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ABSTRACT Selective ground-fault protection is greatly valued for the safe and reliable operation of power
systems. With the wide adoption of fault indicator in distribution network, the amount of available fault
data increases dramatically. The in-depth investigation of fault recording data helps improve the accuracy
of faulty line identification. To perform fault data analysis with higher efficiency, a single-phase-to-ground
fault identification model based on the k-Nearest Neighbor (kNN) classification algorithm is proposed in
the paper. In this model, the eigenvectors consist of wavelet energy ratio, wavelet coefficients variance and
wavelet power obtained by the decomposition of transient components. Furthermore, through the theoretical
analysis and experimental comparison of three parameter adjustment algorithms, Bayesian Optimization
algorithm is selected to find the optimal parameters of fault identification model, and realize the adaptive
adjustment of model parameters. Finally, the validity and feasibility of the model are verified by the
experimental data, and the accuracy and efficiency of fault identification are improved by using Bayesian
Optimization algorithm.

INDEX TERMS Distribution network, faulty line identification, k-Nearest Neighbor method (kNN),
single-phase-to-ground fault, Bayesian optimization.

I. INTRODUCTION
The neutral non-effectively grounding mode is mostly
adopted in medium-voltage distribution network [1], [2].
When a single-phase-to-ground (SPG) fault occurs in the
distribution network, the fault characteristics are not obvious.
Therefore, the detection and faulty line identification of the
SPG fault is a lasting yet unsolved task for safe operation of
the distribution network [3], [4].

The faulty line identification schemes of the SPG
fault can be classified into three categories: transient
characteristics-based, node information-based and fault
waveform comparison-based methods. The magnitude of the
steady-state fault current is low, but there is plenty of tran-
sient fault information when the SPG faults occur [5], [6].
Santos et al. [7] used the discrete wavelet transform to
monitor high-frequency voltage components and presented a
transient-based algorithm for faulty line identification in dis-
tribution network. Lin et al. [8] proposed a discrete wavelet
transform based triggering algorithm, which takes wavelet
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coefficients variations of the zero-sequence voltage as the
judge basis. Guo et al. [9] proposed a novel method of
fault-section location using the transient zero-sequence cur-
rents at double-ends of the line section. Cui and Weng [10]
proposed a high impedance fault (HIF) monitoring and loca-
tion scheme using the combination of transient- and steady-
state fault characteristics for distribution network. In order to
analyze transient signals, the new filtering algorithms, such
as wavelet packet transform, Teager–Kaiser energy operators
are used to extract the fault transient characteristics [11], [12],
so as to identify the faulty line. However, the relationship
between fault transient signal and fault condition is not linear,
so it is difficult to give quantitative analytical expression
of fault characteristics. Therefore, most of the existing tran-
sient characteristics-based methods generally use equivalent,
optimization and other means to simplify the characteristics
solving process, and the fault characteristics extracted by
these methods have limitations in application.

For the faulty line identification method based on node
information, I. Dzafic et al. [13] proposed a downstream
marking approach for locating faults based on the status
of fault nodes that are telemetered to the distribution con-
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trol center. Hossan and Chowdhury [14] proposed a fault
location method based on the measured data from advanced
distribution management system (ADMS) software platform.
Shi et al. [15] proposed a fault location scheme using net-
work topology information and reclosure-generating travel-
ing waves. Majidi and Etezadi-Amoli [16] proposed a new
impedance-based technique to locate all fault types in dis-
tribution networks. These schemes use the information of
fault direction elements and trip signals provided by the
distribution terminal equipment to compare the differences of
node equipment information along the line, and then identify
the faulty line. Regardless of fault direction element or trip
signal, this kind of method requires all node information to
be complete. If the information of some points is missing,
there is strong possibility of misjudgment. In order to solve
the problem of lack of information and distortion, some
researches have adopted optimization algorithms to improve
the fault-tolerant performance of the fault identification sys-
tem [17], [18]. However, when the number of nodes is large,
the number of iterations and convergence speed of these
algorithms are difficult to be guaranteed.

For the method based on fault waveform, the waveform
distribution characteristics and similarity degree between
healthy lines and faulty line are compared, and then faulty
line is identified. Chakraborty and Das [19] utilizes the
voltage measurements of smart meters to address the HIF
detection. Shi et al. [20] proposed a SPG fault section identifi-
cation method based on feature extraction of the synchronous
waveforms and the calculation of the eigenvalues for the
time-sequenced features. Bhandia et al. [21] presented an
advanced distortion detection technique (ADDT), based on
waveform analytics to distinguish SPG fault and detect HIF.
These methods usually take various waveforms of the initial
traveling wave and waveform distortions as the fault charac-
teristics. However, due to the short power supply distance,
the complex topology of distribution network, and the com-
plex fault conditions, the fault waveforms have differentiated
features for different SPG faults. It is difficult to establish
an accurate and effective SPG fault identification model by
distribution characteristics and similarity degree of waveform
data. This kind of method usually only relies on a small num-
ber of simulation waveforms under typical fault conditions
for analysis and comparison, so themethod lacks universality.

Fault indicators mounted on distribution line sections and
used to indicate the fault current flowing through the line
sections have been widely installed in distribution networks
due to their lower cost [22]. Fault indicators can generally
improve reliability of distribution network and reduce outage
duration by identifying the faulty line section [23]. With
the wide application of fault indicator with the fault wave-
forms recording function and the improvement of information
storage technology, the amount of available SPG fault data
in distribution networks increases dramatically [24]–[26].
Except the real-time recorded fault data, there are also a lot
of historical fault data, which are completely consistent with
the characteristics of big data. Under the background of big

data, combining with a variety of fault types to analyze the
characteristics of ground fault signal and then identifying the
faulty line becomes a practical strategy to solve the problem
of ground fault detection [27]–[29]. However, the existing
intelligence-based ground fault detection methods extract the
fault characteristics from a single source, and hence can easily
result in misjudgment [30]. The k-Nearest Neighbor (kNN)
classification algorithm [31], [32] and Bayesian Optimization
algorithm [33] have been widely used for power system fault
identification. In this paper, they are introduced into the faulty
line identification of distribution network.

This paper proposes a new faulty line identification scheme
based on kNN classification algorithm. A SPG fault iden-
tification model based on kNN is presented, which can be
trained and analyzed by using data of actual fault waveforms.
Specifically, in order to improve the accuracy of faulty line
identification, Bayesian Optimization is used to adjust the
model parameters. The actual recorded data of the SPG fault
in the experimental platform are used to verify the effective-
ness of the faulty line identification model. The experimental
results show that the scheme can break the shackles of fault
feature threshold and identify SPG fault through big data.

The organization of this paper is as follows. Section II
discusses the SPG fault characteristics selection. Section III
presents the faulty line identification model based on kNN.
Section IV presents the adaptive parameter adjustment algo-
rithm of SPG fault diagnosis system. The experimental results
to prove the effectiveness of SPG fault identification scheme
are demonstrated in Section V. Finally, Section VI concludes
the paper.

II. SPG FAULT CHARACTERISTICS SELECTION
A. SELECTION OF FAULT CHARACTERISTICS
When a SPG fault occurs in distribution network, the elec-
trical transient quantity generated by the system is much
larger than the steady state quantity, and the existence of
arc-suppression coil hardly affects the distribution of tran-
sient current. However, it is difficult to compare fault transient
quantities directly, so it is necessary to process fault data
and pick out useful components from transient components.
The db4 wavelet is an orthogonal wavelet, which has good
time-frequency locating performance and fast attenuation
ability. Therefore, the db4 wavelet is adopted to extract the
transient characteristic quantities.

As a time-frequency analysis method, wavelet decom-
position has a good application effect in the ground fault
detection. In this paper, the number of decomposition layers
is 5, the fault data is decomposed and reconstructed, and
three transient characteristic quantities are extracted: wavelet
energy ratio, wavelet coefficients variance and wavelet
power.

1) WAVELET ENERGY RATIO
The amplitude of transient components is extracted with
a specific time window and frequency window. Discrete
wavelet transform is adopted in this paper. Let f (t) be a
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signal, and its discrete wavelet transform is presented as
follows [34], [35]:

WTf (m, k) =
〈
f , ψm,k

〉
=

1√
am0

∫
+∞

−∞

f (t)ψ∗(a−m0 t − kb0)dt

(1)

where ψm,k is the mother wavelet, ψ∗ is the complex con-
jugate of ψm,k , m is the scale factor, k is the displacement
factor, b0 is the sampling step, and a0 is a positive integer,
with a0 ≥ 2. Changing b0 will change the signal area to be
analyzed, and we usually let it cover the entire fault signal;
changing a0 will affect the time and frequency resolution
of the signal. The db4 wavelet is adopted to extract the
transient characteristic quantities. The db4 wavelet means the
decomposition order is 4, and the decomposition order is a
concept in discrete wavelet transformation (DWT). The scale
factor a0 is usually set as the smallest whole power of 2, and
a0 should be larger than the decomposition order, so the scale
factor is 8 in continue wavelet transform (CWT).

FIGURE 1. Schematic diagram of binary decomposition by wavelet
transform.

The schematic diagram of the wavelet transform decom-
position is illustrated in Fig. 1. Assuming a signal x(n) to
be analyzed, the high-pass filter G(ω) (wavelet function of
Meyer wavelet) and the low-pass filter H (ω) (scale function
of Meyer wavelet) are applied to perform the signal decom-
position. F represents the sampling frequency. Firstly x(n) is
decomposed to d1(F4 ,

F
2 ) and a1(0,

F
2 ), where d1(

F
4 ,

F
2 ) rep-

resents the signal information within frequency band (F4 ,
F
2 ),

and a1(0, F4 ) represents the one within frequency band (0,
F
4 ).

Then a1(0, F4 ) is decomposed to d2(F8 ,
F
4 ) and a2(0, F8 ).

Similarity, ai is decomposed to di+1 and ai+1 by the same
scheme, where i represents the decomposition scale. In this
way, the signal is decomposed to the signal information
within the expected frequency band in the end. When F =
250 kHz and i = 3, the corresponding frequency band of d1,
d2, d3 and a3 is 62.5-125 kHz, 31.25-62.5 kHz, 15.625-31.25
kHz, 0-15.625 kHz respectively.

The wavelet energy ratio represents the energy accumu-
lation of the transient zero-sequence current when a fault
occurs. According to Parseval Theorem [36], the spectrum
energy of transient components is defined as:

Ehj =
N∑
m=1

|Dj(m)|2 (2)

ElS =
N∑
m=1

|AS(m)|2 (3)

where Ehj is the high frequency signal energy at the scale j;
ElS is the low frequency signal energy at the maximum
decomposition scale; m is the sampling points; N is the
number of sampling points; S is the maximum scale of
wavelet decomposition; Dj(m) is the wavelet coefficient at
each scale; and AS(m) is the scale coefficient at the maximum
decomposition scale.

In order to reduce dimensionality, energy ratio ρic is
defined as the fault characteristic by (4).

ρic = Ei_hc/Ei_lS (4)

where i is the line number; c is the scale of faulty line
identification; Ei_hc is the high frequency energy of line i at
the scale c; and Ei_lS is the low frequency energy of line i after
the decomposition of maximum scale S.

2) WAVELET COEFFICIENTS VARIANCE
The wavelet coefficients variance is used to represent the
change of zero-sequence transient current after SPG fault.
The variance is a measure of the difference between the
source data and the expected value. The wavelet coefficients
variance reflects the fluctuation of wavelet coefficient at the
scale of faulty line identification, which can be expressed as:

D(dc) =
1
N

N∑
m=1

(dc(m)− dcav)2 (5)

where N is the sampling points; dc(m) is the wavelet coeffi-
cient at scale c; and dcav is the average value of dc(m).

3) WAVELET POWER
The wavelet coefficients of the zero-sequence transient cur-
rent at scale c are denoted as dIc; the derivative of the wavelet
coefficient of the zero-sequence transient voltage at this scale
is denoted as dVc. The power amplitude composed of the
zero-sequence transient current and voltage of line i at scale
c is defined as:

|Wi| =

∣∣∣∣∣ 1N
N∑
m=1

dIc(m)dVc(m)

∣∣∣∣∣ (6)

where m is the sampling points, and N is the number of
sampling points.

B. NORMALIZED FAULT CHARACTERISTICS
In order to eliminate incoherence in different fault character-
istic values and prevent small data from being ignored, this
paper chooses a unified expression of these characteristic val-
ues. The normalized characteristic values of data are obtained
by the linear normalization method, and all characteristics are
normalized by (7).

X ′i =
Xi − Xmin

Xmax − Xmin
(7)

where X ′i is the normalized data, Xi is the original data,
Xmax and Xmin are the maximum and minimum values of the
original data set, respectively.
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III. FAULTY LINE IDENTIFICATION MODEL
BASED ON kNN
For the k nearest neighbor algorithm (kNN), k-nearest neigh-
bor means the nearest k neighbors to the data point, and
the neighbor represents the nearest point. kNN algorithm
does not rely on the class field discrimination to process
data points in classification, so kNN algorithm is suitable for
machine learningmodel training with poor class field or more
overlaps. In this paper, kNN algorithm is used to train the
faulty line identification model of SPG fault.

The most common application of kNN algorithm is to
calculate the distance between data points through Euclidean
distance. The Euclidean distance is very simple and useful,
but its most significant feature is that it equates the differences
between different features. Therefore, in order to consider the
differences among the three characteristics of wavelet energy
ratio, wavelet coefficient variance and wavelet power, this
paper adopts weighted Euclidean distance, which means that
the distance on each coordinate axis is weighted, so as to
realize the differential treatment of the three characteristics
in three-dimensional space.

A. IMPROVEMENT OF EUCLIDEAN DISTANCE
The wavelet energy ratio, wavelet coefficient variance and
wavelet power are selected as eigenvectors. For Euclidean
distance, the weights w between [0, 1] are introduced into
each dimension, and the improved Euclidean distance calcu-
lation formula is as follows:

d = w1d1 + w2d2 + w3d3 (8)

where, w1∼w3 are the weights of each dimension; d1∼d3
is the wavelet energy ratio, wavelet coefficient variance and
wavelet power of Euclidean distance from the data point to
the training point.

B. EVALUATION CRITERIA OF FAULTY LINE
IDENTIFICATION MODEL
The accuracy and misreporting rate are used as the evaluation
criteria of faulty line identification model. The basis of the
criteria is to establish a confusionmatrix, as shown in Table 1.
In the confusion matrix, true positive (TP) represents the
number of faults that are correctly classified as actual faults;
true negative (TN) represents the number of normal cases
that are classified as normal; false positive (FP) and false
negative (FN) represent the number of faults and normal cases
that are misclassified, respectively.

TABLE 1. Confusion matrix.

According to the basic requirements of power system
relay protection, misreporting normal conditions as abnormal
conditions is more acceptable than ignoring an abnormal

condition relatively, so it is more practical to select accuracy
rate and misreporting rate as the standard of discrimination.

The definition of accuracy and misreporting rate are as
follows:

Accuracy:

acc =
TP+ TN

TP+ TN + FP+ FN
(9)

Misreporting rate:

mis =
FP

TP+ TN + FP+ FN
(10)

C. FAULTY LINE IDENTIFICATION MODEL
BASED ON IMPROVED kNN
Combined with the information above, a faulty line identi-
fication model of the SPG fault is established by using the
majority voting system as the classification criterion:

y = argmax
cj

∑
xi∈Nk (x)

I (yi = cj) (11)

where I is the indicator function, which is 1when the equation
in parentheses holds, otherwise it’s 0; i = 1, 2, . . . ,N , N is
the number of all classes; j = 1, 2, . . . , k , k is the number of
points adjacent to x. From the equation above, it can be seen
clearly that y represents the class with the most x among its k
neighbors.

The calculation process of the model is as follows:
(1) The initial fault recorded data were transformed in

order to extract eigenvectors. The training data and test data
are selected for normalization processing to generate training
sample set and test sample set;

(2) Set the value k;
(3) Calculate the weighted distance between the test sam-

ple and each training sample, and the descending order of the
distance was used to obtain k training data values that are the
nearest sample points to be tested;

(4) Count k training data points in step (3), find the class
that occurred most frequently, and classify the data points to
be tested as this class;

(5) Calculate the accuracy and misreporting rate of
classification results of test data.

IV. PARAMETER ADJUSTMENT BASED ON
BAYESIAN OPTIMIZATION
When the traditional kNN algorithm deals with the classifi-
cation problem of unbalanced sample data (that is, the data
volume of some classes is much smaller than that of other
classes), the results tend to favor the majority classes and
ignore the minority classes. The ground fault data of distri-
bution network are unbalanced data, and the size of faulty
line data is much smaller than the size of healthy lines data.
The weight of each dimension in the distance formula of kNN
algorithm is the input parameter of the faulty line identifica-
tion model, which has a critical influence on the merits of
the model. Therefore, the parameter adjustment algorithm is
used to assign different weights to the majority classes and
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the minority classes. If the parameter setting does not match
with the model, the model will end up with low accuracy.

Common parameter adjustment algorithms are Grid
Search [37] and Random Search [38], [39]. Grid Search is
an exhaustive search that iterates all possibilities and is a
stable full-space scan. Random Search is a widely used super
parameter adjustment algorithm due to its fast speed and large
randomness of parameter adjustment process. At the same
time, it is not likely to fall into the trap of local optimization.

The common disadvantage of the above two parame-
ter adjustment methods is that the training of each set of
hyperparameters requires a complete call to the objective
function. In the faulty line identification model based on
kNN algorithm, the process of calling objective function is
slow. If the objective function is computed from scratches
every time, it will definitely lead to a slow parameter
adjustment. Therefore, an improved parameter adjustment
method based on Bayesian Optimization is proposed instead.
After comprehensive comparison, a more effectively adaptive
parameter adjustment method is selected for the faulty line
identification.

The distance formula used in the SPG fault diagnosis
model is the improved Euclidean distance formula shown
in (8). The amount to be adjusted is w1∼w3 in (8). It is
expected that the accuracy of the SPG fault detection will be
improved by adjusting the weights of the three eigenvalues
adaptively.

A. GRID SEARCH ALGORITHM
Grid Search is a commonly used parameter adjustment
method, which is well-known for its exhaustive search. The
principle is to try every possibility through loop traversal in
all candidate parameter selections, and the best parameter is
the final result. Take a model with two parameters a and b
as an example. There are 3 possibilities for parameter a and
4 possibilities for parameter b. Use Grid Search algorithm to
list the traversal table, as shown in Table 2.

TABLE 2. Grid Search traversal.

As can be seen from Table 2, Grid Search algorithm lists
all parameter possibilities to form a 3∗4 table, and then
performs a cyclic process to traverse through the parameter
possibility. The flowchart of Grid Search algorithm is shown
in Fig. 2.

Grid Search parameter adjustment algorithm is a method
of exhaustively searching in the parameter list and checking
each case to find the optimal parameters. It has the advantage
of producing highly optimal adjustment results, and it is an
adjustment algorithm with high popularity. The disadvantage
is that it takes a long time to adjust the parameters, and it is
easy to get trapped in a local optimum.

FIGURE 2. Flowchart of Grid Search algorithm.

B. RANDOM SEARCH ALGORITHM
Random Search is a faster adjustment method. Random
Search algorithm samples a fixed number of possible param-
eter configurations from a specified distribution. The theo-
retical basis is that when the random sample point set is large
enough, the global maximum or its approximate value can
be found. The flowchart of the Random Search algorithm is
shown in Fig. 3.

FIGURE 3. Flowchart of Random Search algorithm.

The procedure of Random Search algorithm is simple,
the code is easy to implement and has high efficiency. It is
often used for quick parameter adjustment of simple models.
When the model does not need to get the exact optimal value,
Random Search parameter adjustment algorithm is a very
efficient method. The disadvantage of Random Search algo-
rithm is that the parameter adjustment process is too random.
Generally, this means that only a small part of the data group
will be trained by the parameter adjustment method, making
more group training less effective and wasting data resources.

C. IMPROVED BAYESIAN OPTIMIZATION ALGORITHM
Bayesian Optimization is a highly efficient machine learn-
ing parameter adjustment method, whose main function is
to optimize a given objective function [40]–[42]. Bayesian
Optimization applies generalized functions, which only need
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to specify the inputs and outputs, and the internal structure
and mathematical properties is not needed. Based on that,
an improved Bayesian Optimization algorithm is described
as follows:

The posterior distribution of the objective function is
updated by continuously adding sample points until the pos-
terior distribution basically fits the real distribution. Each
time the parameter is updated, the information of the pre-
vious parameter is considered and the current parameters is
adjusted accordingly.

The internal structure of the faulty line identificationmodel
is complicated, and a large amount of data will be continu-
ously added in practical applications. The improved Bayesian
Optimization algorithm for adaptive parameter adjustment
can increase the speed of parameter adjustment and optimize
parameters in real time based on new data points.

The key of Bayesian Optimization algorithm is the
Gaussian process. The Gaussian processes can be used for
nonlinear regression, nonlinear classification, and parameter
optimization. The usual parameter adjustment is shown
in (12), and only the current data is considered. This kind of
adjustment method that only considers the data once usually
costs more to achieve adjustment. In (12), y is the parameter
adjustment result, and X is the data set for parameter
adjustment.

p = (yN+1|XN+1) (12)

Equation (13) is the parameter adjustment of the Gaussian
process. The Gaussian process not only considers the rela-
tionship between the current input and output, but also refers
to the results of the previous set of parameters.

p = (yN+1|XN+1, yN ) (13)

The P in (12) and (13) is an intermediate variable in
machine learning. The meaning of P is that the parameters
have been iteratively tuned for one time.

The Gaussian process considers the relationship between
yN and yN+1 by assuming that the value of y follows a joint
normal distribution. Since there are conditions that assume a
joint normal distribution, the parameters including the mean
vector and the covariance matrix need to be given, as shown
in (14).
y1
y2
. . .

yn

 ∼ N (0,


k(x1, x1), k(x1, x2), . . . , k(x1, xn)
k(x2, x1), k(x2, x2), . . . , k(x2, xn)

. . .

k(xn, x1), k(xn, x2), . . . , k(xn, xn)

) (14)

where k(xi, xj) is the element of the covariance matrix, N
represents the result of the previous iteration.

Among them, the covariance matrix is also called the
kernel matrix, and denoted by K , which is only related to the
feature x and not to y.

The priori of Gaussian process assumes that y follows
the normal distribution of high dimension, and the optimal
kernel matrix is obtained according to the training set, so the

posteriori is obtained to estimate the test set y∗. The posteriori
can be expressed as follows:

p = (y∗|y ∼ N (K∗K−1y,K∗∗ − K∗K−1KT
∗ )) (15)

where K∗ is the kernel vector of the training set, which has
the relationship shown in (16).[

y
y∗

]
∼ N

(
0,
[
K ,KT

∗

K∗,K∗∗

])
(16)

As shown in (15), the parameter adjustment result is only
related to the mean. The variance is only related to the kernel
matrix, that is, the test set and the training set X , and is not
related to the training set y. The training method based on
Gaussian process is usually estimated by the square exponen-
tial kernel, i.e.

k(x1, x2) = σ 2
f exp

(
−(x1 − x2)2

2l2

)
(17)

where σf is the standard deviation, l is the distance between
two data points in the feature space.

The hyperparameter that needs to be determined during
training is θ , and its relationship is shown in (18). Since y
obeys the multidimensional normal distribution, the likeli-
hood function shown in (19) can be obtained. Because K is
determined by θ , the hyperparameter θ can be obtained by
gradient descent.

θ =

∣∣∣σ 2
f , l

∣∣∣ (18)

L(θ |y) = log p(y|x, θ)

= −n
log 2π

2
−
log |K |

2
−
(y−µ)TK−1(y− µ)

2
(19)

The basic idea of Bayesian Optimization is a Gaussian
process. The posterior distribution of the objective function
is estimated based on the data, and then the next sampling
combination of hyperparameters is selected based on the
distribution. Its computing advantage is that it makes full
use of the information provided by the previous sampling
point, and finds the parameters that maximize the result to
the global by learning the shape of the objective function. The
Gaussian process plays a role in modeling the objective func-
tion in Bayesian Optimization and the posterior distribution
is obtained.

After modeling of the Gaussian process, Bayesian Opti-
mization started sampling for sample calculation. Because
Bayesian Optimization is easy to continuously sample on the
local optimal solution, the balance between development and
exploration needs to be considered.

In order to improve sampling efficiency and balance devel-
opment and exploration, Acquisition Function is needed.
Acquisition Function is used to find the next unknown
quantity X , and a common simple Acquisition Function is:

POI(X ) = P
(
f (X ) ≥ f (X+)+ ξ

)
= 8

(
µ(X )− f (X+)− ξ

σ (X )

)
(20)
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In (20), f (X ) is the value of the objective function of X ,
f (X+) is the value of the objective function that is the opti-
mal value of the adjustment so far, and µ(X ), σ (X ) are the
mean and variance of the objective function obtained in the
Gaussian process, namely the posterior distribution of f (X ).
ξ is the tradeoff coefficient. Without the tradeoff coefficient,
the POI function tend to bemore inclined to value aroundX+,
which would make the tuning process more prone to devel-
opment rather than exploration. In the process of parameter
adjustment, considering the great cost of calculating f (X ),
the program keeps trying new X to maximize the value of POI
function. When the maximum value is obtained, the value of
X is adopted as the optimal parameter.

The POI function shown in (20) is a probability func-
tion, mainly considering the probability that f (X ) is greater
than f (X+). In the automatic tuning process, the difference
between f (X ) and f (X+) needs to be considered, so the
expected function EI is introduced:

EI (X ) =

{
(µ(X )− f (X+))8(Z )+ σ (X )8(Z ), σ (X ) > 0
0, σ (X ) = 0

(21)

The framework of Bayesian Optimization can be con-
structed by establishing POI function and EI function based
on Gaussian process. The advantage of Bayesian Optimiza-
tion is that there is no need to know the internal structure of
the objective function, only the input value and output value
are needed to adjust the objective function efficiently.

In this paper, Bayesian Optimization algorithm is used to
adjust the parameters. The objective function is the faulty
line identification model. The objective function value is the
diagnostic accuracy of the diagnosis. The adjusted parameter
is the weight of the three dimensions in the eigenvector
space. That is, the weight of the three eigenvectors of wavelet
energy ratio, wavelet coefficient variance and wavelet power.
After the first accuracy calculation with the initial parame-
ters, the parameters of the objective function are adjusted by
BayesianOptimization for several times.When a high enough
diagnostic accuracy is obtained, the parameter value and
diagnostic accuracy are output. The parameter adjustment
of the model is finished. The establishment process of fault
identification model is shown in Fig. 4.

V. EXPERIMENTAL COMPARISON OF SPG
FAULT IDENTIFICATION
In order to evaluate the proposed faulty line identification
scheme based on improved kNN, the recorded data of the
SPG fault in the experimental platform are used to verify the
effectiveness of the faulty line identification model. All the
data are obtained from actual experiments, which can make
the results more reliable. The experimental platform is shown
in Fig. 5. The experimental platform contains 10 feeders in
the system, and the capacitance current is used to simulate
the feeder to ground capacitance. The capacitance currents of
feeders 1# and 2# are 0.9A and 1.5A respectively, simulating
the overhead feeder; the capacitance currents of feeders 3#

FIGURE 4. The establishment process of fault identification model.

FIGURE 5. Distribution network structure of experimental platform.

and 4# are 3A and 4.5A respectively, simulating the cable
feeder; the total capacitance current of feeders 5#∼10# is
9.6A, simulating overhead-cable mixed feeder and multi-
stage bus. The actual distribution network may have a more
complex structure, but the overall structure of experimental
platform is similar to that of the actual distribution network.

The ground fault points in Fig. 5 are D∼U, and each
fault point is configured with a fault indicator that contains
recording function. To verify the feasibility of the SPG fault
detection system, a total of 521 experiments were conducted,
including two operating conditions: neutral point ungrounded
and neutral point grounded by arc-suppression coil (resonant
grounded system). A total of 9378 pieces of experimental
data were obtained after the end of the experiments. In the
521 groups of experimental data, each group contains the
recorded data of 18 (D∼U) fault points, including different
fault types:

(1) High impedance fault (1200�, 1700�, 2100�,
2500�, 3000�, 3600�);

(2) Metallic ground fault;
(3) Intermittent arc grounding fault.
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A. DATA CONVERSION AND FILTERING
According to the neutral point groundedmethod, the recorded
data are divided into arc-suppression coil system (ASCS) data
and ungrounded system (UGS) data, and all the experimental
data constitute mixed data. Several groups of experimental
data were randomly selected from each group of experiments
to constitute test data, while the rest are training data. The
detailed data information is shown in Table 3.

TABLE 3. Experimental data.

Format conversion and data classification are carried out
for the recorded fault data, and the recorded data of 5 cycles
after the fault and 1 cycle before the fault are intercepted.
Through (2)-(6), the wavelet energy ratio, wavelet coeffi-
cient variance and wavelet power of each line are calculated.
According to (7), the linear normalization value is obtained,
and then the 3 ground fault eigenvectors are constructed.

B. COMPARISON OF EXPERIMENTAL RESULTS OF
PARAMETER ADJUSTMENT ALGORITHM
In order to evaluate the proposed parameter adjustment
algorithm, Grid Search algorithm, Random Search algo-
rithm, and the improved Bayesian Optimization algorithm are
adopted respectively to obtain the global optimal solution of
parameters with the maximum classification accuracy as the
criterion. The experiment procedure is to adjust the parame-
ters for 10 times of the same data by using three automatic
parameter adjustment algorithms. The results are shown
in Table 4 to Table 6, including the optimal k value, the dis-
tance weight w1∼w3 value, classification accuracy (acc) and
misreporting rate (mis).
Table 4 shows the results of Grid Search algorithm after

10 automatic parameter adjustments for the SPG fault diag-
nosis system. It can be seen that the diagnostic accuracy of

TABLE 4. Experimental results for performance evaluation of Grid Search
algorithm.

TABLE 5. Experimental results for performance evaluation of Random
Search algorithm.

TABLE 6. Experimental results for performance evaluation of Bayesian
Optimization algorithm.

the three types of data after the adjustment is basically 89%,
and the lowest misreporting rate is 2.43%. So this algorithm
is not effective. And it can be seen the time spent on adjusting
the parameters is long, because Grid Search algorithm must
call the objective function completely every time when the
parameters are adjusted. While the objective functions of the
SPG fault diagnosis system is complicated, and hence Grid
Search algorithm would take long time to adjust.

Table 5 shows the results of Random Search algorithm
after 10 automatic parameter adjustments for the SPG fault
diagnosis system. Compared with Grid Search algorithm,
the time required for the Random Search algorithm to per-
form 10 times is similar. By comparing acc and mis of two
algorithms, it can be seen that Random Search algorithm has
a higher accuracy and a lower misreporting rate within the
same parameter adjustment times. According to the theoreti-
cal analysis, Grid Search algorithm has stronger development
performance and can find the true optimal solution when the
amount of data is small. But it easily falls into a local optimal
solution when the amount of data is large, thereby affecting
its adjustment effect. Meanwhile, Random Search algorithm
has a stronger exploration performance. In the case of a large
amount of data, it selects data from more regions for training
and does not fall into a local optimum. The experiment results
are consistent with the theoretical analysis.

In the calculation process of Bayesian Optimization algo-
rithm, the fault eigenvectors are substituted into the Bayesian
Optimization algorithm. In the Gaussian process, not only
the relationship between the input and output, but also
the results of the previous set of parameters are consid-
ered. In Section IV, the parameters w1, w2 and w3 for the
three eigenvectors in the THREE-DIMENSIONAL space are
set according to (8). These three parameters are put into
the Bayesian Optimization algorithm. On the premise that
the prior obeys the high-dimensional normal distribution, the
parameter adjustment results are obtained according to the
training set through the posterior. After the accumulation of
data, we estimate the posterior distribution of the objective
function, and then select the next sampling parameter combi-
nation according to the distribution.

Table 6 shows the results of Bayesian Optimization algo-
rithm after 10 automatic parameter adjustments for the SPG
fault diagnosis system. ComparedwithGrid Search algorithm
and Random Search algorithm, Bayesian Optimization algo-
rithm significantly reduces the time required for parameter
adjustment. In terms of acc and mis, the diagnostic accuracy
after 10 automatic parameter adjustments can reach more
than 95%, and the misreporting rate is also significantly
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reduced compared to Grid Search algorithm and Random
Search algorithm.

Taking the abovemixed data as an example, the distribution
of the classification results of the training data and test data
is shown in Fig. 6.

FIGURE 6. Classification distribution map of fault data based on
three-dimensional features. (a) Distribution of training data.
(b) Distribution of test data.

Fig. 6 clearly shows the distribution of fault and non-
fault data. The fault and non-fault data can be basically
distinguished in the figure. But some fault data overlap with
the non-fault data, so there is a risk of misdiagnosis in the-
ory. After the Bayesian Optimization parameter adjustment
procedure, it can be seen that the points that are originally
indistinguishable in three-dimensional space can be correctly
classified, and the misreporting rate is controlled at 0.83%.

Comparing the experiment results in Table 4, Table 5
and Table 6, it can be seen that Bayesian Optimization algo-
rithm can significantly improve the diagnostic accuracy and
reduce diagnostic misreporting rate. So Bayesian Optimiza-
tion algorithm can benefit fault diagnosis. Because Bayesian
Optimization algorithm has the characteristic that it is not
necessary to call the objective function completely multiple
times, the time required for parameter adjustment can be
greatly reduced when adjusting the parameters of the SPG
fault diagnosis system. This advantage can improve the train-
ing efficiency of the faulty line identificationmodel andmake
the real-time online training of the model closer to realize.

VI. CONCLUSION
This paper presents a new faulty line identification method
of SPG fault in the distribution network. The method takes
the SPG fault characteristics, actual fault waveforms and big
data of distribution networks into consideration. Based on
Bayesian Optimization and adaptive parameters adjustment
algorithm, a SPG fault identification model based on kNN
algorithm is proposed, which can be trained and analyzed
by using a large number of field waveform data. In this
model, wavelet energy ratio, wavelet coefficient variance and
wavelet power are selected to generate the eigenvectors, and
the weight coefficient is introduced on the basis of Euclidean
distance.

An improved Bayesian Optimization algorithm is used
to find the optimal parameter solution of the model, which
improves the accuracy of fault identification and reduces
the parameter adjustment time. A distribution network of
experimental platform is built and the effectiveness of the
fault identification model is verified by the recording data
of SPG fault. The experimental results show that the model
can meet the requirement of online SPG fault detection of
distribution network and has good practical value.
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