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ABSTRACT We discuss the use of matrix relevance learning, a popular extension to prototype learning
algorithms, applied to a three-class classification task of diagnosing cassava diseases from spectral data.
Previously this diagnosis has been done using plant image data taken with a smartphone. However for this
method disease symptoms need to be visible. Unfortunately for some cassava diseases, once symptoms have
manifested on the aerial part of the plant, the root which is the edible part of the plant has been totally
destroyed. This research is premised on the hypothesis that diseased crops without visible symptoms can be
detected using spectral information, allowing for early interventions. In this paper, we analyze visible and
near-infrared spectra captured from leaves infected with two common cassava diseases (cassava brown streak
disease and cassava mosaic virus disease) found in Sub-Saharan Africa. We also take spectra from leaves
of healthy plants. The spectral data come with thousands of dimensions, therefore different wavelengths are
analyzed in order to identify the most relevant spectral bands for diagnosing these disease. To cope with
the nominally high number of input dimensions of data, functional decomposition of the spectra is applied.
The classification task is addressed using Generalized Matrix Relevance Learning Vector Quantization and
compared with the standard classification techniques performed in the space of expansion coefficients.

INDEX TERMS Cassava disease diagnosis, feature selection, matrix relevance learning, spectral data.

I. INTRODUCTION
The ability to quickly diagnose disease in the field is of
critical importance in most agro-reliant economies the world
over. For places where the crop grown is not only of eco-
nomic but also food security importance, this is particularly
crucial. In this study we investigate improved ways of accu-
rately diagnosing plants in the field by leveraging a unique
dataset: spectral data from plant leaves, and using improved
algorithms that not only provide higher accuracy but also a
profile of wavelengths that are most important for the disease
classification task.

We particularly focus on cassava (Manihot esculenta),
a staple crop in Sub-Saharan Africa that feeds over 500 mil-
lion people daily. Cassava suffers from two serious diseases:
cassava brown streak disease (CBSD) and cassava mosaic
virus disease (CMD). According to [1], CBSD and CMD
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together account for over 90% of yield losses in cassava pro-
duction systems in Sub-Saharan Africa. This in turn greatly
affects smallholder farmers.

We present an approach to detection and diagnosis of
CBSD and CMD based on image spectroscopy to extract
representative features from example leaves manifesting
these diseases, and machine learning for building the pre-
dictive models based on such data. This work is an early
step in our endeavor to run experiments on diseased but
non-symptomatic cassava plants using spectral data collected
from spots on a diseased leaf that are symptomatic and spots
that are non symptomatic. The novelty in our approach is
not only applying spectroscopy in field-level diagnostics of
cassava but also optimizing the models for fewer features of
the data while maintaining accuracy. This is very important
for deployment. Our eventual goal is to deploy these models
on low-cost sensor devices to capture spectral data from
the leaves of a plant and provide a reading of its state of
health.
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The field of feature engineering and feature selection pro-
vides techniques for reducing the number of required fea-
tures of input data, usually making the model simpler and
less prone to bias from noisy features. Here we employ
Generalized Matrix Relevance Learning Vector Quantization
(GMLVQ), a highly intuitive algorithm that can be optimized
in the training to give high accuracy and also detect the most
important features relevant for the classification task.

We specifically apply GMLVQ here for a number of rea-
sons: It has been used successfully in previous related studies
and displayed favorable performance e.g [2]–[4]. It is, how-
ever, not our aim to show that GMLVQ outperforms other
classifiers in the problem at hand. Prototype-based systems
in general are natural tools for the analysis of multi-class
datasets. GMLVQ is particularly suitable when combined
with efficient dimensional reduction methods as highlighted
in Section III. Importantly, GMLVQoffers great interpretabil-
ity and insight into the importance of different input features
for the classification task at hand and in our case, can serve
as a tool for the identification of the most relevant spectral
wavelengths. Here, we exploit these important aspects to a
large extent as outlined in greater detail in Section III-A.

The sections that follow describe the experimental proce-
dure we followed to provide evidence of the efficacy of using
spectral data for this task and optimizing the models for a
reduced featureset of the data. Specifically, Section II gives
a small synopsis of the literature related to the use of spec-
troscopy for classification and some examples, Section III
describes the GMLVQ algorithm, the feature selection pro-
cess and dimensionality reduction techniques and Section IV
describes the experimental set-up we employed. Results and
discussion are presented in Section V and VI respectively.

II. RELATED WORK
The de facto way to diagnose crops in the field has been
through leaf images, for example taken with a smartphone.
Several recent studies have demonstrated the efficacy of these
methods on visual diagnosis of different crops. Our work
builds on previous studies in [5], [6] that focused on the use
of conventional smartphone camera plant images to diagnose
disease in the field. Most of the earlier work considers the
use of leaf images as the key data input into the model.
For these techniques to be effective, diseases symptoms need
to be visible on the aerial part of the plant. However, once
symptoms have manifested, for some particular diseases,
a lot of damage has already been inflicted particularly to the
root of the plant and it can no longer be used as food. Our
hypothesis is that spectral data collected from parts of the
plant can offer a better signal of the inherent disease in the
plant. This presents better opportunities for early detection
of disease in the plant than image data. Examples of suc-
cessful use of spectral data in early disease detection include
work in Belasque et al. [7] where fluorescence spectroscopy
was used to detect mechanical and disease stresses in citrus
plants; a similar methodology was also employed in [8] for
detection of diseases in citrus plants in the USA and Brazil.

Yang et. al. [9] also presents work in the early detection of
rice blast disease using near-infrared hyper-spectral imaging.
Some previous work has focused on a combination of pests
and diseases, for example in [10] where a multi-spectral
imaging methodology for the diagnosis of plant diseases
and insect pests was employed. The use of near-infrared
spectroscopy to analyze cold rice blast is also discussed
in [11]. Similarly, hyper-spectral data were used for the
pre-symptomatic detection of infections in sugar beet in [12].

The uniqueness of our work is the focus on the early detec-
tion of diseases in plants based on spectral data. Using images
only works once the diseases have manifested physically on
leaves of the diseased plant. Using hyper-spectral imaging
techniques is infeasible in our context because of the costs
associated with acquiring the hyper-spectral cameras. Using
a hand-held Spectrometer gives us a cheaper option to detect
diseases in cassava plants before they are symptomatic giving
the smallholder farmer in our case a window of time to apply
an intervention to control the disease.

This work constitutes a significant extension of previous
work in [13] that investigated diagnosing cassava diseases
using spectral data from visibly infected leaves compared
with use of image-based features extracted from crop leaves
taken by a mobile camera.

A key aim of this earlier work was to gain a first under-
standing of whether the location of where spectra were taken
from an infected plant or leaf matters. In particular, we stud-
ied the potential difference between taking spectral data from
visibly infected parts of the leaf or from parts of the leaf
that are not visibly infected. Results of that study showed a
significant increase in performance for the experiment using
the spectral data from the the non-visibly infected part. Here,
we extend the scope of the investigation significantly by com-
paring different methods for dimension reduction of spectral
data and by exploiting the interpretability of the GMLVQ
systems explicitly.

Spectral data by its nature is very high-dimensional, nom-
inally comprising more than 3600 features or dimensions.
A feature pre-processing step is thus essential in this case
to ensure our models do not suffer from the large p small n
problem; a common problem in machine learning when the
data consists of more features than the number of examples.

To do this, we apply and compare different pre-processing
strategies. As the baseline approach, we consider the use of
the original high-dimensional data. To reduce data dimen-
sionality, we employ functional representation of spectra
using polynomial approximations and formulate the machine
learning in the space of the corresponding coefficients. The
basic approach is introduced and investigated using spectral
data from different contexts and more generally functional
data [3], [4].

We also employ standard principal component analy-
sis (PCA) as a dimension reduction technique and compare
it to the other schemes.

The ultimate aim is to identify a specific feature repre-
sentation or particular features (i.e. wavelengths or ranges of
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wavelengths) which contain most information for the classifi-
cation and that will facilitate technical solutions using simple
sensors.

The selection of features is mainly addressed within the
example framework of GMLVQ, e.g. [14], [15]. This proto-
type and distance-based classifier was previously studied for
detecting cassava diseases on the basis of relatively few fea-
tures directly derived from camera images [16], [17] and [6].
We apply a similar methodology here to show the compara-
tive advantage of the different featureset.

III. THE GMLVQ MACHINE LEARNING FRAMEWORK
Here we briefly introduce the machine learning framework
employed, GMLVQ.

Generally, we will consider datasets of the form:

{xµ, yµ}Pµ=1 (1)

where xµ ∈ RN are feature vectors and the labels yµ ∈
1, 2, . . .C specify their class membership.1

These data are generally standardized by performing a
z-score operation as shown in Eq. (2). This is computed by
subtracting the sample mean ϑi from data point components
xµi and dividing by the corresponding standard deviation δi:

zi =
xiµ − ϑi
δi

(2)

where i ∈ {1, 2, . . . ..N } andN is the dimension of the feature
vectors.

Learning Vector Quantization (LVQ) is a family of
prototype-based supervised classification algorithms first
introduced in 1986 [18]. It has been applied in a variety
of practical contexts; its key advantage being ease of inter-
pretation of the trained model. Several modifications of the
original LVQ algorithm have been proposed in the literature,
aiming at faster convergence or better generalization behav-
ior.

The LVQ system is defined by a set of M prototypes
W = {wj, c(wj)}Mj=1 with vectors wj

∈ RN which carry
labels c(wj) ∈ {1, 2, . . .C}. The system can be set up with
one or more prototype vectors per class. Prototype vectors
are identified in the feature space and ideally serve as typical
representatives of their classes.

A nearest prototype classifier (NPC) assigns a given fea-
ture vector x ∈ RN to the closest prototype with respect to
some meaningful distance measure.

Most frequently, standard Euclidean distance d(w, x) is
employed. The corresponding NPC assigns x to the class
c(wL) of the closest prototype with d3(x,wL) ≤ d3(x,wj)
for all j.
One important extension of the basic LVQ concept is rel-

evance learning in which an adaptive distance d3 is used,
where 3 denotes a set of adjustable parameters which are

1Throughout the following we denote high-dim. vectors by boldface
letters, e.g. x, while low-dim. projections are denoted as, for instance, Ec or Ey

adapted, together with the prototypes, in a data-driven train-
ing process. The output is a trained model and a vector3 that
denotes how relevant each feature is for the classification.

The GMLVQ algorithm proposed by Schneider et al. [14]
is a further extension that employs a full matrix 3 ∈ RN×N

of relevances that describes the importance of the individual
features in the classification task. Here, the distance measure
d3(x,w) is defined as:

d3(x,w) = (x− w)>3(x− w) (3)

where the parameterization 3 = �>� guarantees that
d3(x,w) ≥ 0 for unrestricted matrices � ∈ RN×N . In order
to avoid numerical degeneracies, a normalization constraint
of the following form is imposed:∑N

i=13ii =
∑N

i,j=1�
2
ij = 1.

In GMLVQ, the training process is guided by the optimization
of a cost function of the form suggested in [19]:

E(W ) =
P∑
µ=1

8

(
d3J (xµ)− d3K (xµ)

d3J (xµ)+ d3K (xµ)

)
. (4)

where the sum is over all examples in the data set, d3J denotes
the distance of xµ from the closest correct prototype with
c(wJ) = yµ and d3K is the distance from the closest incorrect
prototype

(
c(wJ) 6= yµ

)
. The modulation function 8 is

frequently chosen to be a sigmoidal function. Here, we con-
sider a simple function 8(x) = x. Training constitutes the
minimization of E(W ) with respect to the model parameters,
i.e. the prototypeW and the relevance matrix 3.

The learning algorithm defined in [19] uses stochastic
gradient descent. For the experiments presented in this work,
we use the publicly available LVQ toolbox [20], which imple-
ments the batch gradient minimization of the cost function,
Eq. (4), with adaptive step size control [20], [21]. If not
specified otherwise, we use default parameters as suggested
in [20].

Training yields theGMLVQclassifier in terms of the proto-
type vectors and the relevancematrix3. Its diagonal elements
3ii can be interpreted as the relevance of the corresponding
feature dimensions for the classification [14], [22].

A. DIMENSIONALITY REDUCTION
Spectral data of the type considered here are nominally high-
dimensional. As a consequence, the naive application of
machine learning techniques will result in classifiers with a
very large number of adjustable parameters, which causes
problems ranging from computationally expensive training to
a potentially increased risk of over-fitting.

The former is disadvantageous for efficient deployment of
the model, for instance in mobile systems. The latter point
could result in inferior generalization performance.

It is important to realize that spectra, like other functional
data, comprise highly correlated features, as such the inten-
sities of neighboring wavelengths can be expected to be very
similar in a more or less smooth spectrum.
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We consider three different approaches for the dimension-
ality reduction of the data in order to circumvent the above
mentioned problems.

1) FUNCTIONAL APPROXIMATION BY CHEBYSHEV
POLYNOMIALS
The functional nature of the data can be exploited system-
atically by using appropriate representations. For instance,
polynomial approximations have been used on spectral
data [3], [4].

In particular, Chebyshev polynomials of the first kind [23]
have been employed for a set of basis functions and showed
good classification performance in several applications.

We interpret original features xi as discretized observations
of an underlying continuous spectrum, represented by a func-
tion f (ν) with ν ∈ R, i.e.

xi = f (νi) , i = 1, 2, . . . ,N . (5)

Given a suitable set of basis function gk it is possible to
expand f as

f (ν) =
∞∑
k=0

ckgk (ν) with coefficients ck ∈ R. (6)

Restricting the maximum number of basis functions to a
finite number n, Eq. (6) yields an approximation f̂ (ν) of the
original spectrum.

The computation of the coefficients cµk , k = 1, 2, . . . n for
a given observation xµ can be formulated as an optimization
problem, achieving best approximation quality (e.g. mean
square error) for a given number of basis functions. For
Chebyshev polynomials of the first kind [23], the compu-
tation of coefficients can be done in an effective manner
employing a linear transformation:

Ecµ = Cxµ where xµ ∈ RN , C ∈Rn×N and Ecµ∈Rn. (7)

In practice, setting n � N yields an efficient dimension-
ality reduction which does not require prior knowledge of
the data. Furthermore, this includes an implicit denoising of
the spectral information by discarding higher order polyno-
mials [4].

2) PRINCIPAL COMPONENT ANALYSIS
PCA is a widely used standard technique for correlation
analysis and dimensional reduction, e.g. [24]. PCA yields
a linear projection of the data onto the eigenvectors of its
covariance matrix, ordered according to the observed varia-
tions in the data set. Consider a matrix X ∈ RM×N , whereM
is the number of samples and N is the data dimension. PCA
transforms X into Y ∈ RM×N ′ with, in general, N ′ ≤ N .
Whereas both PCA and Chebyshev polynomials are appli-

cable for our problem, it is important to note the following
properties. In PCA, the linear transformation depends on the
actual training dataset. The emerging transformation matrix
is then applied to novel data. For the Chebyshev case, poly-
nomial coefficients are determined individually for each data
point and do not depend on other data.

FIGURE 1. Depiction of asymptomatic(good) and symptomatic(bad) part
of a leaf.

Both dimension reduction schemes can be interpreted as a
linear transformation of the general form:

Ey = 9 x where x ∈ RN , 9 ∈ RM×N and Ey ∈ RM . (8)

which projects the original data, potentially centered in the
case of PCA, to anM -dimensional space withM < N .

A low-dimensional Ey corresponds to M expansion coeffi-
cients in the polynomial representation.When applying PCA,
the components of Ey are the projections of x on theM leading
principal components.

We can compare the form of the distance measure in both
spaces:

(Ev− Ey)>3̂(Ev− Ey) = (w− x)>9>3̂9︸ ︷︷ ︸(w− x)

= (w− x)> 3 (w− x). (9)

Here we denote a prototype and the relevance matrix in
the low-dimensional space by Ev ∈ RM and 3̂ ∈ RM×M ,
respectively. We observe that formally

Ev = 9w and 3 = 9> 3̂9. (10)

Hence, we can back-transform the relevance matrix 3̂ and
although the training is performed in terms of Chebyshev
coefficients or principal components, we can identify the
relevance of the original features, i.e. in terms of wavelengths
or ranges thereof.

3) PEAK SELECTION
Peak selection is a method of feature selection in which we
select a set of wavelengthswith the highest peaks from the rel-
evance profile obtained from runningGMLVQon the original
data spectrum. It has a very simple intuition; the wavelengths
with higher peaks represent areas in the spectrum where the
sensor had a strong response to the item being measured.
Harvesting wavelengths where there is a high response for
the different classes provides an intuitive way of selecting
features that may be relevant. This technique has commonly
been used in many signal-processing applications, e.g. [25].
Like the two methods (PCA and Chebyshev polynomials)
mentioned above, a subset of the original dimensions is
selected by constructing new dimensions.

Given our feature matrix 3, we put an intensity threshold
on 3ii to eliminate low-ranked features and select out wave-
lengths with a response above the threshold. We employ the
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FIGURE 2. Example images of leaves of cassava manifesting the different diseases.

convenient function findpeaks defined in MATLAB(R2016a)
which works by finding local peaks or valleys (local extrema)
in a noisy vector using a user-defined magnitude threshold to
determine if each peak is significantly larger (or smaller) than
the data around it.

IV. EXPERIMENTS
Here we discuss the experiments carried out with spectra
collected from leaves of cassava plants and how the methods
described were applied. First we describe collection of the
spectral data and the pre-processing applied. Next we present
the machine learning techniques and discuss how they are
combined with polynomial expansions and PCA.

A. EXPERIMENT DESIGN AND DATA COLLECTION
Our goal was to collect representative spectral data from the
leaves of cassava plants under two conditions: when plants
are healthy and when they are infected by the two different
diseases CBSD and CMD with visibly symptomatic leaves.
In Fig. 2, we provide some example images of leaves from
the two diseases. The manifestation of disease on the leaf is
determined to large extent by the variety of cassava and the
severity of disease. In future work one goal is to relate the
spectra extracted to the severity of disease. For this current
work, however, we only looked at the binary case, disease
vs (visibly) healthy for the two diseases.

These data were acquired using a CI-710 miniature leaf
spectrometer [26]. The device is USB powered from a device
(e.g. tablet or laptop) that makes the setup mobile and able
to collect data in the field. To collect data, the device is
clamped onto a leaf of a particular plant and the profile of
the amount of light absorbed or reflected is captured as a
spectrogram on the device for each position of the clamped
leaf.

Several ambient factors influence the intensity and shape
of the spectra, illumination being particularly important. For
this reason, we collected data directly infields under similar
lighting conditions.

We used the reflectancemode of operation of the spectrom-
eter based on previous experiments where reflectance and
absorption modes of operation gave the same performance
for cassava leaves.

We collected data for plants aged 6 to 9 months from
several cassava varieties including Nase 3, Nase 4, Nase 14,
Nase 19, Alado Alado,Magana, Orera andNAROCass 2 [27].

FIGURE 3. Illustration for class-conditional means of Cassava spectral
data not individual spectra. The left panel displays raw, full signal,
the right panel shows the corresponding pre-processed spectra.

For each variety, three plants were considered; and for each
plant, three leaves were considered. For each leaf, two spec-
tral readings were taken on each leaf lobe: one on the best part
(least affected/non-symptomatic) and the worst part (most
affected/symptomatic) (Fig. 1). Because the spectrometer
takes readings on a small area of the plant about 2cm in
diameter, readings for every leaf lobe were recorded in order
to achieve a representative and reliable sampling. Note that
this was considered during validation, such that we never
trained and tested on data from the same plant. In total,
1656 data points were collected for evenly distributed classes:
healthy, CMD and CBSD.

B. DATA PRE-PROCESSING
A typical spectrogram for each of the three classes is shown
in Fig. 3. The intensities corresponding to the smallest and
largest wavelengths are affected by significant noise. By trun-
cating the spectrogram, we selected a wavelength range
of 400 - 900 nm for subsequent analysis. This truncation
provided a range of 500 nm, corresponding to 2500 equally
spaced feature dimensions, which was still quite high. The
spectrogram had many perturbations from small noise added
to each wavelength. Consequently, the next pre-processing
step aimed at smoothing the data over a small window
of wavelengths. We compared two filtering techniques:
median [28], [29] and average [30]. For both, we used a
window size of 15 nm. Our experiments showed that average
filtering yielded better classification results for this window
size. As a consequence, average filtering was applied on all
the data. An example of the final pre-processed spectrogram
is shown in Fig. 3.

The dimensionality reduction could also be interpreted
as optional pre-processing steps. However, because they are
closely linked with training of the model we present them
separately.
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C. TRAINING AND VALIDATION
The data collection involved picking more than one sample
from a particular plant, therefore it was important to choose
a validation strategy that matched this condition in order
to avoid training and testing on data from the same plant.
We kept track of the class label (healthy, CBSD and CMD)
as well as the unique plant labels (also called groups). During
training, partitioning was based on plant groups and the vali-
dation scheme was Shuffle-Group(s)-Out cross-validation.

We employed the standard Scikit-learn implementation
of this cross-validation scheme for the algorithms that
were implemented using Scikit-learn [31]. In a similar
way, this validation strategy was implemented for LVQ
in MATLAB(R2016a) for the open source GMLVQ tool-
box [20] that we employed for the GMLVQ algorithm. For all
the models we train, we carry out a 10-fold crossvalidation
and average the performance over the folds. We employ
parameter K = 15 for the KNN algorithm, C= 1 for the linear
SVC and 200 estimators for the Extra trees algorithm. For the
GMLVQ algorithm we employ standard parameters used in
the GMLVQ tool box, which is available online [20].

V. RESULTS
In this section we present results of training the LVQ family
of methods and a standard algorithm (SVC) on the full spec-
tral dataset and on the reduced dataset with different kinds
of feature reduction: PCA, Chebyshev and peak methods.
As a baseline we also applied a Convolutional Neural Net-
work (CNN) using 1-D convolutional filters given the nature
of the data. CNNs are models that have been shown to have
superior performance on many tasks from computer vision,
to natural language processing. One of the complexities of
implementing CNNs is the choice of the architecture required
for a particular problem.

In our case, for comparison with other base algorithms we
employed a convolutional neural net (CNN) with an archi-
tecture based on the principles of popular models for image
classification, but adapted to be suitable for 1D inputs.We use
repeated convolution and ReLu blocks, with a max-pooling
operation at the end of each block. A final fully connected
softmax layer is used to perform the classification. This
architecture is analogous to the VGG-16 architecture for
2D (image) inputs [32], using the same principle that the
initial layers are intended to capture ‘local’ patterns within
the input, and the successive convolution and max-pooling
blocks successively downsample the input so that more global
patterns can also be captured. Note, however, that because
in our case the model operates on 1D spectral data, there
would be no way to utilise existing CNN models such as
VGG-16 for 2D data directly as starting points for training;
we therefore trained this model from scratch starting from a
random initialisation.

A. FULL SPECTRAL DATA
Our goal is two-fold: (1) to develop an algorithm that can
performwell on spectral leaf data and (2) to engineer the algo-

FIGURE 4. Feature relevance as quantified by diagonal elements of 3,
cf. Eq. (3), for original spectra as feature vectors.

rithm with a reduced featureset to a comparable performance.
The first goal builds a baseline for buildingmodels for disease
detection on cassava plants that are non-symptomatic and
the second provides the base for design and implementation
of low-cost devices that can use the narrow bands discovered
as relevant in this study. The spectrometer we used costs in
the order of thousands of dollars, and we aim to build one
costing tens of dollars.

To investigate model performance with the full spectral
data (goal 1) we pre-processed the data by truncating the sig-
nal at the extreme ends of the spectrogram and using the band
400 - 900 nm, as earlier described. We trained six algorithms,
three from the family of LVQ, two from Scikit-learn and a
CNN. The LVQ algorithms included Generalized Learning
Vector Quantization (GLVQ) that does not train for rele-
vances of the feature vector, Generalized Relevance Learning
Vector Quantization (GRLVQ) that is similar to GLVQ but
that trains a vector λ which represents the relevance of the
features and GMLVQ which uses a matrix of relevances as
described in an earlier section. The other two algorithms were
a Linear Support Vector Classifier (SVC) and CNN.

Table 1 shows the overall cross-validation accuracies for a
multiclass classification problem for the five different algo-
rithms with the full dataset. We obtained good performance
for the GMLVQ, SVC and CNN algorithms, with the SVC
algorithm showing the best performance on this dataset. One
important consideration to note in Table 1 is that feature
reduction techniques produce reduced featuresets that are not
immediately amenable to calculating convolutions as is the
case for CNNs, and performance thus degrades.

The profile of the wavelengths most relevant for the clas-
sification (Fig. 4) was derived from the diagonal matrix of3
from the GMLVQ algorithm. Results in Table 1 indicate that
this provides some level of advantage over the SVC algorithm
which performed best with the original dataset.

Projections of the feature vectors onto the leading eigen-
vectors of 3 allows depicting the spatial location of the
training data points in relation to the prototypes per class see
(Fig. 5). This 2-D representation shows good placement of
the prototypes in the space of the training data.

B. REDUCED FEATURE SPACE
For the reduced features we tried the three methods described
in the previous sections: PCA, Chebyshev and amethod based
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FIGURE 5. Visualization of the dataset depicting the three major classes
in the dataset plotted as projections of feature vectors (original spectra)
on the two leading eigenvectors of GMLVQ relevance matrix.

FIGURE 6. Performance of classifiers based on N Principal
Component (left) and n coefficients in the polynomial representation
(right panel).

TABLE 1. Overall cross-validation accuracy score for a multiclass
classification problem (Healthy Vs CBSD Vs CMD).

TABLE 2. Confusion matrix for GRLVQ with PCA.

on truncating the peaks of the relevance profile produced
from training the algorithms on the full spectral data.

The challenge with feature reduction is to reduce the fea-
tures from the 2500 features to a suitable number N that can
represent the full spectrogram and still perform relativelywell
on the dataset. To determine a suitable N , we ran experiments
of a set of different N s and plotted the accuracy of the
GMLVQ algorithm and compared these with the Chebyshev
method and PCA methods for different values of N (Fig. 6).
The results of this experiment were an optimal N for PCA

of 30 coefficients and Chebyshev of close to 200 components.
We then trained our set of five algorithms on these reduced
featuresets of the data. Table 1 shows results of the PCA
and Chebyshev methods of feature reduction. Furthermore,
Table 2, 3 and 4 are confusion matrices for GRLVQ, Linear
SVC and CNN with PCA method respectively.

TABLE 3. Confusion matrix for Linear SVC with PCA.

TABLE 4. Confusion matrix for CNN with PCA.

FIGURE 7. Selection of features with diagonal relevances (GMLVQ) above
a threshold.

FIGURE 8. Diagonal relevances of GMLVQ in original feature space as
reconstructed after performing the training in terms of 30 (left panel)
and 5 (right panel) principal components.

The peakmethod of selecting a set of wavelengths from the
relevance profile of the full spectral data is a fairly intuitive
way of reducing the set of features. For this method we used
a threshold on the relevance profile to select the 30 most
relevant features from the profile to train our algorithms.
Results of the peak method are shown in Fig. 7 and Table 1.
We obtained the best performance with these reduced fea-
turesets for the GMLVQ algorithm with the PCA feature
reduction method performing the best overall for all five
algorithms.

A key idea of our experimentation was to determine how
well we could derive the relevance profile from the original
spectral data profile using the reduced featuresets. By Eq. 10,
we reconstructed the relevance profile from the reduced
featuresets for PCA method using five coefficients (very
few) and 30 coefficients (optimal performance) according to
Fig. 8.
The results of this back transformation are shown in Fig. 8.

The resultant shapes of the relevance profiles for all wave-
lengths tended to follow the shape of the relevance profile
of the original spectral data with the bi-modal distribution of
relevance. In a general way this justifies our choice of N for
the PCA method.
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VI. DISCUSSION
We presented a method of diagnosing disease from plant
leaves in the field using spectral data which is different from
previous methods that are based solely on image data. Our
study provides the first step in our search for a method
that can be used to diagnose disease in leaves before they
are visibly symptomatic. Although the use of spectrometry
for classification is not a new idea, its application for this
particular problem in combination with the machine learning
based analysis is novel. We obtained a competitive level of
classification accuracy in the difficult problem of discrim-
inating between a healthy cassava plant and those affected
by CMD and CBSD. The results showed improved classi-
fication accuracy when using a reduced featureset, partic-
ularly when PCA was used for dimension reduction. The
spectral data were very noisy and it is likely that the feature
reduction removes most noise from the signal. The work
also investigated different techniques for disease classifica-
tion. As expected, performance of the CNN degrades with
reduction in the number of features since deep neural net-
works particularly excel with a large amount of data and
many features. We also observed an interesting change in top
performance with SVC performing best for the full spectrum
data, but the roles changed and GMLVQ performed best
consistently with all the other reduced representations of the
featureset. One explanation for this is that with the reduced
featureset, GMLVQ is able to obtain amore reliable relevance
profile, which in turn enhances performance of the algorithm.
However, with SVC, which does not calibrate for relevance
profiles of the features, the decision boundaries are thrown
off with the relatively fewer data points. In addition, we have
performed experiments using Linear Discriminant Analysis
(LDA) [33] as a classifier, yielding performances comparable
to the combination of PCA and GMLVQ.While GMLVQ and
LDA appear similar on a conceptual level, the LVQ approach
offers greater flexibility in terms of extensions with respect
to the number of prototypes per class and the use of local
relevance matrices [22], [34]. Furthermore, LDA is restricted
to employing (C − 1)-dim. internal representations of the
data in C-class problems, while in GMLVQ the rank of the
adaptive relevance matrix emerges from the training process
and reflects the complexity of the classification problem.

In future work we intend to look at spectral data collected
from a more controlled environment where plants can be
inoculated and data collected before they are visibly symp-
tomatic. The experiments of this study started in our work
in [35] and were guided by chemical analysis from the bio-
chemist. The findings of the current work contributed to this
study by identifying the most spectral band for the disease
classification. Results indicate that the presence of the disease
can be detected from leaf spectra six weeks earlier before the
appearance of visual symptoms. Another aspect of our future
work is to build a low-cost smartphone add-on spectrometer.
In [36], we present our initial proof of concept towards this
area. We built a low-cost spectral artifact (less than 5 USD)
instead of using an off-the-shelf and expensive spectrometer

(approximately 1000 USD). One possible way to improve the
artifact would be to use specific diodes that are sensitive at
those particular relevant feature wavelengths and building a
light emitting, absorption and measurement system around
that. The success of this technology will provide a cheap
and user friendly diagnostic tool to be used by smallholder
farmers in developing countries.
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