
Received April 23, 2021, accepted May 25, 2021, date of publication June 7, 2021, date of current version June 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3087421

Demystifying Attestation in Intel Trust Domain
Extensions via Formal Verification
MUHAMMAD USAMA SARDAR , (Member, IEEE), SAIDGANI MUSAEV, AND CHRISTOF FETZER
Chair of Systems Engineering, Faculty of Computer Science, Institute of Systems Architecture, Technische Universität Dresden, 01069 Dresden, Germany

Corresponding author: Muhammad Usama Sardar (muhammad_usama.sardar@mailbox.tu-dresden.de)

ABSTRACT In August 2020, Intel asked the research community for feedback on the newly offered
architecture extensions, called Intel Trust Domain Extensions (TDX), which give more control to Trust
Domains (TDs) over processor resources. One of the key features of these extensions is the remote attestation
mechanism, which provides a unified report verification mechanism for TDX and its predecessor Software
Guard Extensions (SGX). Based on our experience and intuition, we respond to the request for feedback by
formally specifying the attestation mechanism in the TDX using ProVerif’s specification language. Although
the TDX technology seems very promising, the process of formal specification reveals a number of subtle
discrepancies in Intel’s specifications that could potentially lead to design and implementation flaws. After
resolving these discrepancies, we also present fully automated proofs that our specification of TD attestation
preserves the confidentiality of the secret and authentication of the report by considering the state-of-the-art
Dolev-Yao adversary in the symbolic model using ProVerif. We have submitted the draft to Intel, and Intel
is in the process of making the changes.

INDEX TERMS Formal verification, symbolic security analysis, ProVerif, trusted execution environment,
trust domains, Intel TDX, remote attestation.

I. INTRODUCTION
Public cloud environments have proven themselves as a
cost-effective solution for a variety of workloads. However,
an important challenge that software stakeholders currently
face in a public cloud is the confidentiality and integrity
of sensitive data, such as private user data or intellectual
property. Different hardware-based solutions, such as Trusted
Execution Environments (TEEs) [1] and Trusted Platform
Modules [2], [3], were offered. Moreover, many different
TEE implementations have emerged in the past years for
public clouds [4], [5]. These implementations are represented
by two major categories: process-based and Virtual Machine
(VM)-based. In process-based category, Intel released Soft-
ware Guard Extensions (SGX) [4] in 2014. Intel SGX is
supported by many different software platforms [6]–[8] and
proved itself as a practical solution for security in a public
cloud. VM-based solutions offer more flexibility, at the cost
of managing a bigger software stack. In this category, Intel
announced new extensions for its Instruction Set Architec-
ture (ISA), namely Trusted Domain Extensions (TDX) [9]

The associate editor coordinating the review of this manuscript and

approving it for publication was Roberto Nardone .

in August 2020. These extensions are a combination of Intel
Virtual Machine Extensions, Intel Multi-Key Total Memory
Encryption (MKTME) [10], and Intel CPU-attested software
module. Intel TDX inherits some aspects of Intel SGX.

Compared with legacy Virtual Machine Monitor (VMM),
TDX is supposed to help isolate resource management soft-
ware into untrusted side, while the Virtual Machine (VM)
itself is considered as trusted software. Compared to SGX,
TDX has more control over the software stack and it also
improves the management of CPU resources. Both SGX
and TDX offer memory encryption, which guarantees con-
fidentiality and integrity of the memory. Unlike SGX, TDX
is designed to run legacy applications with the support of
the secure, not-encrypted, digitally-signed service module,
referred to as TDX module. This module is included in the
Trusted Computing Base (TCB) and cannot be changed by
untrusted software, including VMM. VMM can switch to
TD, also known as Secure-Arbitration Mode (SEAM). In this
mode, CPU is able to create, initialize and schedule different
TDs. Assigning MKTME private encryption keys is done
via TDX module (which is trusted), and integrity of these
keys cannot be violated by the untrusted software, including
VMM [9].

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 83067

https://orcid.org/0000-0001-7652-559X
https://orcid.org/0000-0003-4938-9216


M. U. Sardar et al.: Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification

One of the key features of Intel TDX is TD remote attes-
tation, which extends the CPU-attestation from Intel SGX.
The process of generation of a report in TDX is different
from that of SGX, and thus TDX provides new instructions to
generate and locally verify the attestation report [11]. More-
over, compared to SGX attestation, TD attestation provides
more guarantee about the software stack running inside TEE,
e.g., secure and shared pages in TD, MSRs state, initial TD
measurements, and runtime TD measurements. This allows
a challenger to remotely attest the full software stack with
some intermediate runtime measurements. The attestation
process still relies on the Quoting Enclave, just like SGX.
The Quoting Enclave generates a remotely verifiable Quote
with platform attestation key from the data generated by the
specific TD. Quote is then sent to a challenger and can be
verified by Attestation-Verification Service [9].

The security analysis of a TEE that supports attestation is
typically performed informally using testing with a compu-
tational model of the adversary. Although such an analysis is
suitable to show the presence of security errors, it cannot be
used to prove their absence [12]. If left in the system, these
errors may have serious consequences, for instance, signif-
icant damage to the finances and reputation of a company.
To overcome this limitation of testing, rigorous and sound
formal methods have been utilized to analyze the security
goals on a formal model. For instance, Intel developed some
formal tools [13]–[15] for establishing formal correctness
of SGX. However, the verification using these tools does
not cover the attestation process, which is a crucial part of
Intel SGX for practical use [16]. Subramanyan et al. [17] pre-
sented a formalization of attestation for an idealized abstract
platform and semi-automated verification approach to estab-
lish the identity of the enclave. However, the authors assume
axioms about the correctness of Intel SGX remote attestation.
We complemented these works by focusing on the sym-
bolic verification of the cryptographic protocol in the remote
attestation based on Enhanced Privacy ID (EPID) [18] and
Data Center Attestation Primitives (DCAP) [19] in our recent
work.

To the best of our knowledge, there is no publicly available
formal specification and verification of TD attestation. The
formal specification is essential to formally reason about
the guarantees for security-critical use cases and to increase
system designer’s confidence.With this motivation, this work
presents the formal specification of TD attestation based on
a variant of applied pi-calculus. Interestingly, the process
of formal specification reveals a number of subtle discrep-
ancies in Intel’s informal specifications. The discrepancies
include not only the ambiguous names and missing fields
in data structures, but also various instances of inconsistent
information that could potentially lead to design and imple-
mentation flaws. Since TDX is currently in the design phase
and the implementation is not yet released, we resolve these
discrepancies based on our experience with its predecessor
SGX and intuition. We then analyze the most relevant secu-
rity properties, namely confidentiality and authentication,

considering the state-of-the-art symbolic model of the adver-
sary, i.e., Dolev-Yaomodel [20]. Our implementation is based
on the state-of-the-art symbolic verification tool ProVerif [21]
mainly because of its easy portability to other symbolic veri-
fication tools (e.g., Tamarin prover [22] via SAPIC), compu-
tational verification tools (e.g., CryptoVerif [23]). The main
contributions of the work include:
• Precise specification of the TD attestation protocol,
including all involved entities in ProVerif

• Identification of discrepancies including inconsistent
information that could potentially lead to design and
implementation flaws

• Automated verification of confidentiality of the shared
secret and authentication of reports in ProVerif

The rest of the paper is organized as follows: We present
the existing approaches for the formal verification of Intel
SGX and its attestation in Section II. Section III presents
an overview of our analysis approach for the specification
and verification of the TD attestation. Then we present the
formal specification of TD attestation process in Section IV.
In Section V, we outline the discrepancies revealed in the
Intel’s specifications of TD attestation in TDX. Section VI
presents the formalization of security properties and the veri-
fication results. Finally, we conclude the paper in Section VII
with some future directions of research.

II. RELATED WORK
There is no publicly available formal specification and ver-
ification of Intel TD attestation. The most closely related
work in general is the formal verification effort related to
Intel SGX. Since SGX has been widely studied, we focus
on the main approaches used for formal verification.
In Section II-A, we give an overview of the formalization
of secure remote execution by a group of researchers at the
University of California, Berkeley and Massachusetts Insti-
tute of Technology, Cambridge [17]. Then we present the
formalizations by Intel in Section II-B. We present related
works on the use of symbolic security analysis tools for for-
mal verification of remote attestation in Section II-C, pointing
out the differences from the current work on TD attestation.

A. SECURE REMOTE EXECUTION
Subramanyan et al. [17] presented a formal definition for
secure remote execution of enclaves and its decomposition
into three main properties, namely confidentiality, integrity,
and secure measurement. The proposed verification method-
ology is based on an idealized abstraction of enclave plat-
forms, called Trusted Abstract Platform (TAP), along with a
parameterized adversary model. Using an intermediate ver-
ification language, Boogie [24], the authors prove that TAP
satisfies the requirements for secure remote execution. Addi-
tionally, they utilize stuttering simulation [25] to prove that
Intel SGX and MIT Sanctum [26] implementations refine
TAP under certain parameterizations of the adversary. Thus,
the results can be used to compare security guarantees of
different enclave platforms.

83068 VOLUME 9, 2021



M. U. Sardar et al.: Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification

This verification approach, however, is semi-automated as
the user has to find the correct inductive invariants manually
to prove the properties. In this case, 935 such annotations
were required. This manual effort to re-prove each time a
software policy is updated makes it difficult for runtime
verification. Specifically, for Intel SGX, the authors ignore
the details of remote attestation and instead assume various
axioms.

B. FORMALIZATIONS BY INTEL
To the best of our knowledge, Intel has not published any
work on the formalization of remote attestation of SGX or
TDX. However, Intel has described some works, e.g., [27],
on the formal verification of Intel SGX focusing on the
enclave page management and page table translations track-
ing [28]. Intel addresses the verification in two steps: first,
to prove the sequential correctness, and second, to prove
that SGX is linearizable [15]. Some undiscovered bugs were
identified in both steps [27].

Intel verifies the correctness of Intel SGX in the sequential
(or single-threaded) setting by using Deductive Verification
Framework (DVF), which is a language and Satisfiability
Modulo Theories (SMT)-based deductive verification tool
developed at Intel [13]. DVF models a system as a transition
system consisting of states and transitions. An execution is
an interleaving of transitions [29]. DVF supports Hoare-style
and assume-guarantee reasoning. It maps proof obligations
into the multisorted first-order logic supported by modern
SMT solvers, e.g., Yices SMT solver. The properties veri-
fied using DVF are SGX invariants, security properties for
enclave confidentiality and enclave data integrity, and life-
cycle properties. Critical bugs were identified during this
verification [27].

DVF has a couple of limitations. First, it does not model
concurrency, whereas SGX has 22 instructions that share the
concurrent data structure, some of which contain as many
as 50 interleaving points [15]. Second, the verification is
semi-automated and includes a painful process of manually
generating the auxiliary invariants [30].

To address concurrency issues, Intel considers linearizabil-
ity [31] as a correctness condition. Intel develops a frame-
work called iPave [14] to prove SGX linearizability, and
finds the linearization point using heuristics [15]. The prop-
erties, such as system invariants or per-state assertion, can
be specified [27]. The graphical iFlow model is converted
to XML representation. iPave contains two compilers. The
first compiler translates XML representation to a new logical
formalism, called a Logic Sequence Diagram (LSD) [14].
The second compiler translates the LSD to a symbolic finite
state machine (FSM) with guarded transitions between states.
Bounded model checking [32] for task-reachability and ter-
mination analysis can then be performed on the resulting
finite-state machine. However, Intel provides no information
about k-bound used for this verification.
Intel identified critical security bugs in SGX using iPave,

proving the linearizability of SGX instructions using the

assertion analysis and proving some SGX invariants, e.g.,
a pending page is never cached [27]. However, the framework
has some limitations. Non-determinism cannot be modeled in
iPave since disjunctive transitions are not currently supported
due to performance reasons [14]. Moreover, the graphical
input leads to a heavy translation burden which is frequently
a source of modeling errors. Finally, because of the lack of
abstraction mechanism, it is not easy to experiment with it
using various SGX configurations [15].

To address the last two issues mentioned above, a compiler,
known as Accordion [15], was developed at Intel to verify
linearizability automatically via model checking. Accordion
is implemented as an embedded domain-specific language in
Haskell [33]. Each SGX instruction is specified as a func-
tion with necessary arguments. The syntax is close to the
informal specification language used by the SGX architects.
Intel reports that the bugs previously found by iPave could
be replicated in Accordion. However, no new bugs were
discovered.

C. SYMBOLIC SECURITY ANALYSIS
Various works have utilized the symbolic security analysis
tools, such as Tamarin prover [22], Cryptographic Proto-
col Shapes Analyzer (CPSA) [34], and ProVerif [21], for
the analysis of protocols. In the context of remote attes-
tation, Tamarin prover was used in the analysis of Direct
Anonymous Attestation (DAA) [35]. CPSA was used for
the analysis of EPID-based remote attestation [36]. In our
previous work, we utilized ProVerif for the proof of confiden-
tiality and integrity properties in EPID-based [18] as well as
DCAP-based [19] remote attestation. ProVerif was also used
for the verification of frameworks based on Intel SGX, such
as [37].

Compared to these and similar works on formalization of
SGX remote attestation, the TD attestation is more generic,
as it provides additional guarantees, such as runtimemeasure-
ments. Moreover, the data structures and process of creation
of attestation report is different in TDX as compared to SGX.
We believe that TD attestation protocol will be used in the
future as a unified approach for TD and SGX attestation. We
finally remark that it is the first formal verification for TD
attestation to the best of our knowledge.

III. OVERVIEW OF ANALYSIS APPROACH
A. SELECTION OF TOOL
Since the TDX implementation is not yet available, we focus
on the design-level security analysis. Specifically, we create a
formal (symbolic) model of the TD attestation. A wide range
of tools [38] are available for symbolic security analysis.
Since the problem is in general undecidable [39], a natu-
ral approach is to use the automated tools first, and then
use the user-guided tools, such as Isabelle, only in case the
properties could not be proved by automated tools. Since
we are interested in trace-based properties, such as confiden-
tiality and integrity, we focus on the unbounded trace-based

VOLUME 9, 2021 83069



M. U. Sardar et al.: Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification

tools. Among such tools, ProVerif [21] and Tamarin [22] are
considered the state-of-the-art. ProVerif is based on process
calculus, whereas Tamarin is based on multiset rewriting.
Both tools support trace-based and diff-equivalence proper-
ties, as well as user-defined equational theories.

We decided to use ProVerif due to various reasons. Firstly,
in general ProVerif is more automatic while Tamarin relies
more on user interaction. Tamarin accepts ProVerif-like input
(via SAPIC [22]) but not vice versa. Thus, if the properties
cannot be proved in ProVerif, they could be tried by importing
the model in Tamarin via SAPIC. Secondly, ProVerif model
can be easily converted to computationally sound model
by using CryptoVerif [23], which supports the syntax of
ProVerif. Finally, the performance analysis of both tools have
mostly shown (cf. [40]) that ProVerif is faster than other tools
for similar problems.

B. APPROACH
For the analysis of TD attestation in ProVerif, we extract
the protocol from Intel’s official documentation, mainly [9],
[11], [41]–[46]. This turns out to be the most challenging
part because of the presence of subtle flaws in the infor-
mal description. Some of them are described in Section V.
The attestation mechanism is then formalized in ProVerif’s
input specification language, which is a variant of applied
pi-calculus [47] enriched with cryptographic primitives.
A formal specification for the attestation mechanism is gen-
erated by producing an unbounded replication of paral-
lel composition of communicating processes along with an
adversary with Dolev-Yao [20] capabilities. Such an adver-
sary is in complete control of the communication network,
has an unbounded computational power, but manipulates
protocol messages according to some predefined rules with
idealized cryptography [48]. The behavior of the adversary
is non-deterministic in order to model different choices of
actions available to the adversary, so all possible combina-
tions of actions are covered. Exhaustive analysis of such
non-determinism is impractical in functional testing-based
analysis [21] and is one of the strengths of our approach.

The approach of ProVerif is sound but not complete.
ProVerif automatically translates protocol specification into
a set of Horn clauses [49]. Horn clauses are first-order log-
ical formulas of the form F1 ∧ . . . ∧ Fn ⇒ F , where
F1, . . . ,Fn and F are facts. The rationale is that Horn clause
representation is more precise than tree-automata because it
preserves the relational information on messages [21]. The
desired properties expressed are also automatically converted
to derivability queries on the Horn clauses. ProVerif uses a
sound and complete (see [21] for a proof) algorithm based
on resolution with free selection [50] to determine whether a
fact is derivable from the clauses. If the fact is not derivable,
then the desired security property is proved. If the fact is
derivable, then ProVerif attempts to reconstruct an attack at
the pi-calculus level. If this attack reconstruction succeeds,
the attack against the considered property is detected. If the
attack reconstruction fails because of the abstractions in the

Horn clause representation, ProVerif cannot decide whether
the property is satisfied or not. The abstractions are required
because of the undecidability problem. However, soundness
is not compromised by these abstractions. Moreover, in case
it cannot decide, the additional information such as the attack
derivation helps in understanding where the tool fails to prove
and it is possible to use more advanced options to guide the
tool to the proof in such cases.

IV. FORMAL SPECIFICATION OF TD ATTESTATION
We thoroughly explore available Intel TDX documentation,
mainly [9], [11], [41]–[46], to extract the specification of the
attestation mechanism in Intel TDX. In this section, we first
give an informal overview of entities and protocol, and then
present the formal specification of the protocol.

A. OVERVIEW OF CORE ENTITIES
There are six key entities in the TD attestation protocol: Quot-
ing Enclave (QE), host Virtual Machine Manager (VMM),
guest trust domain (TD), Intel TDX module, CPU hardware
and challenger. QE represents Intel provided enclave that
signs the report body (after its successful verification) to
form a remotely-verifiable Quote. The VMM represents an
untrusted hypervisor that manages Virtual Machines. The
guest TD represents the enhanced Virtual Machine, which is
initialized and measured at the boot time. The TDX module
is an Intel provided software, which is provided and signed
by Intel. It manages the interaction between the TD and the
VMM. The TDX module is a part of attestation metadata.
The CPU hardware generates and verifies the report. The
challenger (also known as relying party) is the remote party
that performs the attestation verification.

B. INFORMAL OVERVIEW OF PROTOCOL
In this section, we briefly describe the protocol informally.
In a nutshell, the challenger initiates the attestation request.
The guest TD sends (the hash of) its public key to the
Intel TDX module, which forwards the received public key
along with the hash of assembled static and runtime mea-
surements to the CPU hardware. The CPU hardware creates
a report, so-called SEAMREPORT, and sends it over to the
Intel TDX module, which extends the report by appending
TDX-specific TEE information. This extended report, called
TDREPORT, is sent over to TD QE via guest TD and host
VMM. TD QE checks hashes and requests CPU hardware
to verify the report. If the report is verified, QE signs the
report body to form a Quote. The Quote is then sent over via
host VMM and guest TD to the challenger. The mechanism
for Quote generation is depicted in Fig. 1, which is based
on [9], [11], [41]–[46].

The generation process for SEAMREPORT is elaborated
in Fig. 2, which is based on [11]. The values of TDX module
SVN tsvn and measurement of Intel TDX module mrs are
extracted from the data structure CRPL_TEE_TCB_INFO
and put into the data structure for measurement and configu-
ration of TDX module tcbi. Then the CPU checks the Intel

83070 VOLUME 9, 2021



M. U. Sardar et al.: Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification

FIGURE 1. Process flow of the Quote generation for Intel TDX. Convention is that the text above the arrow represents data being sent over the channel
and the text below the arrow represents requests or function calls. All the data shown in this figure is sent in unencrypted form. AK represents Attestation
Key. Host VMM, shown in red, is untrusted.

SEAM flag. If it is false, then CPU also extracts the measure-
ment of TDX module signer mrss and additional configura-
tions att from the data structure CRPL_TEE_TCB_INFO
and stores in the data structure for measurement and config-
uration of TDX module tcbi. In this case, the value of valid
field val in tcbi is updated to 0xFFFF to indicate that the
fields mrss and att are also valid in this case. If the Intel
SEAM flag is true, the values mrss and att are not updated
and the value of valid field val in tcbi is updated to 0x1FF
to indicate that the fields mrss and att are not valid in this
case. The reserved field res3 for future use contains zeros.
Once the tcbi data structure is populated, its SHA384

hash is stored as the TEE_TCB_INFO_HASH tcbh in
the data structure REPORTMACSTRUCT rms. The rms
structure populates the fields report type rtyp, CPUSVN
csvn, TEE_INFO_ HASH tdih, and report data rdata

from RDX, CRPL_CPUSVN, R9 and R8, respectively. The
reserved fields res1 and res2 for future use are all zeros.
Finally, HMAC_SHA256 is computed over the fields of rms
using a MAC key from CR_REPORT_KEY2, which is avail-
able to the CPU only. The resulting MAC mac is stored in the
last field in the structure rms [11].

C. FORMAL SPECIFICATION
Inspired by the recommendation of Barbosa et al. [38],
we clearly outline the trusted and untrusted parts of the sys-
tem model for transparency and progress. The specification
of TD attestation consists of defining three main aspects.
First, it defines the core entities involved in the attestation
mechanism and whether they are trusted. Each core entity is
modeled by a process. Second, it defines the computations
performed by the core entities and whether the adversary is

VOLUME 9, 2021 83071



M. U. Sardar et al.: Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification

FIGURE 2. The SEAMREPORT structure smr generated by CPU using SEAMOPS[SEAMREPORT] leaf function in Intel TDX. Ovals represent
functions.

able to perform these computations. The computations are
modeled using functions [48]. Third, it defines the commu-
nications between the core entities and whether the channels
used for communication are private. The communications are
modeled using channels.

The core entities and their trust status is defined as a set of
tuples of the form:

(eid, trust) (1)

where eid represents the entity identifier, and trust ∈
{true, false}, where true represents eid is trusted, and false
represents that eid is not trusted. For Intel TDX:

{(QE, true), (VMM , false), (TD, true),

(TDX , true), (CPU , true), (Ch, true)}

where QE represents Quoting Enclave, VMM represents the
host virtual machine manager that is untrusted, TD represents
the guest trust domain, TDXM represents the TDX module,
CPU represents the CPU hardware, and Ch represents the
challenger, as briefed in Section IV-A.

The overall processP is defined as the parallel composition
of the honest core processes and the arbitrary process for
adversary, i.e.,

P ≡! (QE || TD || TDXM || CPU ) || !Ch || !Adv, (2)

where || represents the parallel composition, ! represents
the replication, Adv represents the Dolev-Yao adversary in
parallel to the core processes. Note that VMM is a part of Adv
and therefore not explicitly mentioned.

The functions and their availability to the adversary are
defined as a set of tuples of the form:

(func, adv) (3)

where func represents the function name, and adv ∈

{true, false}, where true represents it is available to adversary,
and false represents the adversary is unable to perform the
computation done by the function. For Intel TDX, the set of
major functions is:

{(hash, true), (hmac, true), (sign, true),

(verifysign, true), (aenc, true), (adec, true)}

where hash is a unary function that computes the
SHA384 hash of the input.hmac represents HMAC_SHA256
of the message under the specified key. If hmac is con-
sidered pseudorandom function (PRF), then the message is
not extractable from the MAC, whereas if hmac is assumed
to be unforgeable (UF-CMA) function, then the message
is extractable from the MAC. sign represents the Elliptic
Curve Digital Signature Algorithm (ECDSA) signature over
the message with the specified signature key. Since ECDSA
is signature with appendix [51], the verification function
verifysign (implemented as a destructor in ProVerif)
requires both message and signature as inputs for the veri-
fication, and gives a boolean result:

verifysign(spk(sk),m, sign(sk,m)) −→ true (4)

where function spk computes the public key corresponding
to the private signature key sk, and m represents the message.

83072 VOLUME 9, 2021



M. U. Sardar et al.: Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification

aenc represents the asymmetric encryption that computes
the ciphertext corresponding to a secret message with the
public key of the target and the function adec (implemented
as a destructor in ProVerif) represents corresponding asym-
metric decryption which retrieves the original message with
the secret key:

adec(k, aenc(pk(k),m)) −→ m (5)

where function pk computes the public key corresponding to
the secret key k, and m represents the message.
The channel is defined as

(chan, pub) (6)

where chan represents the channel name, and pub ∈

{true, false}, where true represents it is a public channel, and
false represents it is a private channel and thus the data sent
over this channel is not available to the adversary. For Intel
TDX:

{(c_QE_CPU , false), (c_TD_TDXM , false),

(c_TDXM_CPU , false), (c, true)}

where c_QE_CPU represents the private channel between
QE and CPU, c_TD_TDXM represents the private channel
between TD and TDXM, c_TDXM_CPU represents the private
channel between TDXM and CPU, and c represents the public
channel for all other communications. The channel between
TD and TDX module is private because TD communicates
with TDX module via TDCALL without leaving the TD.

A possible specification of the protocol is as follows:

1 : Ch
req
−→ TD

2 : TD
rdata
−−→ TDXM

3 : TDXM : tdih = hash(tdi)

4 : TDXM
rtyp,tdih,rdata
−−−−−−−→ CPU

5 : CPU : smr = (rms, tcbi)

6 : CPU
smr
−−→ TDX

7 : TDXM : tdr = (smr, res4, tdi)

8 : TDXM
tdr
−→ TD

9 : TD
tdr
−→ VMM

10 : VMM
tdr
−→ QE

11 : QE : tcbh = hash(tcbi) && tdih = hash(tdi)?

12 : QE
rms
−−→ CPU

13 : CPU : ReceivedMAC = mac(MACkey, rptbody)?

14 : CPU
result
−−−→ QE

15 : QE : Quote = (rptbody, Sig)

16 : QE
Quote
−−−→ VMM

17 : VMM
Quote
−−−→ TD

18 : TD
Quote
−−−→ Ch

19 : Ch : verifysign(spkAK ,QuoteBody, Sig)?

20 : Ch
aenc(rdata,secret)
−−−−−−−−−→ TD (7)

All the above symbols are defined in the corresponding
step of the protocol below:
Step 1: The challenger process Ch sends an attestation

request req to the guest TD TD that it wants to verify.
Step 2: On receiving the request for attestation, TD

calls TDG.MR.REPORT leaf function [41] (to request
TDREPORT tdr) by sending (the hash of) its public key in
the argument report data rdata to the Intel TDX module
TDXM.
Step 3: TDXM assembles the TD information data structure

tdi from Trust Domain Control Structure (TDCS) [41], and
computes its SHA384 hash tdih using hash function:

tdih ≡ hash(tdi) (8)

where tdi is defined as:

tdi ≡ 〈tdatt, xfam,mrtd,mrc,mro,mroc, rtmr, res5〉 (9)

where tdatt represents attributes of TD, xfam represents
extended features available mask, mrtd represents measure-
ment of initial pages added to TD, mrc represents hash of ID
for non-owner-defined configurations of TD, mro represents
hash of ID of TD’s owner, mroc represents hash of ID
for owner-defined configurations of TD, rtmr represents
an array of four runtime measurement registers, and res5
represents reserved fields, as shown in Fig. 3, which is based
on [41].
Step 4: TDXM then calls SEAMOPS[SEAMREPORT] leaf

function by sending the arguments report type rtyp, hash
tdih of TDINFO structure, and report data rdata to the
CPU module CPU [11].
Step 5: In response to this, CPU generates a report called

as SEAMREPORT smr [11], defined as:

smr ≡ 〈rms, tcbi〉 (10)

where tcbi represents the data structure for measurement
and configuration of TDX module, and defined as:

tcbi ≡ 〈val, tsvn,mrs,mrss, att, res3〉 (11)

In (10), rms represents a generic MAC structure referred
to as REPORTMACSTRUCT, and defined as:

rms ≡ 〈rtyp, res1, csvn, tcbh, tdih, rdata, res2,mac〉 (12)

where tcbh represents the SHA384 hash taken over tcbi:

tcbh ≡ hash(tcbi) (13)

mac in (12) represents SHA256-based HMAC over the
remaining fields of rms using the MAC key, i.e.,

mac ≡ hmac(MACkey,

(rtyp, res1, csvn, tcbh, tdih, rdata, res2))

A visualization of these data structures along with the
operations is presented in Figs. 2 and 3.
Step 6: CPU sends SEAMREPORT smr to TDXM.

VOLUME 9, 2021 83073



M. U. Sardar et al.: Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification

Step 7: TDXM assembles all information to form
TDREPORT tdr [41], defined as:

tdr ≡ 〈smr, res4, tdi〉 (14)

where smr represents SEAMREPORT as defined in (10),
res4 represents reserved fields, and tdi represents TD
information data structure, as defined in (9).
Step 8: TDXM sends TDREPORT tdr to TD.
Steps 9 and 10: TD forwards tdr to the TD QE process

QE via host VMM requesting for a remotely verifiable Quote,
because tdr cannot be remotely verified. Since host VMM is
untrusted and therefore a part of the adversary, these two steps
are equivalent to sending tdr from guest TD directly to TD
QE over a public channel. This is implemented in ProVerif
accordingly.
Step 11:QE, on receiving the reporttdr, checks the hashes

in the report.
Step 12: QE then calls ENCLU[EVERIFYREPORT2] leaf

function [11] with the argument rms.
Step 13: CPU performs the verification of rms. The verifi-

cation consists of three main steps: (i) verify that the header
rtyp in the report is correct, (ii) verify that the CPUSVN
csvn is a valid value, and (iii) compute the MAC over
the fields in the report body rptbody using the MAC key
MACkey, and verify that the computed MAC matches the
value in the field mac of the received report (represented as
receivedMAC) [11].
Step 14: CPU sends the verification result result back

to QE. Each session between TD QE and CPU hardware is
secure by the design of TDX [9].
Step 15: If hashes match (step 11) and the report is verified

by CPU (step 13), QE replaces the MAC in the REPORT-
MACSTRUCT rms with the signature using the attestation
key AK to form a Quote, defined as:

Quote ≡ 〈rptbody, Sig〉 (15)

where Sig represents the signature over rptbody, i.e.,

Sig ≡ sign(AK , rptbody) (16)

Steps 16 and 17: The Quote is then sent back to TD via
VMM. As in steps 9 and 10, this is equivalent to sending Quote
directly to TD over a public channel. This is implemented in
ProVerif accordingly.
Step 18: TD sends the Quote to the challenger Ch.
Step 19: Ch, on receiving the Quote, verifies the signature

Sig on the Quote body QuoteBody. This assumes that it
has the public key spkAK corresponding to the Attestation
Key (AK). Ch can use the attestation-verification service to
verify the Quote. This verification is based on the Data Center
Attestation Primitives (DCAP) attestation mechanism [52],
which has been independently formally verified in our recent
work [19], and thus we skip the details here. After verifica-
tion, it can analyze the static and runtime measurements as

well as other configurations to make a decision whether to
trust the TD.
Step 20: After verification, it sends a secret secret

encrypted with the public key of TD contained in rdata
using aenc function. TD can decrypt secret using its
private key, and then the shared secret can then be used for
secure communication.

V. DISCREPANCIES IN THE OFFICIAL
LITERATURE OF INTEL TDX
One of the major challenges in the formal specification of
Intel TD attestation is the presence of various discrepancies
in the official literature of Intel TDX. An exhaustive list of
discrepancies identified is out of the scope of this paper.
We divide these discrepancies into three main categories:
(i) ambiguous (re-)naming/undefined names, (ii) missing
fields in data structures, and (iii) inconsistent information.
For reference, we provide a few examples of each of them
with pointers to the section numbers, wherever applicable,
in Intel’s literature. We also relate these examples to the
symbols defined in Section IV and the most closely related
entity of Section IV-A.

A. AMBIGUOUS (RE-)NAMING/UNDEFINED NAMES
The official literature of Intel TDX contains various unde-
fined data structures, fields, instructions, and arrays. It is
unclear why even the same document contains different
names for the same entity. Our initial guess was that it might
be because of different perspectives from the VM and VMM,
but this did not help. We provide a few examples, classified
according to the most closely related entity in which they
occur, along with our intuition for each:

1) CPU HARDWARE
• SEAMINFO data structure (as used in, for example,
Section 18.5.2 in [41], and SEAMREPORT leaf descrip-
tion in [11]) should be the same as TEE_TCB_INFO
data structure (tcbi).

• The leaf functions EVERIFYTDREPORT2 (as used in,
for example, Fig. 2.4 in [41]), EVERIFYREPORT (as
used in, for example, SEAMREPORT leaf description
in [11], and Section 2 in [9]), and VERIFYREPORT
(as used in, for example, Fig. 8-2 in [44]) should be
the same as EVERIFYREPORT2 leaf function. This is
because EVERIFYREPORT2 leaf function is the only
leaf function that is defined for the verification of the
report in [11].

• tmp_tdreport, as used in SEAMREPORT leaf operation
in [11], should instead be tmp_seamreport.

2) TDX MODULE
• TEE_INFO data structure (as used in, for example,
Table 18.11 in [41], and SEAMREPORT leaf descrip-
tion in [11]) should be the same as TDINFO data
structure (tdi).

83074 VOLUME 9, 2021



M. U. Sardar et al.: Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification

FIGURE 3. An overview of the components of TDREPORT data structure generated by TDG.MR.REPORT instruction in Intel TDX. Same structures are
represented by same colors. Colors are consistent with Fig. 2.

B. MISSING FIELDS IN DATA STRUCTURES
A few fields are missing in some figures in the specification
documents of Intel TDX. So, instead of clarifying the con-
cept, the figures unfortunately add more to the confusion of
the reader. We couldn’t find any good reason not to include
these fields in the figures. We provide a couple of instances
below:
• TDX Module: MROWNERCONFIG field (mroc) is
missing in TDINFO data structure tdi in Fig. 10.1
of [41]. Although it is not clear whether it is part of
the SHA384 hash of the data structure, we find no
good reason why this should be excluded from the hash,
because there is no other cryptographic protection for
this field. Moreover, similar fields MROWNER (mro)
and MRCONFIGID (mrc) are included in the hash.
Therefore, we believe hash is also computed over this
field.

• Quoting Enclave: All the fields of measurements and
configuration of TDX module as well as TDX-specific
TEE information data structures (e.g., static mrtd and
runtime rtmr measurements) are missing in the Quote

structure in Fig. 10.1 of [41]. Since Quote is the only
final structure which is sent over byQE to the challenger,
it is not clear how the challenger is supposed to get these
fields. We think that either the two data structures tcbi
and tdi should be sent along with the Quote, or else
these structures should be part of the Quote. In the first
case, the hashes of these data structures are there in the
Quote and signed, and it is still protected. From our
experience with SGX, we believe that the second option
is more likely, since static measurement (represented as
MRENCLAVE) in SGX is sent as part of the Quote.
It is important to emphasize here that verifying static
and runtimemeasurements is a critical part of the remote
attestation.

C. INCONSISTENT INFORMATION
The most critical part is that there are a number of descrip-
tions in the official literature which are not only ambiguous
but also contradict the information provided at other places,
even within the same document. This is critical because it can
lead to potential specification errors that may be translated

VOLUME 9, 2021 83075



M. U. Sardar et al.: Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification

into errors in the design and implementation of the technol-
ogy. We provide a few examples from the CPU module:
• Fig. 10.1 of [41] shows that the SHA384 hash is taken
over four fields of the TEE_TCB_INFO data structure
(tcbi) in a specific order, whereas the SEAMREPORT
leaf operation in [11] shows that the SHA384 hash is
taken over the whole data structure in a completely
different order given in Table 2-3. It is worth pointing
that order matters for hash computation.

• Fig. 10.1 of [41] shows that the reserved field (res5) in
the TDINFO data structure (tdi) is not included in the
SHA384 hash stored in REPORTMACSTRUCT (rms)
and Quote, whereas for the verification (for reference,
Section 18.5.3 in the same document), it is implied that
the hash is over the complete TDINFO data structure
(tdi). Moreover, the order of fields in TDINFO data
structure (tdi) in Fig. 10.1 of [41] is inconsistent with
the order in Table 18.13 of the same document.

• REPORTTYPE.TYPE field (inside rtyp) as described
in Table 2-4 of [11] requiring only the high bit of TYPE
to be 1 (i.e., allowing all values from 0× 80 until 0xFF)
is inconsistent with the operation of EVERIFYRE-
PORT2 leaf function in the same document, where it is
explicitly required to be of value 0 × 81, and any other
value leads to an error. We believe that TDX should have
the TYPE value 0 × 81.

• The description of REPORTMACSTRUCT rms (for
reference, Section 18.5.3 in [41]) states: ‘‘Software
verifying a TEE report structure (for TDX, this includes
TEE_TCB_INFO_STRUCT and TDINFO_STRUCT)
should first confirm that its REPORTMACSTRUCT.
TEE_TCB_INFO_HASH equals the hash of the TEE_
TCB_INFO_STRUCT (if applicable) and that REPORT-
MACSTRUCT.TEE_INFO_HASH equals the hash of
the TDINFO_STRUCT.’’ Our intuition is that REPORT-
MACSTRUCT.TEE_TCB_INFO_ HASH (tcbh) sho-
uld always be equal to the hash of the TEE_TCB_INFO
(tcbi), because the TDX module measurements and
configurations are always to be verified in the report.
So the ‘‘if applicable’’ here does not make sense. If addi-
tionally, a TD is to be verified then REPORTMAC-
STRUCT.TEE_INFO_HASH (tdih) should match the
hash of the TDINFO (tdi). Thus, the phrase ‘‘if appli-
cable’’ should be with the second statement.
We have submitted the draft to Intel for correcting the
identified discrepancies in the documentation. Intel is in
the process of making the changes.

VI. FORMAL VERIFICATION OF TD ATTESTATION
In this section, we first describe the sanity checks for the
formalmodel in ProVerif.We then describe the properties that
we proved in ProVerif.

A. SANITY CHECKS
We perform many sanity checks to exclude the modelling
issues and gain confidence in the formal model that we

actually model what we intend to model. First, we analyze
that all parts of the code are reachable. Secondly, we inten-
tionally break the protocol at each point to see if we could
detect the break. Specifically, for confidentiality, we make
each of the private channels c_QE_CPU, c_TD_TDX, and
c_TDX_CPU as public one by one and then ensure that it
breaks the confidentiality of the shared secret in each case.

B. SECURITY SERVICES
In the context of TD attestation, the most important security
services are confidentiality and authentication.

1) CONFIDENTIALITY
After the successful verification of the Quote, the challenger
sends a secret encrypted with the public key of the guest
TD that it obtains from the rdata field in the Quote. This
secret can be a session key to establish a secure channel with
the guest TD. Therefore, it is important to ensure that the
adversary is not able to decrypt this. This can be formalized
as a reachability property, where we inspect whether it is
possible to reach a state where the adversary can derive
the secret in the plaintext. After overcoming all the dis-
crepancies mentioned in the Section V, we prove the con-
fidentiality of the secret in ProVerif, i.e., a state in which
the adversary is sent the secret in plaintext is not reach-
able. Internally, ProVerif represents the model using 76 Horn
clauses.

2) AUTHENTICATION
For authentication, the formal model is enriched with events.
It is important to note that these events do not affect the
adversary knowledge. We place the event CPUsentSMR
just before the CPU sends smr to TDX (step 6), and the
event QuoteVerified just after the successful verification
of the Quote by the challenger (step 19). We additionally
define the arguments to these events. Adding arguments to
events in authentication property ensures that values of these
arguments remain unchanged. We then verify the following
property in ProVerif:

∀ rtyp, res1, csvn, tcbh, tdih, rdata, res2.

∃ mac, tcbi.

event(QuoteVerified(rtyp, res1, csvn, tcbh, tdih, rdata,

res2))⇒

event(CPUsentSMR(rtyp, res1, csvn, tcbh, tdih, rdata,

res2,mac, tcbi))

where all argument symbols are as defined in Section IV.
Essentially there is universal quantification for all fields of
Quote except signatures. The parameter mac is existentially
quantified because QE replaces the mac with signatures to
be remotely verified by the challenger. Also the parameter
tcbi is existentially quantified because tcbi is not part
of Quote, according to Intel’s documentation [41]. The exis-
tential quantification of tcbi preserves security because

83076 VOLUME 9, 2021



M. U. Sardar et al.: Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification

its hash tcbh is universally quantified and authenticated.
Informally, the query proves that if a Quote with the given
parameters is verified by the challenger (step 19), then a
report smr with the same parameters was previously gen-
erated by the CPU with some values of mac and tcbi.
It is important to emphasize that our authentication property
does not need to change with any future definitions of the
reserved fields res1 and res2, because these fields are
already accounted in the theorem. Thus the property ensures
that authentication holds from sending report (step 6) up to
receiving Quote (step 19). Internally, ProVerif represents the
model using 77 Horn clauses.

We prove a similar property for TDREPORT tdr. In this
case, we place the event TDXMsentTDR with suitable argu-
ments just before the TDXmodule sends tdr to TD (step 8),
and the event QEaccepted2 with the same arguments just
after the successful verification of the smr (step 14). We then
verify the following property:

∀ smr, tdi.

event(QEaccepted2(smr, tdi))⇒

event(TDXMsentTDR(smr, tdi))

where smr represents the measurement and configuration of
SEAM, and tdi represents TDX-specific TEE information,
as defined in (10) and (9), respectively. Informally, the query
proves that for every tdr that is accepted by QE with the
arguments smr and tdi, there is a previous tdr created by
the TDX module with the same arguments. Thus, we prove
the authentication of smr and tdi in tdr.
It is important to note that adding a parameter res4 in the

last property makes it false, because it is not protected.

∀ smr, res4, tdi.

event(QEaccepted3(smr, res4, tdi)) 6⇒

event(TDXMsentTDR3(smr, res4, tdi))

where 6⇒ represents that the property does not hold and
the events QEaccepted3 and TDXMsentTDR3 are placed
at same positions as QEaccepted2 and TDXMsentTDR,
respectively. Informally, this means that an adversary could
change these reserved bytes and still get the report accepted
by QE.

Finally, we ensure that the events QuoteVerified,
QEaccepted2, QEaccepted3 are indeed reachable in
the formal model, and thus the results of the authentication
properties can be trusted.

The verification is performed using ProVerif version
2.02pl1 on Ubuntu 18.04 LTS on an Intel Core i7-6700
quad-core machine with a processor base frequency of
3.40GHz with 32GB of RAM. The average verification time
to prove all the above properties (including reachability of
all events) in this experimental setup is 0.5 s. This shows the
scalability of the proposed approach, and the convenience to
schedule the verification task in the design process. Another

key feature of the approach is automation, i.e., all proper-
ties are proved automatically. The user involvement is only
required for the specification of the protocol (Section IV) and
the properties.

VII. CONCLUSION
The new architecture extensions, called TDX, announced
by Intel in August 2020 promise a new and exciting era
of VM-based TEE for Intel. In this work, we presented the
formal specification of one of the security-critical processes
of Intel TDX, namely TD remote attestation, using state-of-
the-art symbolic analysis tool ProVerif. The process of formal
specification revealed various subtle discrepancies in the Intel
TDX specifications, including inconsistent information that
could potentially lead to design and implementation errors.
After corrections based on our experience and intuition,
we proved confidentiality of the shared secret, and authenti-
cation of reports (smr and tdi). Interesting future directions
include verification of equivalence properties, computational
security analysis and the generation of formally verified
implementation of Intel TD attestation with a focus on
side-channel resistance that is correct-by-construction.

ACKNOWLEDGMENT
The authors would like to thank Anna Galanou and Amna
Shahab for their helpful comments on the presentation of this
work.

REFERENCES
[1] Confidential Computing Consortium. (Jan. 2021). A Technical

Analysis of Confidential Computing, V1.1. [Online]. Available: https://
confidentialcomputing.io/wp-content/uploads/sites/85/2021/03/CCC-
Tech-Analysis-Confidential-Computing-V1.pdf

[2] W. Arthur and D. Challener, A Practical Guide to TPM 2.0: Using the New
Trusted Platform Module in the New Age of Security. Berkeley, CA, USA:
Apress, 2015.

[3] G. Proudler, L. Chen, and C. Dalton, Trusted Computing Platforms:
TPM2.0 in Context. Cham, Switzerland: Springer, 2014.

[4] V. Costan and S. Devadas, ‘‘Intel SGX explained,’’ IACR Cryptology
ePrint Archive, vol. 2016, no. 86, pp. 1–18, 2016. [Online]. Available:
https://eprint.iacr.org/2016/086.pdf

[5] AMD. (2020). AMD SEV-SNP: Strengthening VM Isolation With
Integrity Protection and More. [Online]. Available: https://www.
amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-
with-integrity-protection-and-more.pdf

[6] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, M. L. Stillwell, and D. Goltzsche,
‘‘SCONE: Secure linux containers with Intel SGX,’’ in Proc. USENIX
Symp. Operating Syst. Design Implement., 2016, pp. 689–703.

[7] C.-C. Tsai, D. E. Porter, and M. Vij, ‘‘Graphene-SGX: A practical library
OS for unmodified applications on SGX,’’ in Proc. USENIX Annu. Tech.
Conf., 2017, pp. 645–658.

[8] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov,
and P. Pietzuch, ‘‘SGX-LKL: Securing the host OS interface for
trusted execution,’’ Aug. 2019, arXiv:1908.11143. [Online]. Available:
http://arxiv.org/abs/1908.11143

[9] Intel. (2020). Intel Trust Domain Extensions. [Online]. Available: https://
software.intel.com/content/dam/develop/external/us/en/documents/tdx-
whitepaper-v4.pdf

[10] Intel. (2021). Intel Intel Architecture Memory Encryption Technologies:
Specification, Revision 1.3. [Online]. Available: https://software.
intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-
Encryption-Spec.pdf

VOLUME 9, 2021 83077



M. U. Sardar et al.: Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification

[11] Intel. (2020). Intel Trust Domain CPU Architectural Extensions.
[Online]. Available: https://software.intel.com/content/dam/develop/
external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf

[12] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging.
Amsterdam, The Netherlands: Elsevier, 2009.

[13] A. Goel, S. Krstic, R. Leslie, and M. Tuttle, ‘‘SMT-based system verifi-
cation with DVF,’’ in Satisfiability Modulo Theories, vol. 20. EasyChair,
2013, pp. 32–43.

[14] R. Fraer, D. Keren, Z. Khasidashvili, A. Novakovsky, A. Puder,
E. Singerman, E. Talmor, M. Y. Vardi, and J. Yang, ‘‘From visual
to logical formalisms for SoC validation,’’ in Formal Methods Mod-
els for Codesign (MEMOCODE). New York, NY, USA: ACM, 2014,
pp. 165–174.

[15] R. Leslie-Hurd, D. Caspi, and M. Fernandez, ‘‘Verifying linearizability
of Intel software guard extensions,’’ in Proc. Int. Conf. Comput. Aided
Verification. Springer, 2015, pp. 144–160.

[16] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, ‘‘Innovative tech-
nology for CPU based attestation and sealing,’’ in Proc. Int. Work-
shop Hardw. Architectural Support Secur. Privacy, vol. 13. New York,
NY, USA: ACM, 2013. [Online]. Available: https://software.intel.com/en-
us/articles/innovative-technology-for-cpu-based-attestation-and-sealing

[17] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia,
‘‘A formal foundation for secure remote execution of enclaves,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 2435–2450.

[18] M. U. Sardar, D. L. Quoc, and C. Fetzer, ‘‘Towards formalization of
enhanced privacy ID (EPID)-based remote attestation in intel SGX,’’
in Proc. 23rd Euromicro Conf. Digit. Syst. Design (DSD), Aug. 2020,
pp. 604–607.

[19] M. U. Sardar, R. Faqeh, and C. Fetzer, ‘‘Formal foundations for Intel
SGX data center attestation primitives,’’ in Formal Methods and Soft-
ware Engineering (Lecture Notes in Computer Science), vol. 12531,
S.-W. Lin, Z. Hou, and B. Mahoney, Eds. Cham, Switzerland: Springer,
2020, pp. 268–283.

[20] D. Dolev and A. Yao, ‘‘On the security of public key protocols,’’ IEEE
Trans. Inf. Theory, vol. IT-29, no. 2, pp. 198–208, Mar. 1983.

[21] B. Blanchet, ‘‘Modeling and verifying security protocols with the applied
Pi calculus and ProVerif,’’ Found. Trends Privacy Secur., vol. 1, nos. 1–2,
pp. 1–135, 2016.

[22] D. Basin, C. Cremers, J. Dreier, and R. Sasse, ‘‘Symbolically analyzing
security protocols using tamarin,’’ ACM SIGLOG News, vol. 4, no. 4,
pp. 19–30, Nov. 2017.

[23] B. Blanchet, ‘‘CryptoVerif: A computationally-sound security protocol
verifier,’’ Tech. Rep., 2017.

[24] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino,
‘‘Boogie: A modular reusable verifier for object-oriented programs,’’
in Formal Methods for Components and Objects. Springer, 2005,
pp. 364–387.

[25] M. C. Browne, E. M. Clarke, and O. Grümberg, ‘‘Characterizing finite
Kripke structures in propositional temporal logic,’’ Theor. Comput. Sci.,
vol. 59, nos. 1–2, pp. 115–131, Jul. 1988.

[26] V. Costan, I. Lebedev, and S. Devadas, ‘‘Sanctum: Minimal hardware
extensions for strong software isolation,’’ in Proc. USENIX Secur. Symp.,
2016, pp. 857–874.

[27] Intel. (Jun. 2015). Intel Software Guard Extensions (Intel SGX), Revi-
sion 1.1. Accessed: Nov. 5, 2020. [Online]. Available: https://software.
intel.com/sites/default/files/332680-002.pdf

[28] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson,
R. Leslie-Hurd, and C. Rozas, ‘‘Intel software guard extensions (Intel
SGX) support for dynamic memory management inside an enclave,’’
in Proc. Hardw. Architectural Support Secur. Privacy (HASP), 2016,
pp. 1–9.

[29] M. R. Tuttle and A. Goel, ‘‘Protocol proof checking simplified with SMT,’’
in Proc. Int. Symp. Netw. Comput. Appl., 2012, pp. 195–202.

[30] S. Conchon and M. Roux, ‘‘Reasoning about universal cubes in
MCMT,’’ in Formal Methods and Software Engineering. Springer, 2019,
pp. 270–285.

[31] M. P. Herlihy and J. M. Wing, ‘‘Linearizability: A correctness condition
for concurrent objects,’’ ACM Trans. Program. Lang. Syst., vol. 12, no. 3,
pp. 463–492, Jul. 1990.

[32] A. Biere, A. Cimatti, E.M. Clarke,M. Fujita, andY. Zhu, ‘‘Symbolicmodel
checking using SAT procedures instead of BDDs,’’ in Proc. Design Autom.
Conf., 1999, pp. 317–320.

[33] A. Gill, ‘‘Domain-specific languages and code synthesis using Haskell,’’
Queue, vol. 12, no. 4, pp. 30–43, Apr. 2014.

[34] M. Ramsdell, J. D. Guttman, and J. D. Liskov. (2016). CPSA:
A Cryptographic Protocol Shapes Analyzer. [Online]. Available: http:
//hackage.haskell.org/package/cpsa

[35] J. Whitefield, L. Chen, R. Sasse, S. Schneider, H. Treharne, and
S. Wesemeyer, ‘‘A symbolic analysis of ECC-based direct anonymous
attestation,’’ in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS P), Jun. 2019,
pp. 127–141.

[36] J. D. Guttman and J. D. Ramsdell, ‘‘Understanding attestation: Analyzing
protocols that use quotes,’’ in Security and Trust Management. 2019,
pp. 89–106.

[37] G. Chen, Y. Zhang, and T.-H. Lai, ‘‘OPERA: Open remote attes-
tation for Intel’s secure enclaves,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur. New York, NY, USA: ACM, Nov. 2019,
pp. 2317–2331.

[38] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers,
K. Liao, and B. Parno, ‘‘SoK: Computer-aided cryptography,’’ in Proc.
42nd IEEE Symp. Secur. Privacy, May 2021. [Online]. Available:
https://eprint.iacr.org/2019/1393.pdf

[39] N. Durgin, N. Durgin, P. Lincoln, P. Lincoln, J. Mitchell, J. Mitchell,
A. Scedrov, and A. Scedrov, ‘‘Undecidability of bounded security proto-
cols,’’ Proc. Workshop Formal Methods Secur. Protocols (FMSP), Trento,
Italy, 1999.

[40] P. Lafourcade and M. Puys, ‘‘Performance evaluations of cryptographic
protocols verification tools dealing with algebraic properties,’’ in Founda-
tions and Practice of Security. 2016, pp. 137–155.

[41] Intel. (2020). Architecture Specification: Intel Trust Domain Extensions
(Intel TDX) Module. [Online]. Available: https://software.intel.com/
content/dam/develop/external/us/en/documents/intel-tdx-module-
1eas.pdf

[42] Intel. (2020). Guest-Host-Communication Interface (GHCI) for Intel
Trust Domain Extensions (Intel TDX). [Online]. Available: https://
software.intel.com/content/dam/develop/external/us/en/documents/intel-
tdx-guest-hypervisor-communication-interface.pdf

[43] Intel. (2020). Intel Trust Domain Extensions—SEAM Loader (SEAMLDR)
Interface Specification. [Online]. Available: https://software.intel.com/
content/dam/develop/external/us/en/documents/intel-tdx-seamldr-
interface-specification.pdf

[44] Intel. (Oct. 2020). Intel TDX Virtual Firmware Design Guide.
[Online]. Available: https://software.intel.com/content/dam/develop/
external/us/en/documents/tdx-virtual-firmware-design-guide-rev-1.pdf

[45] N. Smith, S. Ortiz, M. Castelino, and M. Ylinen. (2019). Tech-
nologies for Fast Launch of Trusted Containers. [Online]. Available:
https://www.freepatentsonline.com/y2019/0042759.html

[46] L. Kida, K. Zmudzinski, R. Lal, P. Pappachan, A. Basak, and
A. Trikalinou. (2019). Technologies for Filtering Memory Access Trans-
actions Received From One or More I/O Devices. [Online]. Available:
https://www.freepatentsonline.com/y2019/0138755.html

[47] M. Abadi, B. Blanchet, and C. Fournet, ‘‘The applied Pi calculus: Mobile
values, new names, and secure communication,’’ J. ACM, vol. 65, no. 1,
pp. 1–41, Jan. 2018.

[48] V. Cortier and S. Kremer, ‘‘Formal models and techniques for analyzing
security protocols: A tutorial,’’Found. Trends Program. Lang., vol. 1, no. 3,
pp. 151–167, 2014.

[49] C. Weidenbach, ‘‘Towards an automatic analysis of security protocols in
first-order logic,’’ inProc. Int. Conf. AutomatedDeduction. Springer, 1999,
pp. 314–328.

[50] L. Bachmair and H. Ganzinger, ‘‘Resolution theorem proving,’’ in Hand-
book Automated Reasoning. Amsterdam, The Netherlands: Elsevier, 2001,
pp. 19–99.

[51] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook
of Applied Cryptography. [Online]. Available: http://cacr.uwaterloo.ca/
hac/

[52] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski, ‘‘Supporting third
party attestation for Intel SGXwith Intel data center attestation primitives,’’
White Paper, 2018.

83078 VOLUME 9, 2021



M. U. Sardar et al.: Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification

MUHAMMAD USAMA SARDAR (Member,
IEEE) received the B.S. degree in electronics
engineering from the Ghulam Ishaq Khan Insti-
tute of Engineering Sciences and Technology,
Topi, Pakistan, in 2009, and the master’s degree
from the School of Electrical Engineering and
Computer Sciences (SEECS), National University
of Sciences and Technology (NUST), Islamabad,
Pakistan, in 2015, with 2nd position in his
batch. He is currently pursuing the Ph.D. degree

with the Faculty of Computer Science, Technical University of Dresden,
Germany.

His master’s dissertation was in collaboration with the Chair for Embed-
ded Systems (CES), Karlsruhe Institute of Technology (KIT), Germany.
In 2017, he was a recipient of the prestigious DAAD Research Grant to
pursue his Ph.D. degree. He has vast work experience, including research
as well as teaching. He was a Research Internee with the Chair of Embedded
Systems, Karlsruhe Institute of Technology, Germany, and a Research Assis-
tant with the System Analysis and Verification Laboratory, NUST, Pakistan.
He is currently a Tutor for the master’s courses, including Systems Engi-
neering 1, Principles of Dependable Systems, and Software Fault Tolerance,
at the Technical University of Dresden. His research work has resulted in
publications at top international forums, such as the Journal of Parallel
and Distributed Computing, the NASA Formal Methods Symposium, and
Journal of Automated Reasoning. His current research focus is on the devel-
opment of tools integrating the formal methods to complement the existing
simulation techniques for trusted execution environments.

Mr. Sardar is also serving as a Volunteer at CAVlinks. He has received the
South Asia Triple Helix Association (SATHA) Innovation Award, in 2018,
the Best Researcher of the Year Award in System Analysis and Verification
Lab in Pakistan, in 2017, and the best speaker awards at Workshop on
Applications in ASIC Design, in December 2016, and Workshop on Recent
Trends in Theorem Proving, in April 2016.

SAIDGANI MUSAEV received the B.Sc. degree from the Faculty of Applied
Mathematics and Computer Science, Moscow State University, Dushanbe
Branch, in 2016, and theM.Sc. degree from the Faculty of Computer Science,
Vrije Universiteit Amsterdam, in 2019.

Since 2019, he has been a Research Assistant with the Chair of Systems
Engineering, Technical University of Dresden.

CHRISTOF FETZER received the Diploma degree
in computer science from the University of
Kaiserslautern, Germany, in December 1992,
and the Ph.D. degree from UC San Diego,
in March 1997.

He joined AT&T Labs-Research, in August
1999, and had been a Principal Member of Tech-
nical Staff until March 2004. Since April 2004,
he heads the Endowed Chair (Heinz-Nixdorf
endowment) in systems engineering at the Depart-

ment of Computer Science, TU Dresden, where he is currently the Chair of
the Distributed Systems Engineering (International Master’s Program) at the
Computer Science Department. He has published over 150 research articles
in the field of dependable distributed systems.

Dr. Fetzer has been amember ofmore than 50 program committees. He has
won three best paper awards at DEBS 2013, LISA2013, and SRDS 2014,
his Ph.D. students have won two best student paper awards at IEEE Cloud
2014 and DSN 2015, and the EuroSys Roger Needham Award, in 2014.
As a student, he received a two-year scholarship from DAAD and won two
best student paper awards at SRDS and DSN. He was a Finalist of the
1998 Council of Graduate Schools/UMI Distinguished Dissertation Award
and received the IEE Mather Premium, in 1999.

VOLUME 9, 2021 83079


