)

c(xv, yv) =
2σxσy + C2

σ 2
x + σ

2
y + C2

, (8)

s(xv, yv) =
2σxy + C3

σx + σy + C3
(9)

where µx is the mean of xv, µy is the mean of yv, σx is the
standard deviation of xv, σy is the standard deviation of yv,
σxy is the covariance of xv and yv. C1, C2 and C3 are the
constant used to maintain stability. Instead of using tradi-
tional error summation methods, such as MSE and PSNR,
the SSIM improves the disadvantages of PSNR and has
better performance in image quality assessment (IQA) [42].
Besides, the evaluation results of SSIM is more consistent
with the human eyes. This is more helpful for PCQA of the
HVS oriented. In addition, the perception of 3D geometric
objects by human eyes has the same structural characteristics
as that of 2D images. The pixel points of 2D image belong
to plane distribution and regular arrangement. However, 3D
geometric objects belong to spatial distribution and are irreg-
ular arrangement [43]. So the PC layer is converted into
a 2D image through layered projection, and SSIM is used
to evaluate the quality of geometry between the Lref and
Ldis. In practice, we use IW-SSIM due to its better overall
performance than SSIM [44]. Let xe,v and ye,v be the vth local
image patches (extracted from the vth evaluation window) at
the eth scale. Ee is the number of evaluation windows in the
scale, and V is the number of scales. ge,v is the information
content weight computed at the vth spatial location in the eth
scale [44]. Then the eth scale IW-SSIM measure is computed
as

IW-SSIMe =

∑
vge,vc(xe,v, ye,v)s(xe,v, ye,v)∑

ge,v
, (10)

where e=1,. . . ,V-1.

IW-SSIMe=
1
Ee

∑
vl(xe,v,ye,v)c(xe,v,ye,v)s(xe,v,ye,v), (11)

for e=V. The final overall IW-SSIM measure is then com-
puted as

IW-SSIM =
V∏
e=1

(IW-SSIMe)βe , (12)

where βe is obtained in [44]. So the geometry feature of layer
f1n is:

f1n = IW-SSIM(Pref ,Pdis), (13)

where f1n represents the geometry feature of the nth layer.

2) COLOR QUALITY ASSESSMENT
Only the luminance components of the images are used
for IQA in IW-SSIM [44] and the human eyes perceive
color more sensitively than the brightness of the image.
So we need to extract color features to evaluate color qual-
ity. Meynet et al. [21] converted RGB to the perceived color
space Lab2000HL [45], and obtained the direct relationship
between each point of brightness and two chromaticity values
to extract color features, but their color features were not
good. Based on this, we directly use the raw information RGB
of the PC without any special processing to avoid damaging
data conversion so as to more accurately reflect the color
quality. Similar to [21], the color value c is:

c =
√
r2 + g2 + b2, (14)

where r , g, and b are components of RGB. In order to com-
pare the color values of two PCs, we define the color distance
1h as:

1h=
√
(rref −rdis)2+(gref −gdis)2−(cref −cdis)2, (15)

where rref , gref are the two components of the RGB and
cref is color values about the PCref ; rdis, gdis are the two
components of the RGB and cdis is color values about the
PCdis. In HVS, perceiving local changes is significantly more
sensitive than individual point intensity changes. Therefore,
we use the method described in Section III-A3 to construct
corresponding local information neighborhoods in the Lref
and Ldis. Extending the definition in [21], the color features
are:

f2i =
1

(µLp − µ
L
p̂ )

2 + C4
, (16)

f3i =
2σ Lp σ

L
p̂ + C5

(σ Lp )2 + (σ Lp̂ )
2 + C5

, (17)

f4i =
σ Lpp̂ + C6

σ Lp σ
L
p̂ + C6

, (18)

f5i =
1

C7(µcp − µ
c
p̂)

2 + 1
, (19)

f6i =
1

C81̄H
2
+ 1

, (20)
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where µLp , µ
L
p̂ are the mean neighborhood gray values of

point pi, p̂i respectively; σ Lp , σ
L
p̂ are the standard deviations

of neighborhood gray values of point pi, p̂i respectively; σ Lpp̂
is the covariance of σ Lp and σ Lp̂ ; µ

c
p, µ

c
p̂ are the mean neigh-

borhood color value of point pi and p̂i; 1̄H is the Gaussian
weighted average of the corresponding neighborhood 1h;
C1-C5 are the constants that guarantee the stability of the
expression and are fixed as 1.

The above features f2i − f6i are computed for each point
and are in [0, 1]. We pool all points’ feature values to obtain
color features of layers f2n − f6n,

fjn =

∑
iεQs fji
S

, j = 2, 3, 4, 5, 6. (21)

where Qs is the corresponding point set of the PC layer; s is
the number of the corresponding point set; fji is the feature
value of points representing the jth color feature of the ith
points.

C. THE PROPOSED METRIC
The features f1n− f6n presented above are computed for each
PC layer. Therefore, we pool them to get the overall features:

fj =

∑N
n=1 fjn
N

, j = 1, 2, 3, 4, 5, 6, (22)

where N is the number of layers.
It is a difficult task to assess computationally the visual

quality of a 3D PC composed of both geometry and color
information. In order to combine them, we use the method
of weighted pooling all features for obtaining the objective
score W inspired by [46]:

W =
6∑
j=1

wjfj, (23)

where wj is the weight, obtained according to the subsequent
experiments.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
We used the following data sets for experiment [27], [47],
[48].

WPCDatabase1 [47]: The database consists of 20 contents,
all of which are inanimate objects. It includes 740 test PCs
and each PCref is processed into 5 distortion types causing
by downsampling (DS), Gaussian noise contamination (GN),
and three state-of-the-art PCC algorithms (S-PCC/G-PCC
(Trisoup), V-PCC, and L-PCC/G-PCC (Octree) ) with differ-
ent levels [49].

SJTU-PCQADatabase [27]: This database has 10 contents,
including both human bodies and inanimate objects, and we
chose 6 of them. It includes 252 test PCs, where each PCref
is processed into 7 different distortion types in six levels.
Specifically, the distortions are obtained with Octree-based
compression (OT), Color noise (CN), Geometry Gaussian

1https://github.com/qdushl/Waterloo-Point-Cloud-Database

noise (GGN), Downscaling (DS), Downscaling and Color
noise (D+C), Downscaling and deometry Gaussian noise
(D+G), Color noise and Geometry Gaussian noise (C+G).
They adopted the single stimulus method for subjective rat-
ing. MOSs are given in the range of [1,10].

ICIP2020 Database [48]: This database has six con-
tents, including both human bodies and inanimate objects.
It includes 112 test PCs, where each PCref is processed
into three different distortion types at six levels. The dis-
tortions are generated by the MPEG-3DGC codecs, namely
the video-based PC codec (V-PCC) and two variants of the
geometric-based PC codec (G-PCC). The MOSs we used is
the summary result of all labs provided by the author.

The following evaluation metrics were used to compare the
performance of features or PCQA metrics. Pearson Linear
correlation coefficient (PLCC) is used to assess the predic-
tion accuracy after a nonlinear mapping between the subjec-
tive and calculated scores. The video quality experts group
(VQEG) [50] recommended mapping the dynamic range of
the calculated scores into a common scale using

qu = k1(
1
2
−

1
1+ ek2(su−k3)

)+ k4su + k5, (24)

where su is the calculated score of the uth PCdis, qu is the
corresponding mapped score. k1-k5 are the regression model
parameters to be fitted by minimizing the sum of squared
differences between MOSs and calculated scores. The PLCC
value can then be computed as

PLCC =

∑U
u=1(qu − q̄)(ou − ō)√∑U
u=1(qu − q̄)2(ou − ō)2

, (25)

where ou denotes theMOS of the uth PCdis. ō and q̄ denote the
mean values of ou and qu respectively. Similarly, Spearman
rank-order correlation coefficient (SROCC) for prediction
monotonicity is

SROCC = 1−
6

∑J
u=1 d

2
u

J (J2 − 1)
, (26)

where du as difference between uth the calculated score and
MOS, and J for the total number of samples. And Root mean
squared error (RMSE) for prediction consistency is

RMSE =

√√√√1
J

J∑
u=1

(qu − q̄)2. (27)

The higher the values of the PLCC and SROCC, the better
the performance ofmodels. On the contrary, the lower RMSE,
the better performance of models.

A. PARAMETER DETERMINATION
In order to obtain the best combination of parameters,
we chose the WPC database to train for its larger data set.
In our training, the default number of layers N was 128
(an exponent of 2) and C1-C5 were set as 1 to maintain the
stability of the features. A linear model was considered to
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TABLE 1. Performance comparison between each feature and MOS.

TABLE 2. Recommended weight.

FIGURE 6. The effect of the number of layer on correlation.

determine the proportion of f1-f6. However, in order to prevent
overfitting, it is necessary to evaluate the performance of each
feature and choose the optimal features subset. Table 1 illus-
trates the prediction performance of each feature separately.
f1, f2, and f5 present the better performance compared to f6
which seems to be less relevant as seen from Table 1. For
a given subset of features f1-f5, the weights were optimized
as follows: Features were normalized first due to their non-
uniform. And then the optimal combination of f1, f2, and f3
was obtained through α = C2

4 + C
3
4 + C

4
4 experiments using

multiple linear regression analysis, and the effective weights
are shown in Table 2.
The objective scores obtained by LP-PCQM are between

[0,1]. The closer to 1, the less distortion of the PC. After
determining the proposed metric, we tested the optimal num-
ber of layers N on the STJU-PCQA database for its various
distortion types and a moderate amount of data so as to

TABLE 3. Performance comparison between multi-sides overall
projection and layered projection.

FIGURE 7. PLCC of LP-PCQM, PCQM, GraphSIM and IW-SSIMtp.

obtain test results more efficiently. Similarly, we tested the
superiority of layered projection on the same database.

We increased N by an exponential power of 2 to test the
optimal number of layering. In the course of the experiment,
we found that the smallerN is, the higher the time complexity
is. When N is less than 8, evaluating quality of a PC will
need about twenty minutes, or even forty minutes. Moreover,
theN is too small, and the perceived detail are less. Therefore,
we did not study the influence of N less than 8 on our metric.
The experimental results are shown in Fig. 6. There is not
much difference between the results of N=128 and 256, but
when N is the former, less time is needed, so we recommend
N=128. In the following test, N was set as 128.
For the layered projection performance analysis, we vali-

dated the proposed layered-based method and compared with
IW-SSIMtp, IW-SSIMlp and OP-PCQM. IW-SSIMtp com-
bines with IW-SSIM to evaluate PCs of quality based on
six-sides overall projection. All points are orthographically
projected on six planes. When multiple points are projected
at the same position, the average gray value of these points
is taken as the pixel value. IW-SSIMlp bases on the proposed
layered projection. OP-PCQM is the proposed metric without
layering. The results are shown in Table 3. It’s clear that IW-
SSIMlp is better than IW-SSIMtp, indicating that the currently
proposed projection has an advantage over the six-sides over-
all projection as seen from Fig. 3. In particular, LP-PCQM
attains higher predictive power than OP-PCQM reflecting
the advantages of layering. In addition, as introduced in
Section III-A, we look for the maximum value of the Z-axis
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FIGURE 8. Scatter plots of objective score vs. MOS on the WPC, SJTU-PCQA, ICIP2020 database. Also the best fitting logistic fuctions curves are shown.

to divide PCs. In fact, we can choose any perspective to divide
the PC, such as X-axis, Y-axis because projection-based
PCQA has rotation invariance [26].

B. PERFORMANCE EVALUATION
We validated the proposed LP-PCQM and compared
them with MPEG point-based metrics, PCQM [21],
PointSSIM [25], GraphSIM [22] and IW-SSIMtp on theWPC
[47], SJTU-PCQA [27] and ICIP2020 [48] database, of which
MPEG point-based metrics include PSNRpo2pointMSE,
PSNRpo2planeMSE, PSNRpo2pointHausdorff, PSNRpo2plane-
Hausdorff obtained by two different pooling strategies, e.g.,
mean square error (MSE) or Hausdorff distance. The param-
eters of PCQM, PointSSIM and GraphSIM were set as the

default value. In order to provide quantitative measures on
the performance of the objective quality assessment models,
we compared the predicted scores with the MOSs provided
in the datasets using the PLCC, SROCC, and RMSE. The
evaluation results are given in Table 4.

As reported in Table 4, LP-PCQM consistently offers the
leading performance (mostly ranked at the top) in three
databases, while po2point, po2plane and PointSSIM could
not offer competitive performance with our LP-PCQM in
predicting the subjective MOS since the performance of
PointSSIM is inherently unstable [25] and MPEG metrics
only considering geometrical distortion. In the following,
we focus on comparing and analyzing LP-PCQM with the
PCQM, GraphSIM and IW-SSIMtp.
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TABLE 4. Performance comparison of 9 metrics on 3 publicly available databases.

On the SJTU-PCQA database for all impairments,
LP-PCQM presents the best model performance with eval-
uated metrics (PLCC, SROCC, RMSE) as (0.90, 0.88,
1.02). In comparison, the remaining metrics are worse than
LP-PCQM, especially GraphSIM with (0.59, 0.57, 1.89).
For the WPC database, the PCQM is the best perform-
ing metric, followed by the LP-PCQM and IW-SSIMtp and
PLCC and SROCC for these three metrics are very similar.
Although LP-PCQM and IW-SSIMtp have the same PLCC
and SROCC, the RMSE of the former is lower. Among the
four metrics, GraphSIM’s performance is the worst. And on
the ICIP2020 database, LP-PCQM also has a good consis-
tency, with the same PLCC and RMSE as GraphSIM, while
has a better SROCC. PCQM has the lowest correlation. For a
closer look at the performance of these metrics, Fig. 7 shows
a graph of the PLCC for all databases. From this figure,
it is clear that the performance of GraphSIM and PCQM is
unstable in different databases, with drawbacks such as large
performance differences and low robustness. The IW-SSIMtp
performs consistently, but its performance is consistently not
among the best. In comparison, LP-PCQM shows a more
robust accuracy performance and demonstrates reliable cor-
relations with subjective MOSs on distinct distortion types
and various contents.

For better illustration, we have also provided the scat-
ter plots along with the best fitting logistic function shown
in Fig. 8 for four metrics on the WPC, SJTU-PCQA,
ICIP2020 database respectively. GraphSIM, LP-PCQM and
LP-PCQM are positively correlated with MOS, while PCQM
is negatively correlated with MOS. We can see from Fig. 8
that scattered points predicted by LP-PCQM are more con-
centrated and regularly distribute around the fitting curve
than other metrics, especially on the SJTU-PCQA database.
Though PCQM provides better performance on the WPC
database, they are not reliable and consistent, especially on

the ICIP2020 database, where most predictions are away
from the prediction line. For GraphSIM, it’s worth noting that
in Fig. 8 (g)-(i), predicted values mostly distribute disorderly
around the fitting curve. As shown in Fig. 8 (j)-(l), the pre-
dicted values of IW-SSIMtp are less concentrated around the
fitting curve and have more outliers than LP-PCQM on the
WPC and ICIP2020 database respectively, providing worse
performance in certain types of impairments (e.g., WPC
database for ‘‘Noised’’ and ’L-PCC’ distortion). In summary,
for the SJTU-PCQA and ICIP2020 database, the proposed
metric has better correlation values than the MPEG met-
rics, while for the WPC database, our metric has a (close)
second-best performance.

V. CONCLUSION
In this work, we present a layered projection-based PCQA
metric and use local and global statistics of the points to
assess the perceived quality from both geometry and color.
Our metric is obtained by the linear combination of the geo-
metric and color features which are derived from PCs’ projec-
tion information and neighborhood information.We use eight
PCQA metrics to compare the performance with LP-PCQM
on three public available PCQA databases. Our experimen-
tal results show that layering has a positive impact on the
projection-based PCQA model, which has improved perfor-
mance compared to the multi-sides overall projection-based
PCQA model. Compared with the state-of-the art metrics,
experimental results show that LP-PCQM has accuracy and
robust performance. In summary, this paper is important for
the study of projection-based PCQA models. There are still
limitations in this paper. LP-PCQM has worse performance
in certain types of impairments. Moreover, the point clouds
evaluated by the proposedmodel are all distorted point clouds
after voxelization, which still need to be voxelized first for
3D mesh models, which limits the application of LP-PCQM.
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In future research, we will try to explore more effective and
innovative point cloud quality features. In the experiments,
we used PLCC, SROCC, and RMSE. But when data highly
skewed or disturbance no longer be normal, we can use
interquartile range(IQR). Compared with the evaluated met-
rics used in this paper, IQR is more suitable for the robust
statistic when evaluating heavily distorted point clouds, IQR
can better reflect the performance of the PCQA model.

APPENDIX
po2point point-to-point
po2plane point-to-plane
pl2mesh plane-to-mesh
pl2plane plane-to-plane
PCref reference point cloud
PCdis distorted point cloud
Lref reference point cloud layer
Ldis distorted point cloud layer
Zmax the maximum value of z
d the thickness of each layer
t the number of layer each point belongs to
F the fitting plane
Pref the reference point cloud layer of image
Pdis the distorted point cloud layer of image
p each point of reference point cloud
p̂ each point of distorted point cloud
xv the vth pixel in the original image x
yv the vth pixel in the distorted image y
V the total number of pixels in the image
L the maximum dynamic range
µx the mean of xv
µy the mean of yv
σx the standard deviation of xv
σy the standard deviation of yv
σxy the covariance of xv and yv
C1-C8 the constant used to maintain stability
xe,v, ye,v the vth local image patches at the eth scale
Ee the number of evaluationwindows in the scale
V the number of scales
ge,v the information content weight computed at

the vth spatial location in the eth scale
f1n-f6n the features used to evaluate the quality of

point cloud layer
f1-f6 the features used to evaluate the quality of

point cloud
f2i-f6i the features value of each point
c the color value
cref the color value of reference point cloud
cdis the color value of distorted point cloud
1h the color distance
rref , gref the color distance about reference point cloud
rdis, gdis the color distance about distorted point cloud
pi the ith point in the reference point cloud
p̂i the ith point in the distorted point cloud
µLp , µ

L
p̂ the mean neighborhood gray values of point

pi, p̂i

σ Lp , σ
L
p̂ the standard deviations of neighborhood gray

values of point pi, p̂i
σ Lpp̂ the covariance of σ Lp and σ Lp̂
µcp, µ

c
p̂ the mean neighborhood color values of point pi,

p̂i
1̄H the Gaussian weighted average of the corre-

sponding neighborhood 1h
W the objective score
wj the jth weight
qu the corresponding mapped score
su the calculated score of the uth PCdis
k1-k5 the regression model parameters to be fitted

by minimizing the sum of squared differences
between MOSs and calculated scores

ou the MOS of the uth PCdis
ō, q̄ the mean values of ou and qu respectively.
du the difference between uth the calculated score

and MOS
J the total number of samples
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